
Page 1 of 39

USING THE INCARNATION DATABASE (V4.0)
Sven van den Berghe, Fujitsu Laboratories of Europe

Version 4.0.3 23rd July 2003
Version 4.0.1 14th February 2003

Using this document and studying the example IDB(s) should allow you to adapt
an IDB to your requirements.
This document assumes knowledge of the Unicore architecture and of the AJO.
NOTE: The following sections are no longer valid and must be removed from any
IDBs; IMPORT, EXPORT, COPY_FILE.
Their replacement is FILE_COPY (from NJS 4.0.0 Beta 10 onwards).

1 Incarnation and Execution
Executing an AbstractAction on a target system is a two-stage process. Firstly,
the AbstractAction is incarnated by the NJS: incarnation converts the abstract
expression of a task and its options into site and vendor specific commands. The
incarnated commands are then passed to a Target System Interface (TSI), which
is responsible for executing the commands.
The NJS also creates and incarnates some actions of its own e.g. actions to set up
a Uspace, remove a Uspace, retrieve stdout and stderr and query the status of
executing jobs.
The NJS is generic with the same code applying to all possible target systems.
Since the NJS is generic, it needs to be initialised with the information that it
needs for incarnation and to contact and control the TSIs. This information will
be specific to each site and to each target system. This part of the NJS
initialisation is done through the Incarnation Database (IDB).

1.1 Comments
• TSIs interact directly with the execution mechanism of the target system

(NQS, Unix batch jobs etc) and so need to be tailored to each target system.
• TSIs run as processes separate from the NJS and on the actual target system

(the NJS usually runs on a workstation remote from the target system).
• TSIs are intended to be lightweight and stateless providing efficient execution

of the tasks with minimum coding and installation.
• TSIs have been written in Perl (for flexibility) but the protocol between the

NJS and its TSIs is text based and so any language could be used to
implement them.

• The NJS assumes that that a Bourne Shell is available.
• The TSI executes the incarnated tasks and so it is the only place where non-

normal user permissions are required – the NJS can run as a normal user.

2 Syntax
An IDB is split into sections. A section is started by a section keyword and ended
by the END keyword. Each section has its own set of valid keywords and
subsections.
The sections are described in more detail below.

2.1 General Rules
Keywords start on a new line, there cannot be more than one keyword on a line.
Blank lines are allowed.
Any characters between a “#” and the end of a line are treated as comments.

Page 2 of 39

White space is used to delimit words but any amount is allowed.
2.1.1 Word

A word is text delimited by white space or a comment character. The string word
is used throughout the rest of this document to refer to text in this format.
For example:
this_is_a_word
is a word, but
this is a word
is not a word (it is a list of 4 words).

2.1.2 List
A list is a group of words (up to the end of the line) delimited by white space or
by commas.
This is a list
is a list.

2.1.3 End_of_line
The text in an end_of_line starts at the end of the keyword and continues to the
end of the line.

2.1.4 Verbatim
verbatim is delimited by “[“ and the matching “]”. This text is copied directly
into the command being created.
If the verbatim text includes “[“ or “]”, then opening and closing braces must
match, even if escaped).
verbatim text may also be start with a double quote. It then ends at the next
double quote.
Finally, where the context is unambiguous verbatim text can be delimited by
white space (if the first non-space character is not a double quote or “[“, then the
text is delimited by white space).
Inside verbatim text a new line (\n) immediately preceded by a “-“, indicates
concatenation of the two lines (the “-“ is discarded).
For example the following verbatim text:
[this is a line of text
 but this two lines –
 will become one]
Is placed into scripts as:
 this is a line of text

 but this two lines will become one
2.2 Pre-processing

The reading of an IDB includes a very simple pre-processing phase, which scans
for lines with the format –DEFINE and –INCLUDE.

2.2.1 DEFINE
-DEFINE string replacement
or
#DEFINE string replacement

Page 3 of 39

(the –DEFINE or #DEFINE must start the line, string must not contain spaces,
replacement is the rest of the line, up to a “#” or “!”)
The pre-processor replaces every occurrence of string by replacement in all the
following lines.
A line of the form:
-ECHO
or
#ECHO
will cause all following lines to be echoed to the log file after pre-processing.

2.2.2 INCLUDE
-INCLUDE file_name
Read the named file and place its contents at this point in the IDB. INCLUDEd
files can INCLUDE other files.

2.3 Localisation of commands used by the NJS
The NJS performs a number of housekeeping tasks on Uspaces. These tasks use
standard Unix commands and so are not defined in the IDB. The location of these
commands may change on different systems and so the NJS will read the
following values from the IDB for these commands:
-DEFINE CAT_CMD xx will use xx for Unix /bin/cat
-DEFINE COPY_CMD xx will use xx for Unix /bin/cp –r
Care must be taken to ensure that the incarnated copy command follows symbolic
links and does not just copy them. This is the default behaviour on most systems.
However, under Linux the default behaviour is to copy a symbolic link. This can
be corrected by using “cp –rL”.
-DEFINE FIND_CMD xx will use xx for Unix /bin/find
-DEFINE LS_CMD xx will use xx for Unix /bin/ls
-DEFINE LSA_CMD xx will use xx for Unix /bin/ls –A1

-DEFINE LN_CMD xx will use xx for Unix /bin/ln -s
-DEFINE MKDIR_CMD xx will use xx for Unix /bin/mkdir –p –m700
-DEFINE MV_CMD xx will use xx for Unix /bin/mv
-DEFINE PF_CMD xx will use xx for Unix /usr/bin/printf
-DEFINE RM_CMD xx will use xx for Unix /bin/rm
-DEFINE SH_CMD xx will use xx for Unix /bin/sh
-DEFINE SED_CMD xx will use xx for Unix /bin/sed
-DEFINE TR_CMD xx will use xx for Unix /usr/bin/tr –s
-DEFINE TOUCH_CMD xx will use xx for Unix /usr/bin/touch
-DEFINE MKFIFO_CMD xx will use xx for /bin/mkfifo –m600

The setting of these commands can be tested in a running NJS by using the
“test_commands” command in the “njs_admin” utility.

1 list all files, including hidden, but not “.” or “..”

Page 4 of 39

2.4 Capacity Resources
The values in the capacity resources are sent to clients as the limits on the
resources available at the Vsite. These values are sent to the client even if the
queue limits are greater than the values set here.
A Capacity Resource is a resource that needs to be requested by type and amount;
for example a certain amount of memory. Most capacity resources also have
limits on the amount of resource available. The syntax of a Capacity Resource
description is as follows:
RESOURCE_NAME description
 MAXIMUM maximum
 MINIMUM minimum
 DEFAULT default
Where RESOURCE_NAME is a keyword that is the name of the resource being
described, description is verbatim and is a string to describe the resource,
maximum is the maximum of the resource allowed at the site, minimum is the
minimum of the resource allowed by the site and default the amount of resource
that will be allocated to n incarnated task if there is no explicit request and it is
necessary to supply a value. maximum, minimum and default are verbatim and
interpreted as numbers.

2.5 Action Descriptions
All action descriptions have two parts. invocation definitions, which define the
lines of script to be used to incarnate a task in a Software Resource, and field
definitions, which define how to define fields (perhaps in different Software
Resources).

2.5.1 Invocation Definitions
Incarnation definitions define the script lines to be used to incarnate an action.
They have the following structure:
INVOCATION word1 word2 verbatim
Where word1 is a Software Resource identifier which names the Software
Resource to which the definition applies.
The Software Resource must have been defined for the TSI.
A Software Resource identifier is made up of the Software Resource name and
version string separated by a hyphen (if there is no version information, then the
hyphen is omitted) e.g.
GAUSSIAN-66.vA
Is the Software Resource identifier for a GAUSSIAN software resource with
version 66.vA.
If word1 is absent, then this incarnation is the default and will be used when no
Software Resources are present in the task. The default incarnation is also used as
the base for the incarnation building process (see below).
Every action definition must have a default incarnation
word2 is optional. If it is the string “INTERACTIVE”, then the TSI is signalled
that the incarnation of tasks asking for the Software Resource should be executed
“interactively”.
Note that there is no code in the current TSIs to do interactive execution and so
this will usually have no effect.
The verbatim section defines the script lines to use. It consists of text, which is
passed (almost) verbatim to the incarnated task, and fields within “<” and “>”
which are substituted by the NJS according to the rules given in the field

Page 5 of 39

definitions and the option values chosen by the user. Every valid field for the task
must appear in each incarnation definition.
Building incarnations
An incarnation is built up by applying the definitions in the order that they are
encountered in the IDB if the Software Resource is selected in the task. The
special field <STANDARD> can be used to substitute the incarnation so far (if
<STANDARD> is selected, then no other field can be present).
For example the IDB text:
INVOCATION [./<RUNCOMMAND>]
INVOCATION MPI1 [aprun <RUNCOMMAND>]

INVOCATION PVM [aprun <STANDARD>
INVOCATION TIME_ON <time <STANDARD>]
Produces the following commands if <RUNCOMMAND> incarnates to a.out:
By default with no Software Resources in the task’s resource request:
./a.out
The task selects the MPI1 Software Resource only:
aprun a.out
The task select the PVM Software Resource:
aprun ./a.out
The task selects the option to produce timing information:
time ./a.out
The task selects both MPI1 and timing:
time aprun a.out
Manipulation of strings
The incarnation of most fields can be instructed to escape shell metacharacters
(*,?,$,[,]) with the syntax:
<field_name%>.
The <STANDARD> field can be modified by simple text processing:

<field_name/A/B/> means substitute every occurrence of string A by string B
in the incarnation so far
<field_name+C> means append string C to the incarnation so far.

The verbatim text can be modified by special characters immediately before the
start of a field (i.e. before the “<”):

If the last character before a “<” is a “*”, then the following field is split into
words and each word prepended by the verbatim text. For example:
–l*<LIBRARY> when <LIBRARY> incarnates to “m c mpi” will be written
to the incarnated job as”–lm –lc –lmpi”)
If the last character is a before a “<” is “_”, then the field and the preceding
verbatim text are placed in the incarnation only if the field incarnates to a
string with non-zero length.

2.5.2 Field definitions
Some of the fields in the invocation definition have options (e.g. compiler
optimisation levels). The incarnation of these options is specified by a field
definition with the following format:
FIELD_NAME

Page 6 of 39

 OPTION_NAME incarnation
 OPTION_NAME incarnation

 ……
END
Incarnation is a word. If it is an underscore (“_”), then no text is placed in the
incarnation of that field.
Fields are usually defined for all Software Resources. However, it is possible to
redefine a field for a particular Software Resource by placing it within the
following structure:
SOFTWARE_RESOURCE software_resource
...
END
Where software_resource is a word and is the name of the Software Resource to
which these changes apply. More than one field can be modified within a
SOFTWARE_RESOURCE section.
For example to redefine the naming of files so that preprocessed Fortran files
have a .F extension and non-preprocessed files have a .f extension:
NAMING
 SOURCE_FILE .f
 ..
END
SOFTWARE_RESOURCE PREPROCESS

 NAMING
 SOURCE_FILE .F
 ..
 END
END

2.5.3 Naming
Unicore assumes certain file name extensions for certain types of files. These
may not be the same as those required by a target system. The NJS is told of
system specific file name extensions through this construct:
NAMING
FILE_TYPE name
FILE_TYPE name
..
END
Where name is the file name for this file type. If name starts with a full point
(“.”), then it is treated as an extension and the NJS replaces incoming extensions
with the system specific extension. Otherwise name is treated as the complete file
name.

2.6 Multiple TSIs
The NJS is usually configured to use a single TSI. However, in some cases it may
be desirable to use multiple TSIs (e.g. to allow cross-compilation). Secondary
TSIs can be defined by placing additional EXECUTION_TSI sections in the IDB.

Page 7 of 39

The secondary TSIs must be named (and their definitions must appear after the –
unnamed – primary, or default, TSI).
Tasks can be specialised for secondary TSIs by repeating the section and
including a DEFINITION_FOR section.

2.6.1 DEFINITION_FOR section
The DEFINITION_FOR section tells the NJS which TSIs can use the particular
definition. The format is:
DEFINITION_FOR list END
Where list is a list of the names of previously defined TSI that can use this
definition. There are two special names, ALL says that this definition applies to
all TSIs and DEFAULT says that this definition applies to the default TSI.
The DEFINITION_FOR section is optional. If it is not present, then the definition
is for the default TSI (the first Execution TSI in the IDB file).

Page 8 of 39

3 GENERAL section
The GENERAL section describes properties that apply to the whole Vsite and to
all task incarnations.
There are seven keywords recognised in the GENERAL section;
USPACE_ROOT, OUTCOME_ROOT, SPOOL_ROOT, HEADER, BROKER,
TextInfoResource, NumericInfoResource.
TextInfoResource and NumericInfoResource are abstract carriers of information.
They are designed to pass information from the site administrators to a client and
have no relevance to the operation of the NJS. One use of these resources is to
replace the Resource Pages that were used in Unicore 1.0. The syntax of the
information is determined by the client, suggestions are given in the examples
below.
The _ROOT keywords refer to directories that the NJS needs to use to store files.
The directory names are interpreted relative to the current working directory of
the TSI. These directory names are not necessarily passed through a shell and so
will not expand any environment variables except for two: $HOME and $USER.
The _ROOT directories must exist and should be writable by all the users that
will write files to them (generally mode 777 unless there is a $HOME or $USER
in the name, when they can be limited to just the user).
The default is to use the TSI’s current working directory.
These directories are all cleaned up by the commands defined in the CLEANUP
section.

3.1 USPACE_ROOT keyword
The USPACE_ROOT keyword tells the NJS where it can place the Uspaces of
the executing AJOs. The NJS will create a subdirectory of the UPSACE_ROOT
directory for each executing AJO.
The format of the USPACE_ROOT keyword is:
USPACE_ROOT directory
Where directory is a word and is name of the directory under which the Uspaces
should be created.

3.2 OUTCOME_ROOT keyword
The OUTCOME_ROOT keyword tells the NJS where it can store files that are
part of the Outcome of an AJO. The NJS will create a subdirectory of the
OUTCOME_ROOT directory for each executing AJO that produces Outcome
files.
The format of the OUTCOME_ROOT keyword is:
OUTCOME_ROOT directory
Where directory is a word and is the name of the directory under which the
Outcomes should be stored.

3.3 SPOOL_ROOT keyword
The SPOOL_ROOT keyword tells the NJS where it can store files that are
spooled by a Spool task. The NJS will create a subdirectory of the
SPOOL_ROOT directory for each spooled Portfolio.
The format of the SPOOL_ROOT keyword is:
SPOOL_ROOT directory
Where directory is a word and is the name of the directory under which the
spooled files should be stored.

Page 9 of 39

3.4 HEADER keyword
The HEADER keyword supplies text that the NJS adds to the header of every
script that it produces. It can be used to supply a common environment to all
incarnated AbstractActions or to implement any pre-processing that is required by
a site.
All the scripts created by the NJS use the Bourne shell.
The format of the HEADER keyword is:
HEADER text
Where text is verbatim and copied directly from the IDB to the start of every
script.

3.5 BROKER keyword
The BROKER keyword tells the NJS the name of a class to load to perform
resource brokering and resource checking functions. The class must implement
one of the following interfaces:
• com.fujitsu.arcon.njs.interfaces.ResourceChecker
• com.fujitsu.arcon.njs.interfaces.ResourceBroker
The format of the BROKER keyword is:
BROKER classname initialisation
Where classname is a word and is the name of the class to load to perform the
brokering functions.
Where initialisation is verbatim. This string is passed through to the initialisation
of the brokering/checking class.
This keyword is optional. If it is not used, then the NJS will not perform these
functions (any tasks requesting resource brokering or resource checking will fail).
If this keyword is used, then the NJS will use these classes to execute any
org.unicore.ajo.CheckResources and org.unicore.ajo.CheckQoS tasks that it
receives. It will also add instances of org.unicore.resources.QoSCheckResource
and org.unicore.resources.ResourceCheckResource to its advertised resources.
If the implemented interface is com.fujitsu.arcon.njs.interfaces.ResourceChecker,
then only org.unicore.resources.QoSCheckResource is added.

3.6 TextInfoResource
The TextInfoResource is copied into the resource description of the Vsite as an
instance of org.unicore.resources.TextInfoResource. The NJS does nothing else
with this resource.
This keyword can appear as many times as required.
The format of TextInfoResource is:
TextInfoResource description
Tag tag
Value value
Where description is verbatim and is a description of the information that is
contained in the tag and value sections, tag is verbatim and defines the
information type and value is verbatim and is the information.

3.7 NumericInfoResource
The NumericInfoResource is copied into the resource description of the Vsite as
an instance of org.unicore.resources.NumericInfoResource. The NJS does
nothing else with this resource.
This keyword can appear as many times as required.

Page 10 of 39

The format of NumericInfoResource is:
NumericInfoResource description
Tag tag
Value value
Where description is verbatim and is a description of the information that is
contained in the tag and value sections, tag is verbatim and defines the
information type and value is verbatim and is the information, value must be
convertible into a number.

3.8 Example
Tell the NJS to create all Uspaces as sub-directories of /UNICORE/uspaces, to
put all outcomes into user specific directories under
/UNICORE/uspaces/Outcomes/ and to write spooled files into each user’s home
file space.
Two variables are added to the environment of every script created by the NJS
Passes the remaining fields to the client.

GENERAL
 USPACE_ROOT /UNICORE/uspaces
 OUTCOME_ROOT /UNICORE/uspaces/Outcomes/$USER

 SPOOL_ROOT $HOME/UNICORE_SPOOL
 HEADER [
 UNICORE_JOB=true; export UNICORE_JOB
 UC_TARGET=VPP; export UC_TARGET
]

 TextInfoResource [The full name of the Usite.]
 TAG [Site name]
 VALUE [
 Fujitsu European Centre for Information
Technology]

 TextInfoResource [The short name of the Usite.]
 TAG [Site short name] VALUE [FECIT]

 TextInfoResource [The Usite's primary contact
person.]
 TAG [Responsible contact]
 VALUE [Dr. David F. Snelling]

 TextInfoResource [The informal name of the Vsite.]
 TAG [Vsite name] VALUE [Fecit_VPP]

Page 11 of 39

 TextInfoResource [The Usite's contact email
address.]
 TAG [Contact email] VALUE [snelling@fecit.co.uk
]

 NumericInfoResource [Total Vsite performance
Gflop/s.]
 TAG [Site performance (Gflop/s)]
 VALUE [8.8]

 # Vsite Resources

 TextInfoResource [The Vsite architecture]
 TAG [Architecture]
 VALUE [VPP/300]

 TextInfoResource [The Vsite operating system]

 TAG [Operating System]
 VALUE [UXP/V, version UXP/V]

 TextInfoResource [XML Resource Pages]
 TAG[Unicore XML Resource Pages V1.0]

 VALUE […………]
END

Page 12 of 39

4 EXECUTION_TSI2 section
Describes the TSI that used by the NJS to execute all incarnated scripts.

4.1 NAME keyword
A name for the TSI being described, this is optional.
The NAME keyword should appear at most once in a EXECUTION_TSI section.
The format of the NAME keyword is:
NAME name
Where name is a word and is the name of the TSI.

4.2 SOURCE keyword
How the TSI will contact the NJS.
The format of the SOURCE field is:
SOURCE machine_name in_port out_port
Where:
machine_name is a word and is the name of the machine on which the TSI
executes.
in_port is a word and is the number of the port on which the TSI processes will
contact the NJS.
out_port is a word and is the number of the port on which the TSI daemon
processes is listening for requests from the NJS to start a new process.
The NJS to TSI connections are only allowed between two specified machines
using specified port numbers (this is done so that the TSI, which is a process with
root privileges, can be sure that it is accepting commands from a genuine NJS).
Thus the NJS will only connect to TSI running on machine_name .
There is a two-stage protocol to start a TSI process. When the NJS detects the
need for a new TSI process it will contact the TSI shepherd process (running on
machine_name listening on out_port). The TSI shepherd will create a TSI process
that will contact the NJS (on in_port).

4.3 STORAGE keyword
The STORAGE keyword introduces a description of a (file) storage resource.
The format of the STORAGE field is:
STORAGE description path NAME name DEFAULT default
MAXIMUM maximum MINIMUM minimum
Where:
description is verbatim text that describes the resource to users
path is the path prepended to all file names on this storage
name is the name of the storage resource
default, maximum, minimum are the limits on the storage (in megabytes)
If the name is “ROOT”, then an instance of org.unicore.resources.Root is created
that overrides the default instance (which has a path of “/” and limits from 0.0 to

2 An alternative form of this keyword is EXECUTION_TSI_Q which differs only in the run time
behaviour for job-status polling. The normal form assumes that a job-status poll will return results
for all executing jobs, the alternative form that results are returned only for a particular job. The
alternative form is much less efficient than the normal form and should only be used if the normal
cannot be used. The alternative form requires changes to the TSI code.

Page 13 of 39

the maximum floating point (double) value and a default of 0.01). PATH is
optional.
If the name is “USPACE”, then an instance of org.unicore.resources.USpace is
created that overrides the default instance (which has a path of the value of
USPACE_ROOT and limits from 0.0 to the maximum floating point (double)
value and a default of 0.01, (a matching instance of
org.unicore.resources.AlternativeUspace is also created). PATH is optional.
If the name is “SPOOL”, then an instance of org.unicore.resources.Spool is
created that overrides the default instance (which has a path of the value of
SPOOL_ROOT and limits from 0.0 to the maximum floating point (double) value
and a default of 0.01). PATH is optional.
If the name is “HOME”, then an instance of org.unicore.resources.Home is
created that overrides the default instance (which has a path of “$HOME” and
limits from 0.0 to the maximum floating point (double) value and a default of
0.01). PATH is optional.
If the name is “TEMP”, then an instance of org.unicore.resources.Temp is
created. PATH is required.
For all other values for name an instance of org.unicore.resources.StorageServer
is created with the given name. . PATH is required.

4.3.1 Example
STORAGE "Test storage server" /foo/bar NAME on_foo
DEFAULT 10 MAXIMUM 100 MINIMUM 1

STORAGE on_root NAME root DEFAULT 10 MAXIMUM 100
MINIMUM 1
STORAGE on_uspace NAME uspace DEFAULT 10 MAXIMUM 100
MINIMUM 1
STORAGE on_spool NAME spool DEFAULT 10 MAXIMUM 100
MINIMUM 1
STORAGE on_home NAME Home $HOME DEFAULT 10 MAXIMUM
100 MINIMUM 1
STORAGE on_temp NAME temp /local/temp DEFAULT 10
MAXIMUM 100 MINIMUM 1

4.4 NODE keyword
The NODE keyword describes a Capacity Resource for the number of nodes
available to the EXECUTION_TSI.
The NODE keyword must appear once in the EXECUTION_TSI section. The
limits set by this keyword must be accepted by at least one of the defined queues
(if any queues are defined).

4.4.1 Example
Node [The number of nodes available to a batch job]
 DEFAULT [64]
 MAXIMUM [256]
 MINIMUM [1]
This tells the NJS that it has between 0 and 256 nodes available for batch jobs on
the TSI, with a default value of 64 nodes.

4.5 PROCESSOR keyword
The PROCESSOR keyword describes a Capacity Resource for the number of
processors per node available to this EXECUTION_TSI.

Page 14 of 39

The systems that can be described in the IDB are those with a collection of
homogeneous shared memory nodes, each node having the same number of
processors.
The PROCESSOR keyword is optional. It defaults to 1 processor per node for all
fields.
The limits set by this keyword must be accepted by at least one of the defined
queues (if any queues are defined).

4.5.1 Example
Processor [The number of processors per node]
 DEFAULT [16]

 MAXIMUM [16]
 MINIMUM [1]
This tells the NJS that it has between 1 and 16 processors per node, with a default
value of 16 processors per node.

4.6 SOFTWARE_RESOURCE keyword
Description of a Software Resource supported by the EXECUTION_TSI.
If a Software Resource is used to modify the incarnation of an action, then it must
appear in the EXECUTION_TSI section(s) for which the action is being defined.
The format of a SOFTWARE_RESOURCE is:
SOFTWARE_RESOURCE description type name version
Where description is verbatim and can be used to describe the Software resource
to users. Description is optional.
Where type is a word (either APPLICATION or CONTEXT) which describes the
type of Software resource being defined. Contexts include libraries (e.g MPI) or
execution contexts (such as a timing run or a run with debug). Type is optional
(but may be made required in a future release of the NJS).
Where name is a word and is the name of the Software Resource and version is a
word and is the version information of the Software Resource (version is
optional).
Note that the Software Resource identifier that is used in the definitions of the
incarnations combines the name and version information (see Section 2.5).

4.6.1 Example
SOFTWARE_RESOURCE [A weather forecast model] APPLICATION IFS 3.45

4.7 APPLICATION keyword
The APPLICATION keyword is an alternative way to describe a
SOFTWARE_RESOURCE of type APPLICATION.
The format of APPLICATION is:
APPLICATION description name version meta_data_file_name
Where description is verbatim and can be used to describe the Software resource
to users. Description is optional.
Where name is a word and is the name of the Software Resource and version is a
word and is the version information of the Software Resource (name and version
are required).
Note that the Software Resource identifier that is used in the definitions of the
incarnations combines the name and version information (see Section 2.5).

Page 15 of 39

meta_data_file_name is the name of a file whose contents are read where the NJS
starts up and are sent with the Application resource as its “MetaData” field (see
the AJO documentation). (meta_data_file_name is optional)

4.7.1 Example
APPLICATION “A weather forecast model” IFS 3.45 gui.xml

4.8 CPUTIME keyword
The CPUTIME keyword describes a Capacity Resource for the amount of time
that a task (batch job) is allowed with the addition of another field to describe the
speed of the processors3.
The units of the fields are seconds.
The format of the additional field is:
RATE number
Where number is verbatim (interpreted as a number) and is the (peak) floating
point performance of a processor in megaflop per second per processor
The CPUTIME keyword must appear once in each EXECUTION_TSI section.
The limits set by this keyword must be accepted by at least one of the defined
queues (if any queues are defined).

4.8.1 Example
CPUTime [Limits on time for jobs]
 DEFAULT [1000]
 MAXIMUM [14400]
 MINIMUM [1]
 RATE [900]
This tells the NJS that the site allows between 1 and 14400 seconds time and that
each of the processors is rated at 900 megaflop per second.

4.9 MEMORY keyword
The MEMORY keyword describes a Capacity Resource for the amount of
memory that a task requires.
The units of the fields are megabytes per node.
The MEMORY keyword must appear once in each EXECUTION_TSI section.
The limits set by this keyword must be accepted by at least one of the defined
queues (if any queues are defined)..

4.9.1 Example
Memory [Limits on the memory (per node) of a batch
job]
 DEFAULT [1000]
 MAXIMUM [1280]

 MINIMUM [1]
This tells the NJS that each node has between 1 and 1280 megabytes available
and that a default value of 1000 megabytes per node will be supplied.

3 The CPUTIME keyword generates instances of the org.unicore.resources.FloatingPoint and the
org.unicore.resources.RunTimes resouce classes.

Page 16 of 39

4.10 PER_NODE_LIMITS keyword
The PER_NODE_LIMITS is optional. If it appears, then the NJS creates memory
resource requests for the batch sub-system that are expressed as per-node (this is
the default).
The format of the PER_NODE_LIMITS keyword is:
PER_NODE_LIMITS

4.11 PER_JOB_LIMITS keyword
The PER_JOB_LIMITS is optional. If it appears, then the NJS creates memory
resource requests for the batch sub-system that are expressed as per-job i.e. are
the sum of the requirements for each processor in the job.
Note that the Unicore AJO expects all memory requests to be per-node so setting
this option means that all requests from a user for memory are multiplied by the
number of requested nodes before being sent to the BSS.
Note also that the resource description (MEMORY keyword) is always per-node.
The format of the PER_JOB_LIMITS keyword is:
PER_JOB_LIMITS

4.12 PER_PROCESSOR_LIMITS keyword
The PER_PROCESSOR_LIMITS is optional. If it appears, then the NJS creates
memory resource requests for the batch sub-system that are expressed as per-
processor.
Note that the Unicore AJO expects all memory requests to be per-node so setting
this option means that all requests from a user for memory are divided by the
number of requested processors per node before being sent to the BSS.
Note also that the resource description (MEMORYkeyword) is always per-node.
The format of the PER_PROCESSOR_LIMITS keyword is:
PER_PROCESSOR_LIMITS

4.13 DO_NOT_SEND_EMAIL keyword
The DO_NOT_SEND_EMAIL keyword is optional. Usually the NJS will submit
batch jobs so that they will cause email to be sent whenever the batch job changes
state (e.g. starts and finishes executing). This email is sent to the email address
sent with the AJO. If a batch sub-system or site does not support the sending of
external email, then this keyword can be used to stop the NJS submitting jobs
with this option set.
The format of the DO_NOT_SEND_EMAIL keyword is:
DO_NOT_SEND_EMAIL

4.14 QSTAT_XLOGIN keyword
The QSTAT_XLOGIN keyword is passed by the NJS to the TSI whenever it
requests a listing of the state of all batch jobs from the TSI.
The TSI sets its uid to this value before executing the query command (under
NQS this is qstat). There are two uses of this keyword. Firstly it prevents the TSI
from executing a command as root (all other commands are executed as an
xlogin). It also provides a way for sites to fulfil the requirement that the qstat
command return the state of all batch jobs (some sites limit the return from qstat
to just the user’s jobs). If the QSTAT_XLOGIN is made an (NQS) administrator
of the queues, then all jobs will be visible to it.
The format of the QSTAT_XLOGIN keyword is:
QSTAT_XLOGIN xlogin
Where xlogin is a word and is the login to use for the qstat commands.

Page 17 of 39

This key word is required once for every Execution TSI.
4.15 OVERHEAD keyword

The OVERHEAD keyword tells the NJS the amount of time added to the
execution of a typical script by the pre and post processing commands added by a
site.
The format of the OVERHEAD keyword is:
OVERHEAD time
Where time is a word and is the amount by which the requested job time must
be increased to account for the extra processing.

4.16 QUEUE subsection
The queue subsection tells the NJS which batch queues are available and what the
resources limits are on these queues.
The format of the queues subsection is:
QUEUE
 NAME name
 PROCESSORS min max
 NODES min max
 TIME min max
 MEMORY min max
END
Where name is a word and is the name of the batch queue being described and
max and min are words which are the limits of each resource
• PROCESSORS is the limits on the number of processors per node (optional)
• NODES is the node count.
• TIME is the CPU time in seconds (for nodes with performance as described in

the CPUTIME section)
• MEMORY is the per-node memory limits on the queue, in megabytes.
If the PER_JOB_LIMITS option is set, then the MEMORY limits are treated as
job totals.
If the PER_PROCESSOR_LIMITS option is set, then the MEMORY limits are
treated as job totals.
There are as many QUEUE subsections as there are queues on the target system.
Queue sections are optional, if there is no QUEUE description, then a single
unnamed queue is assumed that has the limits of the resources described in the
FLOATINGPOINT, MEMORY and other appropriate Capacity Resource
sections.
There must always be a name for the queue. If the target BSS does not allow
names for its queue, then using the string “noname” for the IDB queue name
means that the TSI does not supply a queue name during job submittal.
Every queue name that appears in a PRIORITY should be described by a QUEUE
section and every queue defined by a QUEUE section should appear in at least
one PRIORITY.

4.17 PRIORITY subsection
The priority subsection tells the NJS how it should map each of the Unicore
priorities to local queues. This is optional unless queues are explicitly described
when it is required.

Page 18 of 39

The format of the priority subsection is:
PRIORITY
 HIGH list
 DEVELOPMENT list
 NORMAL list
 LOW list
 WHENEVER list
END
Where list is a list of names of queues that can be used for tasks requesting the
priority. The list entries are delimited by a comma, space or tab. Each list must
have at least one element.
High, development, normal, low and whenever can appear 0 or 1 times.
The algorithm used to select a queue for a task is first to see if a queue in the
Priority list matching the task’s priority will accept jobs with the task’s resource
requirements. If not, then the next lower priority is searched.

4.18 Example of PRIORITY and QUEUE subsections
4.18.1 Definition for a single unnamed queue setup

QUEUE
 NAME noname
 MEMORY 1 2048
 TIME 1 7200

 NODES 0 256
END
PRIORITY
 HIGH noname
 DEVELOPMENT noname

 NORMAL noname
 LOW noname
 WHENEVER noname
END

4.18.2 Definition for multiple batch queues
QUEUE

 NAME fast
 MEMORY 1 2048
 TIME 1 7200
 NODES 0 16
END

QUEUE
 NAME slow
 MEMORY 1 2048

Page 19 of 39

 TIME 1 7200
 NODES 0 256

END

PRIORITY
 HIGH fast
 DEVELOPMENT fast

 NORMAL slow
 LOW slow
 WHENEVER slow
END
In this system jobs that request less than 16 nodes and specify HIGH or
DEVELOPMENT as their priority will be submitted to the FAST queue, All
other jobs, including those specifying HIGH or DEVELOPMENT as their
priority but with more than 16 nodes, will be submitted to the SLOW queue.

Page 20 of 39

5 RUN section
The RUN section tells the NJS how to incarnate instances of
org.unicore.ajo.ExecuteTask (run an executable). The executable can be a file
whose name is supplied by the NJS (based on the user’s input) or a script to be
interpreted using one of four script interpreters.
The RUN section is an Action description. See the introductory section (2.5) on
Action Descriptions for the syntax of these, including the INVOCATION
keyword.
It requires invocations for all four of these contexts: PERL, KORN_SHELL,
BOURNE_SHELL and C_SHELL.
The invocation definitions take a single field, RUNCOMMAND, which is
incarnated by the NJS to the file containing the file to be executed.
The RUNCOMMAND is optional so UserTasks do not have to supply an
executable where the incarnation does not use RUNCOMMAND.
The file name incarnated for RUNCOMMAND is prefixed by the full path to the
Uspace (unless RUNNCOMMAND is preceded by a path e.g. ”./”).
Any Software Resources used to modify an invocation must be defined in the
description of the TSIs for which the RUN is being described.
Note that the Software Resource identifier uses both the name and the version
information from the SOFTWARE_RESOURCE keyword (se section 2.5).
The RUN section also recognises three predefined Software Resources:
• TIME_ON: used when UserTask.isTimeMeasured() returns true
• DEBUG: used when UserTask.is.runForDebug() returns true
• PROFILE: used when UserTask.is.runForProfile() returns true
The RUN section requires two field definitions: VERSION and VERBOSE (see
Section 2.5.2)
VERSION controls the printing from the incarnated executable of version
information it has two options (ON and OFF).
VERBOSE controls the printing from the incarnated executable of verbose
(possibly debug) information it has two options (ON and OFF).

5.1 Defining Applications
An Application can be defined using the APPLICATION keyword.
The APPLICATION keyword has the following form:
APPLICATION name version

Where name is the name of the application and is required and version is the
optional version information for the application.

The APPLICATION keyword introduces a section (terminated by the next END
keyword). The APPLICATION, INVOCATION, DECSRIPTION, FILE and
DATA keywords are recognised within this section.
The syntax is:
APPLICATION name version

An inner APPLICATION keyword has the same syntax as the outer and
introduces a related application. It behaves the same way as an outer
APPLICATION except that the name of the Application Resource is prefixed
by the name of the outer Application followed by a “:”, e.g.
OuterApp:InnerApp

INVOCATION

Page 21 of 39

The same syntax as the INVOCATION keyword
DESCRIPTION verbatim

Where verbation placed in the description field of the SiftwareResource.
FILE file_name

Where file_name is the name of a file whose contents will be appended to the
Metadata field of the Application Resource representing this application.

DATA verbatim
Where verbatim is appended to the Application Resource’s metadata field.

Applications defined using the APPLICATION keyword do not need separate
definitions for their INVOCATION and their Software Resource; the complete
definition is contained within the APPLICATION section.
Note that there is also a keyword named APPLICATION as part of the
EXECUTION_TSI section. This has a different syntax and effect.

5.1.1 Example
The following lines of an IDB define an application “Package” that contains two
related executables “Part1” and “Part2”. The NJS’s resources will contain
Application Resources that are named “Package”, “Package:Part1” and
“Package:Part2”.
APPLICATION Package v1
 DESCRIPTION “This is the main package”
 INVOCATION [/usr/apps/package/v1/bin/package data]
 APPLICATION Part1

 DECSRIPTION “Prepare files for Package”
 INVOCATION [……]
 END
 APPLICATION Part2
 DECSRIPTION “Tidy up after execution”

 INVOCATION [……]
 END
 DATA [First line of metadata]
 FILE meta_data_file
 DATA [Last line of metadata]

END
5.2 Making Decisions

The Unicore AJO model contains two type of AbstractAction that can be
controlled by values passed from an executable to the NJS (If and RepeatGroup).
The value used to perform this control is called a “Decision”.
The NJS sets the environment variable “UC_DECISION_FILE” for all
executables. This contains the name of a file whose contents are read after
execution of the job and returned to the NJS as the executable’s Decision.
The NJS creates a Context (see Section 4.6) called “MakeReturnCodeDecision”
which will make the executable’s return code the Decision of the executable. This
context is always available.

Page 22 of 39

More advanced applications may wish to make non-numeric decisions. This can
be done by modifying the incarnation as in the example below (note that jobs
using this incarnation must not include the MakeReturnCodeDecision Context in
their resources)
The value of $the_last is interpreted by the NJS
as the exit code of the execution
$UC_DECISION_FILE will be set by the NJS to be
the file that it reads for the Decision

INVOCATION test [./executable;
the_last=$?; the_end=1;
case $the_last in
0) echo "done" > $UC_DECISION_FILE
 ;;
1) echo "no file" > $UC_DECISION_FILE
 ;;
2) echo "no grid" > $UC_DECISION_FILE
 ;;
3) echo "not converged" > $UC_DECISION_FILE;
 $the_last = 0; # Get the NJS to treat this as
success
 ;;
*) echo $the_last > UC_DECISION_FILE
 ;;
exit $the_last

]

$the_last and $the_end are variables used by the NJS ($the_last is the return code
of the executable, $the_end=1 indicates that execution got to the executable).
With this code the Decision is “done” if the executable returned 0 and as the
return code is 0 the execution is considered successful by the NJS. If the return
code is 1 or 2, then the NJS sets the Decisions to “no file” or “no grid” and fails
execution. A return code of 3 would usually be regarded as a failed in execution
by the NJS, however this code resets this to a successful execution but with a
Decision of “not converged” to distinguish it from the done/successful.

5.3 Example
RUN
 INVOCATION [<RUNCOMMAND>]

 INVOCATION PERL
 [SHELL=/usr/bin/perl; $SHELL <RUNCOMMAND>]
 INVOCATION KORN_SHELL
 [SHELL=/usr/bin/ksh; $SHELL <RUNCOMMAND>]
 INVOCATION BOURNE_SHELL

 [SHELL=/usr/bin/sh; $SHELL <RUNCOMMAND>]
 INVOCATION C_SHELL
 [SHELL=/usr/bin/csh; $SHELL <RUNCOMMAND>]

 INVOCATION MPI-1

Page 23 of 39

 [mpprun -n $UC_NODES -a <RUNCOMMAND>]

 INVOCATION CPMD [/local/bin/our_packages/cpmd filea
]
END
All script interpreters are found in /usr/bin and this invocation ensures that the
environment variable SHELL is set to the value of the executed shell and not one
inherited from the scripts used by the TSI.
MPI is a Software Resource with identifier “MPI-1” (with a version “1” so the
name here must concatenate these with a “-“).
The last definition does not use the RUNCOMMAND field and so all
incarnations of the CPMD resource will execute the fixed string. There is no need
to import the CPMD executable, but the AJO must ensure that filea exists.

Page 24 of 39

6 FILE_COPY section
The FILE_COPY section tells the NJS how to copy file to and from Uspaces.
FILE_COPY is an Action definition section. See the introductory section (2.4) on
Action Descriptions for the syntax of these, including the INVOCATION
keyword.
The FILE_COPY section requires invocation definitions for two options of the
task, these are: OVERWRITE and NO_OVERWRITE.

OVERWRITE indicates that the user is prepared to allow the copied files to
overwrite any existing files.
NO_OVERWRITE indicates that the user wants the task to fail if the copy
would overwrite any existing files (writing into existing directories is always
allowed).

Each invocation requires two fields: SOURCE and DESTINATION. SOURCE is
incarnated by the NJS into a list of file (or directory) names that need to be copied
to DESTINATION (which is either a file or a directory). Directory copied are
recursive.
NOTE: This section replaces the IMPORT, EXPORT and FILE_COPY sections
that were used in versions of the NJS before 4.0.0 (and some beta releases of the
4.0.0 NJS)

6.1 Example
For a sample incarnation see the example IDB supplied with the NJS release.

Page 25 of 39

7 CLEANUP section
The commands in the CLEANUP section are executed by the NJS when it needs
to cleanup a directory created by the execution of an AJO. These directories
include:
• the AJO’s Uspace (which is cleaned up at the end of the execution of the

AJO),
• a directory used to hold any Outcome files for an AJO (which is cleaned up

when the NJS removes the AJO after receiving a RetrieveOutcomeAck for it)
• directories used to hold Spooled files (which are cleaned up by an UnSpool

task)
The CLEANUP section is an Action Description. See the introductory section
(2.4) on Action Descriptions for the syntax of these, including the INVOCATION
keyword.
The CLEANUP section needs just one INVOVATION description (it does not
recognise any conexts).
The invocation description requires one field, DIRECTORY, which is the
directory to be cleaned up

7.1 Example
CLEANUP
 INVOCATION
 [echo “Leaving Uspace intact for debug
<DIRECTORY>”]
END

keep a Uspace but move out of the way for loops
CLEANUP
 INVOCATION
 [mv <DIRECTORY> <DIRCETORY>_`date`]

END

CLEANUP
 INVOCATION [rm –rf <DIRECTORY>]
END

Page 26 of 39

8 LIST_DIRECTORY section
The LIST_DIRECTORY section tells the NJS how produce listings of files
within the storage servers.
LIST_DIRECTORY is an Action definition section. See the introductory section
(2.4) on Action Descriptions for the syntax of these, including the INVOCATION
keyword.
LIST_DIRECTORY requires invocation definitions for three options of the task,
these are: AS_FILE, RECURSIVE and NOT_RECURSIVE. AS_FILE limits the
listing to the file; the other options will list directory contents. RECURSIVE
indicates the listing should include all subdirectories.
Each invocation description requires one field: TARGET. TARGET is the name
of the file (directory) to be listed.
The Perl script “tsi_ls” supplied with the TSI produces listings of the required
format. You need to change the IDB entry to refer to this script as installed on
your system.

8.1 Format of returned listing
The NJS expects a certain format for the listing.

Listing starts with the line:
START_LISTING
and ends with the line:
END_LISTING
The files are listed in depth-first order. Each time a sub-directory is found the
entry for the sub-directory file is listed and then entries for all the file in the
subdirectory are listed.
The format for each listing line is:

Character 0 is blank, except:
If character 0 is '-', then the this line contains extra information about
the file described in the previous line. This line is copied without
change into the ListDirectory outcome entry for the file.
If character 0 is ‘<’, then all files in a sub-directory have been listed
and the listing is continuing with the parent directory. This is required
even when the listing is non-recursive.

Character 1 is 'D' if the file is a directory
Character 2 is "R" if the file is readable by the Xlogin (effective uid/gid)
Character 3 is "W" if the file is writable by the Xlogin (effective uid/gid)
Character 4 is "X" if the file is executable by the Xlogin (effective uid/gid)
Character 5 is "O" if the file is owned by the Xlogin (effective uid/gid)
Character 6 is a space.
Until the next space is a decimal integer which is the size of the file in
bytes.
Until the next space is a decimal integer which is the last modification time
of the file in seconds since the Unix epoch.
Until the end of line is the full path name of the file

 Every line is terminated by \n

Page 27 of 39

8.2 Example
LIST_DIRECTORY

 INVOCATION NOT_RECURSIVE [perl tsi_ls N <TARGET>]

 INVOCATION RECURSIVE [perl tsi_ls R <TARGET>]

 INVOCATION AS_FILE [perl tsi_ls A <TARGET>]

END

Page 28 of 39

9 RENAME_FILE section
The RENAME_FILE section tells the NJS how to move files within the storage
servers. It is the incarnation of the RenameFile abstract task.
RENAME_FILE is an Action definition section. See the introductory section
(2.4) on Action Descriptions for the syntax of these, including the INVOCATION
keyword.
RENAME_FILE requires invocation descriptions for two options of the task,
these are: OVERWRITE and NO_OVERWRITE.

OVERWRITE indicates that the user is prepared to allow the renamed files to
overwrite any existing files.
NO_OVERWRITE indicates that the user wants the task to fail if the rename
would overwrite any existing files.

Each invocation description requires two fields: SOURCE and DESTINATION.
SOURCE is incarnated by the NJS into the name of the file to be moved to
DESTINATION.

9.1 Example
RENAME_FILE

 INVOCATION OVERWRITE [/bin/mv -f <SOURCE> <DESTINATION>]

 INVOCATION NO_OVERWRITE [

 if [! -f <DESTINATION>]

 then

 /bin/mv <SOURCE> <DESTINATION>

 else

 # Fail since a destination file exists

 /bin/printf "Rename failed. <DESTINATION> exists.\n" 1>&2

 the_last=1

 exit $the_last

 fi

]

END

Page 29 of 39

10 SYMBOLIC_LINK section
The SYMBOLIC_LINK section tells the NJS how to make symbolic links
between files in a Storage Server. It is the incarnation of the SymbolicLink
abstract task.
SYMBOLIC_LINK is an Action definition section. See the introductory section
(2.4) on Action Descriptions for the syntax of these, including the INVOCATION
keyword.
SYMBOLIC_LINK requires invocation descriptions for two options of the task,
these are:

OVERWRITE, indicates that the user is prepared to allow the link file to
overwrite any existing files.
NO_OVERWRITE, indicates that the user wants the task to fail if the link
would overwrite any existing files.

Each invocation description requires two fields: TARGET and LINK. TARGET
is incarnated by the NJS into the source file to be linked to LINK.

10.1 Example
SYMBOLIC_LINK

 INVOCATION OVERWRITE [

if [-f <LINK>]

 then

 RM_CMD <LINK>

 fi

 LN_CMD -s <TARGET> <LINK>

]

 INVOCATION NO_OVERWRITE [LN_CMD –s <TARGET> <LINK>]

END

Page 30 of 39

11 DELETE_FILE section
The DELETE_FILE section tells the NJS how to delete files on the storage
servers. It is the incarnation of the DeleteFile abstract task.
This is an Action Description. See the introductory section (2.4) on Action
Descriptions for the syntax of these, including the INVOCATION keyword.
The invocation requires one field: TARGET. TARGET is incarnated by the NJS
into the name of the file to be deleted.

11.1 Example
DELETE_FILE

 INVOCATION [/bin/rm <TARGET>]

END

Page 31 of 39

12 CHANGE_PERMISSIONS section
The CHANGE_PERMISSIONS section tells the NJS how to change the owners
permissions of files on the storage servers.
This is an Action Decsription. See the introductory section (2.4) on Action
Descriptions for the syntax of these, including the INVOCATION keyword.
The invocation requires two fields: FILE and ARGUMENTS.

FILE is incarnated by the NJS into the name of the file whose permissions are
to be changed.
ARGUMENTS is incarnated into the final permissions for the file in the form:
u=rwx (some, all or none of r, w and x will be present).

12.1 Example
CHANGE_PERMISSIONS

 INVOCATION [chmod <ARGUMENTS> <FILE>]

END

Page 32 of 39

13 FORTRAN section
The FORTRAN section tells the NJS how to incarnate instances of FortranTask
which compiles sources files written in Fortran.
The FORTRAN section is an Action description. See the introductory section
(2.4) on Action Descriptions for the syntax of these, including the INVOCATION
keyword.
The FORTRAN section recognises a special Software Resource “PREPROCESS”
for compilations that require a pass of the pre-processor4. Example:
INVOCATION PREPROCESS [<STANDARD> –Cpp]
File name extensions
The NJS needs to know the file name extensions used by the Fortran compiler for
the following file types:
• source files
• object files
• source files to pass through the pre-processor
• listing files
• source files after passing through the pre-processor (used when a pre-

processing only run is requested)
The NJS is told of the extensions using in a NAMING section:
NAMING
 SOURCE_FILE extension
 OBJECT_FILE extension
 PREPROCESS_FILE extension
 LISTING_FILE extension
 PREPROCESSED_FILE extension
END
For example5:
NAMING
 SOURCE_FILE .f90
 OBJECT_FILE .o

 PREPROCESS_FILE .F90
 LISTING_FILE .lis
 PREPROCESSED_FILE .f90
END

13.1 Invocation definition
The FORTRAN invocation definition must contains the following keywords:

<SOURCES>: Will be replaced by the names of the source files to be
compiled.

4 If this is used, then the file name extension for pre-process files should be the same as normal
Fortran source files (usually "“f90")

Page 33 of 39

<INCLUDES>: Will be replaced by the names of the directories to be
searched for include files.
For example, the invocation string:
-I*<INCLUDES>
when given a list of directory names (e.g dir1 dir2 dir3) will incarnate as:
-Idir1 –Idir2 –Idir3
<VERSION>: Will be replaced by the incarnation of the user’s choice for
output of the compiler version information. This requires a Field Definition
(see below)
<VERBOSE>: Will be replaced by the incarnation of the user’s choice for
verbose output by the compile. This requires a Field Definition (see below)
<LISTINGLEVEL>: Will be replaced by the incarnation of the user’s choice
of the level of listing produced by the compiler. This requires a Field
Definition (see below)
<OPTIMISATIONLEVEL>: Will be replaced by the incarnation of the
user’s choice for the amount of optimisation to be done by the compiler. This
requires a Field Definition (see below)
<DOUBLELENGTH>: Will be replaced by the incarnation of the user’s
requested default double length. This requires a Field Definition (see below)
<REALLENGTH>: Will be replaced by the incarnation of the user’s
requested default real length. This requires a Field Definition (see below)
<INTEGERLENGTH>: Will be replaced by the incarnation of the user’s
requested default integer length. This requires a Field Definition (see below)
<SOURCEFORM>: Will be replaced by the flag to tell the compiler the
form of the Fortran source code. This requires a Field Definition (see below)
<ARGCHECKING>: Will be replaced by the flag to request argument
checking code to be inserted by the compiler (if requested by the user). This
requires a Field Definition (see below)
<BOUNDSCHECKING>: Will be replaced by the flag to request bounds
checking code to be inserted by the compiler (if requested by the user). This
requires a Field Definition (see below)
<PREPROCESSONLY>: Will be replaced by the flag to request only a pre-
processing run compiler (if requested by the user). This requires a Field
Definition (see below)
<DEFINENAME>: Will be replaced by the names and values of the (pre-
processing) tokens that the user wants to set.
For example, the invocation string:
-D *<DEFINENAME>
will incarnate the name/value pairs (steve,waugh) (justin,langer) as:
-D steve=waugh –D justin=langer
<UNDEFINENAME>: Will be replaced by the names of the (pre-
processing) tokens that the user wants to unset.
<DEBUG>: Will be replaced by the flag to turn debugging code generation
on (if requested by the user). This requires a Field Definition (see below)
<PROFILE>: Will be replaced by the flag to turn profiling code generation
on (if requested by the user). This requires a Field Definition (see below)

Page 34 of 39

13.2 Field definitions
The format of the following sections is: field_name (option1, option2 ….)
followed by an example:

VERSION (ON, OFF)
VERSION
 ON -version

 OFF _
END
VERBOSE (ON, OFF)
VERBOSE
 ON -v
 OFF _

END
LISTINGLEVEL (NONE, ON, FULL)
LISTINGLEVEL
 NONE _
 ON –L1
 FULL –L9

END
OPTIMISATIONLEVEL (NONE, DEFAULT, AGGRESSIVE)
OPTIMISATIONLEVEL
 NONE –O0
 DEFAULT _
 AGGRESSIVE –Wv,-Of

END
DOUBLELENGTH (DON’T_CARE, EIGHT_BYTES,
SIXTEEN_BYTES)
DOUBLELENGTH
 DON’T_CARE _
 EIGHT_BYTES –AQ
 SIXTEEN_BYTES -Aq

END
REALLENGTH (DON’T_CARE, FOUR_BYTES, EIGHT_BYTES)
REALLENGTH
 DON’T_CARE _
 FOUR_BYTES –AD
 EIGHT_BYTES -Ad

END
INTEGERLENGTH (DON’T_CARE, FOUR_BYTES, EIGHT_BYTES)
INTEGERLENGTH

Page 35 of 39

 DON’T_CARE _
 FOUR_BYTES _

 EIGHT_BYTES –CcI4I8
END
SOURCEFORM (FIXED, FREE)
SOURCEFORM
 FIXED -Ffixed
 FREE -Ffree

END
ARGCHECKING (ON,OFF)
ARGCHECKING
 ON -Da
 OFF _
END
BOUNDSCHECKING (ON,OFF)
BOUNDSCHECKING
 ON -Ds
 OFF _
END
PREPROCESSONLY (ON,OFF)
PREPROCESSONLY

 ON –cpp_only
 OFF _
END
DEBUG (ON,OFF)
DEBUG
 ON –g 3

 OFF _
END
PROFILE (ON,OFF)
PROFILE
 ON –p 3
 OFF _

END
13.3 Example

Page 36 of 39

14 LINK section
The LINK section tells the NJS how to incarnate instances of LinkTask which
links object files to an executable.
The LINK section is an Action description. See the introductory section (2.4) on
Action Descriptions for the syntax of these, including the INVOCATION
keyword.
File name extensions
The NJS needs to know the file name extensions used by the linker for the
following file types:
• object files
• libraries
• linker map files
The NJS is told of the extensions using in a NAMING section:
NAMING

 OBJECT_FILE extension
 LIBRARY extension
 MAP_FILE extension
END
For example6:
NAMING

 OBJECT_FILE .o
 LIBRARY .a
 MAP_FILE .map
END

14.1 Invocation definition
The LINK invocation definition must contains the following keywords:

<EXECUTABLE>: Will be replaced by the name of the executable file
created bythe link.
<OBJECTS>: Will be replaced by the names of the object files to be linked.
<LIBRARIES>: Will be replaced by the libraries to be searched during the
link, for example:
-l<LIBRARIES>
when given a list of libraries (dir1 dir2 dir3) will incarnate as:
-ldir1 –ldir2 –ldir3
<VERSION>: Will be replaced by the incarnation of the user’s choice for
output of the compiler version information. This requires a Field Definition
(see below)
<VERBOSE>: Will be replaced by the incarnation of the user’s choice for
verbose output by the compile. This requires a Field Definition (see below)

Page 37 of 39

<MAPLEVEL>: Will be replaced by the incarnation of the user’s choice of
the level of map produced by the linker. This requires a Field Definition (see
below)
<DEBUG>: Will be replaced by the flag to request that the executable
include debugging code at the level requested by the user. This requires a
Field Definition (see below)
<PROFILE>: Will be replaced by the flag to request that the executable
include profiling code at the level requested by the uesr This requires a Field
Definition (see below)

14.2 Field definitions
The format of the following sections is: field_name (option1, option2 ….)
followed by an example:

VERSION (ON, OFF)
VERSION

 ON -version
 OFF _
END
VERBOSE (ON, OFF)
VERBOSE
 ON -v

 OFF _
END
MAPLEVEL (NONE, ON, FULL)
MAPLEVEL
 NONE _
 ON –M1

 FULL –M9
END
DEBUG (ON,OFF)
DEBUG
 ON –g 3
 OFF _

END
PROFILE (ON,OFF)
PROFILE
 ON –profile –lproflib.a
 OFF _
END

14.3 Example

Page 38 of 39

15 COPY_PF section
The COPY_PF section tells the NJS how to copy the files in Portfolios between
directories. It is used by during the incarnation of a number of tasks.
There is usually no need to supply incarnation rules for COPY_PF as the
NJS contains its own incarnation.
COPY_PF is an Action definition section. See the introductory section (2.4) on
Action Descriptions for the syntax of these, including the INVOCATION
keyword.
Each invocation description can contain four fields:
SDIR: the directory containing the files to be copied
SPF: list of file names to be copied
DDIR: destination directory
The invocation should copy the files in SDIR only, the NJS will copy the
Portfolio descriptions.

15.1 Example
COPY_PF

 INVOCATION [/bin/cp -r <SPF> <DDIR>]

END

Page 39 of 39

16 MAKE_FIFO section
The MAKE_FIFO section tells the NJS how to create FIFO files. It is the
incarnation of the MakeFifo abstract task.
MAKE_FIFO is an Action definition section. See the introductory section (2.4)
on Action Descriptions for the syntax of these, including the INVOCATION
keyword.
MAKE_FIFO requires invocation definitions for two options of the task, these
are: OVERWRITE and NO_OVERWRITE.

OVERWRITE indicates that the user is prepared to allow the new FIFOs to
overwrite any existing files.
NO_OVERWRITE indicates that the user wants the task to fail if the FIFO
would overwrite any existing files.

Each invocation description requires one field: TARGET , the name of the FIFO.
This section is optional. If there is no MAKE_FIFO section, the NJS will
incarnate MakeFifo tasks as in the example below.

16.1 Example
MAKE_FIFO

 INVOCATION NO_OVERWRITE [/bin/mkfifo –m600 <TARGET>]

 INVOCATION OVERWRITE [

 RM_CMD –f <TARGET>

 /bin/mkfifo –m600 <TARGET>

END

