
Page 1 of 26

USING THE NJS AND TSI (V4)
Sven van den Berghe, Fujitsu Laboratories of Europe

Version 4.0.2 25th April 2003

1 Contents
Section 2: Gotchas

Some common problems or misunderstandings and how to correct them
Section 3: NJS

Describes the directory structure for an NJS installation and basic
configuration of an NJS

Section 4: Logging
NJS logging, meaning of the logging levels and how to change them

Section 5: Scripts
Scripts to start the NJS, stop the NJS and list the names of log files used by
the NJS

Section 6: NJS configuration file
All configuration values

Section 7: NJS administration
Starting the NJS, stopping the NJS, how the NJS keeps its state.
Using the njs_admin command
Administration through AbstractActions

Section 8: TSI administration
TSI installation, starting the TSI, stopping the TSI

Section 9: NJS APIs
Brief listing of the APIs that can be used to extend or change the NJS
functionality
Environment variables set for executables (iteration counts, decisions,
directories)

Section 10: Miscellanea
Trusting other NJSs
NJS registration with Gateways

Section 11: Connections between Unicore processes
Lists the connections between Gateways, NJS and TSI together with the
configuration values that are needed to establish them.

Section 12: Setting up Alternative File Transfers
Brief guide to the Gateway and NJS initialisation of a form of Alternative File
Transfer

2 Gotchas
This is a list of problems, inconsistencies and configuration errors that you should
watch out for (even if you do not read the rest of this)
• Review some IDB commands using the njs_admin test_commands command.

Page 2 of 26

• The IDB entry COPY_CMD must incarnate to a command that follows
symbolic links rather than copying them. Under Mac OS X this means using
“cp –RL” and under Linux you should use “cp –rL”.

• IDBs that use #DEFINE SH_CMD should place this after the lines
#DEFINing commands that have this is a substring e.g. KSH_CMD,
CSH_CMD

• TSI file permissions. Generally the permissions on the TSI files should be set
to read only for the owner. The exception is tsi_ls, which must be
readable for all Unicore users (the TSI script directory permissions must also
be set so that all Unicore users can find it and find files in it).
WARNING As the TSI is executed as root you should not leave any of these
files (or the directories) writable after any update.

• njs.properties file. The file format allows comment lines but not inline
comments.

• IDB Configuration. Remember to set the path to the “tsi_ls” file to where the
TSI is stored.

• IDB setup, the INVOCATION of the RUN section should contain a path to
the executable file e.g. ./<RUNCOMMAND>

3 NJS
The NJS uses a number of files and directories during start up and processing.
These files are:
• a configuration file (usually called njs.properties)
• a file to define resource and incarnation information (the IDB)
• certificates for SSL connections
• UUDB (mappings from public certificates to Xlogins)
• directory in which to place log files
• directory in which to save restart information
The NJS is delivered with some scripts to start the NJS, list log files and start the
administration interface. These scripts assume a certain directory structure as
follows:
njs/

 docs/
 NJS and TSI documentation
 conf/
 njs.properties
 IDB file
 logs/
 lib/
 ajo.jar
 njs.jar
 jsse.jar
 jnet.jar
 jcert.jar
 bin/
 scripts to control the NJS
“conf/” is the NJS configuration directory

Page 3 of 26

“njs.properties” is the NJS configuration file.
“IDB” is the site-specific Incarnation Database
“logs/” is the directory that the NJS will use for the log files
“lib/” is the directory containing all the code used by the NJS (in the files listed)
You may need to get the jsse.jar, jnet.jar and jcert.jar files separately (these are
not required if you are using Java 1.4).
The NJS assumes that the files that it uses are stored in the configuration
directory (njs/conf below) and all file paths given in the configuration files are
interpreted as are relative to this directory.

3.1 Configuring
3.1.1 Security considerations

It is assumed that NJS is installed on a dedicated machine and that this machine is
configured so that there are no other users apart from the user used to run the NJS
(note that this should be an ordinary user and not root).
If these assumptions are not met, then the TSI connection should be carefully
managed to prevent unauthorised user accessing the TSI connection. If normal
user logins are allowed on the machine running the NJS, then the TSI shepherd
should never be allowed to stay running if the NJS is not running. The NJS stop
sequence should be:
njs_admin tsi stop
njs_admin stop_now
The TSI should then be restarted when the NJS is restarted.
The permissions on NJS configuration files should always be limited to allow
only authorised users to change them.

3.1.2 Consigning sub-AJOs
NJSs can consign sub-AJOs to other NJSs by establishing SSL connections to
their Gateways. In order to do this it needs to have a certificate acceptable to the
remote Gaetway and other certificates to validate the credentials of the remote
Gateways. The locations of these certificate files are supplied in the configuration
parameters: njs.njs_cert_loc and njs.unicore_ca_loc.
To use SSL set the following line in the configuration file:
njs.use_ssl=true1

The NJS can use more than one certificate. If the first connection attempt to a
Gateway fails when it uses one certificate, then the NJS will present each of the
remaining certificates in turn until a connection is accepted.
The locations of the NJS’s certificates is given by njs.njs_cert_loc, this is
a list of file names (in the NJS configuration directory or the full path to a file)
delimited by “:”.
The NJS also requires the public certificates of the Certificate Authorities that
issue Gateway certificates. The locations of these certificates is given by
njs.unicore_ca_loc, which is a “:” delimited list of file names (in the NJS
configuration directory or the full path to a file).
Note that as the NJS’s certificates contain both the private and public keys an
unlocking password has to be supplied every time the NJS is started. A password

1 This is the default. If you do not want to have your NJS consign sub-AJO, then add the line
njs.use_ssl=false to the NJS configuration file. This will stop the NJS reading the
certificates. The NJS will execute local AJOs correctly but will fail any AJO that tries to execute
sub-AJOs.

Page 4 of 26

(the same one for all files) can be supplied either in the NJS configuration file or
interactively using the start_njs script.

3.1.3 Gateway
The NJS receives UPL requests from a Gateway over sockets. It listens for
connection requests from the Gateway on the socket number given by the
njs.properties file entry njs.gateway_port. It will only accept
connections from one Gateway machine; the name (or IP address) of this machine
is given by the njs.properties file entry njs.gateway.
The sockets can be configured to use SSL by setting the njs.properties file
entry njs.gateway_ssl to true, otherwise they will be ordinary sockets.

4 Logging
There are 6 levels of logging. In order of severity they are:

Severe: serious problem. Execution cannot or should not continue.
Warning: there is a problem or unexpected condition. Processing can continue
- usually correctly, but occasionally may result in other problems (e.g. a client
presented an invalid certificate or there was an error during the execution of
an AbstractAction.)
Information: useful information, not necessarily related to any problems
Configuration: messages relating to the NJS configuration, reading of values,
files and their interpretation.
Talk: verbose output,. May be useful to trace execution or gain hints about
precursors to problems.
Debug: very verbose output.

If the logging level is set to a particular severity then messages of that severity
and higher will be logged. Messages of lower severity will not be logged.
The default logging level is Configuration (which will log C, I, W and S
messages).
The NJS generates structured names for the log files that will give the same order
when sorted alphabetically as when sorted by time. The “list_log_files” script
exploits this fact.
Lines of the log file are also structured. The first word as the time of creation of
the message, the second word the date, the third word notes the severity level of
the message with important messages (severe or warning) ending in a “*”, the rest
are terminated by a “:”.
Log lines about AbstractActions always continue with some information about
the AbstractAction, including its name, type, identifier and the identifier of its
root AJO.
The logging level and changing of log files can be controlled through the
configuration values (njs.logging_level and njs.log_file_change_interval) and
through the Administration interface (njs_admin logging subcommands).

5 Scripts
The NJS distribution includes scripts to start the NJS and to access the log files2.
These scripts require an NJS configuration directory which is determined using
the following rules:
• Check the arguments to the script for the directory

2 A further script is supplied to access the Administration interface, this operates in a different
way which is detailed in a section below.

Page 5 of 26

• Use the value of the environment variable “UNICORE_NJS”
• Use the local directory.
Note that the scripts also assume that certain files are named as described in
Section 2. The best way to use files with names different to these is to supply a
link e.g.
ln –s ajo_3.5.1-build1.jar ajo.jar
The scripts also assume that the names of the log files are the ones created by the
NJS.
The scripts check to see if an instance of the NJS is running. The test for a
running NJS is based on the LAST_PID file in the configuration directory that, if
it exists, contains the process id of the last started NJS. If there is no process with
this pid or there is no LAST_PID file, then the NJS is assumed not to be running.

5.1 The Scripts
5.1.1 list_log_files

list_log_files type configuration_directory
Return the names of some or all of the log files in the default logging
directory (“configuration_directory”/logs).
If the type is “a”, then the names of all the log files are returned.
If type is “l”, then the names of the log files created since the Gateway was
last started are returned (“L” returns the complement of this, the names of all
the log files except those created since the last start).
Otherwise, type must be an integer, say n. If n is postive, then the names of
the latest n files are returned e.g.
list_log_files 1
Returns the name of the current log file.
If n is negative the complement is returned e.g.
list_log_files –1
Returns the names of all except the current log file.
configuration_directory is optional.

5.1.2 start_njs
start_njs configuration_directory
Start the NJS (if not running).
This will start the Gateway and execute it as a background process
(“nohup”ed) with all output redirected to a logging file.
configuration_directory is optional.
If there is no password in the njs.properties file, then start_njs will prompt
for a password (and write it to !configuration_directory”/password for the
NJS to read, and delete).

5.2 Example uses of the scripts
These examples assume that UNICORE_NJS has been set to the NJS’
configuration directory.
View the current log file:
cat `list_log_files 1` | more
Purge the log directory, leaving the files since last started (note the capital “L”):
rm `list_log_files L`

Page 6 of 26

Implement a site specific policy for log file cycling:
• Set the configuration parameter “njs.log_file_change_interval” to some large

value (e.g. 9999) to prevent the NJS changing log files at the wrong time.
• Create a cron job as follows:

/usr/unicore/my_njs/bin/njs_admin logging new_file
mv `/usr/unicore/my_njs/bin/list_log_files 1 \
/usr/unicore/my_njs/conf` our_name

(This will of course invalidate the list_log_files script.)
Check for any possible problems since the last start (Severe or Warning
messages):
cat `list_log_files l` | grep “ .*”
Review the Gateway’s processing of its configuration
cat `list_log_files l` | grep “ C: ”

6 NJS configuration file
The NJS configuration file defaults to a file named “njs.properties” in the NJS
configuration directory.3

Lines starting with “#” or “!” are ignored.
Entries are single line, but “\” can be used to continue over a line.
The remainder of a line following the “=” is treated as the value.
Inline comments are not allowed.
This section describes the meaning of each entry in the NJS configuration file
giving its default value after the name.
njs.operation_mode=full

If the NJS is operating in “full” mode, then all AbstractActions are processed.
If the NJS is operating in “broker” mode, then only those AbstractActions
relating to brokering (CheckQoS, CheckResources, getResources), flow
control (ForGroup, If etc) and control (ControlAction, CopyJob etc) are
processed. All other actions will fail.
A brokering NJS does not need a TSI.
Only the GENERAL section of the IDB is read and recognised by a broker
mode NJS.
A UUDB is still required by a broker mode NJS.
Note that an NJS operating in full mode can still run a broker.
A broker mode NJS reports its type as BROKER when registering with a
Gateway. This means that it will not appear in the ListVistesReply (which
only contains full NJSs) but will appear in a ListPorts reply.

njs.vsite_name=no name for this Vsite
The name of the Vsite that this NJS provides services for.

njs.incarnationdb=incarnationdb
The location of the IDB file. This is either the full path to a file (starts with a
/) or the name of a file in the NJS configuration directory.

njs.gateway_port=8181

3 This can be changed by editing the start_njs script and changing the second
argument to the NJS process

Page 7 of 26

The port number on which the NJS listens for connect requests from the
Gateway.

njs.gateway=(no default)
If the NJS is not registering with Gateways, then this is the name of the
Gateway machine (name only, no port number) e.g.
njs.gateway=arcon.fle.fujitsu.com
If the NJS is registering with Gateways, then this is a comma separated list of
machines:port_numbers that run Gateways. The NJS will only accept
Gateway connections from machines in this list e.g.
njs.gateway=arcon.fle.fujitsu.com:4433

njs.redirecting_gateway=(no default)
A comma separated list of machine:port_number that run Gateways. The NJS
will register with these Gateways but will not accept connections from them
(the targeted Gateway will list the address of the first entry in the njs.gateway
list).

njs.gw_registration=false
If this is true, then the NJS will maintain a registration with all the Gateways
lists in the njs.gateway list.

njs.gateway_ssl=false
The type of sockets that the Gateway will use to connect to the NJS. If this is
true, then SSL will be used, otherwise ordinary sockets are used.

njs.use_ssl=true
If the value is true, then the NJS will initialise itself to use SSL (and so be
able to consign sub-AJOS to other NJSs). Otherwise, SSL will not be
initialised and the execution of sub-AJOs will fail (all other NJS processing
will proceed nornally).
Initialising SSL means that the entries njs.njs_cert_loc, njs.unicore_ca_loc
and njs.ssl_password will be read. Uninitialised SSL means that these entries
will not be read.

njs.njs_cert_loc=njs_cert.p12
The locations of the SSL certificates for the NJS. This is a “:” delimited list of
file names. Each file name is either the full path to a file (starts with a /) or the
name of a file in the NJS configuration directory.

njs.unicore_ca_loc=njs_ca.pem
The locations of the public certificates of the Certificate Authority that issues
Gateway certificates. The NJS will only be able to contact Gateways whose
SSL certificate has been issued by this CA.
This is a “:” delimited list of file names. Each file name is either the full path
to a file (starts with a /) or the name of a file in the NJS configuration
directory.

njs.ssl_password=none
The password that the NJS uses to unlock its certificate(s) (file names are
listed in njs.njs_cert_loc).
If this is not the default value, then it is used to unlock the certificate. If it is
not supplied (or is the default value), then the password is read from the file
config_dir/password (this file is deleted once the NJS has read it).
Note that the same password is used for all the NJS certificates.

njs.memory=remember

Page 8 of 26

Whether or not the NJS saves state. The default (“remember”) is for the NJS
to save state so that if the NJS is stopped normally it can be restarted without
losing information about executing jobs. If this is set to “forget”, then the NJS
will not save state.
For backwards compatibility the line:
njs.memory=olorin.utils.MemoryImpl
has the same effect as “remember”.

njs.save_completed_ajos=false
If this is set to true, then the NJS will save the AJO, Outcome object and user
information of all “interesting” AJOs after the client has deleted the AJO from
the NJS.
The NJS will not save any files created by the AJO’s execution (including
stdout and stderr).
This value can be changed at run time through the archive administration
command.

njs.save_dir=save
The directory that the NJS will use to save its state. This directory is also used
to save completed AJOs and is the location of the preserved AJOs.
If this is not a full path name, then it is interpreted as relative to the
configuration directory.

njs.admin_type=default
The type of interface to use for the administrator interface.
This is not yet used

njs.admin_port=7272
The port number that the NJS uses to listen for contacts from administrators.

njs.log_file_change_interval=24
Sets how frequently the NJS will change log files.
If this is a number, then the log file will be changed every
log_file_change_interval hours.
If this starts with the letter “h”, then a new log file will be opened every hour
on the hour.
If this starts with a “d”, then a new log file will be opened every day on the
day change (midnight).
This value can be changed at run time through the logging administration
command.

njs.logging_level=C
Sets the level of logging.
Acceptable values are S(evere), W(arning), I(nformation),
C(onfiguration), T(alk) and D(ebug).
This value can be changed at run time through the logging administration
command.

njs.tsi_worker_limit=5
The NJS will ask the TSI daemon to create TSI a process when it detects the
need for one. TSI processes are cached by the NJS and reused. This parameter
sets the maximum number of processes that the NJS is allowed to use. The
actual number used at any time will depend on the NJS load - the value of the

Page 9 of 26

“threads.Incarnations” parameter and the number of “interactive” AJOs
running.
The NJS will always create at least two TSI workers.

njs.tsi_update_interval=5000
Sets how frequently the NJS asks the TSI for an update to the status of jobs
executing on the Batch sub-system (in milliseconds). The NJS makes this
request only if there are jobs executing on the BSS. This should be set to a
balance between the acceptable load on the TSI and BSS to update the
information and how accurate the NJS reports of status should be. The default
value favours accurate NJS information (at most five seconds out of date).

njs.checker_class=com.fujitsu.arcon.njs.priest.CheckerImpl
The name of the class to load to check the values in instances of
org.unicore.ajo.ExecuteTask. This must implement the
com.fujitsu.arcon.njs.interfaces.ExecuteTaskChecker interface.

threads.Incarnations=3
The number of threads to allocate to the execution of AbstractActions that are
executed by the TSI. This must be at least the same as the number of TSIs that
will be started on the target system and can be more.

uudb.class_name=com.fujitsu.arcon.njs.uudb.UUDBImpl
The name of the class to load to perform the UUDB functions. This class
must extend the com.fujitsu.arcon.njs.interfaces.UUDB class.

uudb.directory=./
For the default UUDB class, this is the directory in which the UUDB has been
created (file name is “UUDB”).

uudb.check_signers=false
For the default UUDB class changing this value to “true” means that the
UUDB will accept certificates if their signer has been entered into the UUDB
(in addition to accepting them if the certificate is in the UUDB). All
certificates signed by a signer will be incarnated with the Xlogin that is in the
UUDB for that certificate.
This option can be used if you wish to accept Globus proxy certificates (first
generation only) by entering the user’s Globus certificate into the UUDB.

aft.factories=none
A colon separated list of class names that implement the
com.fecit.arcon.njs.interfaces.AFT.AFTFactory interface. These factories will be
used to transfer files to different Vsites instead of standard UPL streamed files
route.
The NJS contains a sample implementation of this interface that uses the “rcp”
protocol to transfer files. To use this implementation set alt.factories to
“com.fecit.arcon.utils.AFTGateway” and initialise the factory using the following
properties:

rcp_aft.port=none
A port used by the local AFT code to listen for requests from remote peers
(through the local Gateway) for file and user name mappings.
rcp_aft.tsi_location=none
The name of the machine running the local TSI
rcp_aft.peers=none
Entries separated by commas with the following format: vsite@machine:port.
Where vsite is the name of a remote Vsite that will accept AFT via rcp,

Page 10 of 26

machineis the name of the Gateway for the remote NJS and port is the
remote Gateway port.

njs.sso_type=none
If the parameter vale is “globus”, then the NJS will write the contents of the
SSO field of any incoming root AJOs to a file named “.proxy” in the root
directory of the Uspace created for the AJO. The SSO is deleted from the
AJO once it has been written (for security). The NJS also sets its type to
“Globus”,
If the parameter vale is “gridftp_proxy”, then the NJS will write the contents
of the SSO field of any incoming root AJOs to a file named “.proxy” in the
root directory of the Uspace created for the AJO. The SSO is deleted from the
AJO once it has been written (for security).
If this is omitted, then the NJS will ignore the AJO’s SSO objects.

njs.dynamic_resource_file=none
The name of a file whose contents will be added to the resources advertised
by the NJS. The NJS polls this file and updates the resource set contents as
the file contents change.
This is a simple initial implementation to test how useful this concept is. The
only resource type updated is “org.unicore.unicore.TextInfoResoutce”. The
file’s contents are in the Java “Properties” format i.e. :
tag = value
For example:
cpu_load=75%

message=Routine maintenance at 14:00 UTC Today
6.1.1 Other files

The NJS may read other files:
conf_dir/password. This is one of the ways that the NJS can read a
password. It looks for this if starting SSL and there is no njs.ssl_password
entry in the njs.properties file.

Page 11 of 26

7 NJS Administration
7.1 Starting the NJS

The NJS can be started using the supplied script (bin/start_njs).
The NJS will write most messages to a log file in the logging directory. However,
if the NJS has problems before the logging is started messages will be appended
to a file named startup.log in the logging directory.

7.2 Stopping the NJS
The NJS can be stopped through the administrator interface (see below for the
commands to use).
If the NJS is brought to a controlled stop using the administrator interface, then it
will save the state of all “interesting” AJOs that are on the NJS and when
restarted it will restore the state of the “interesting” AJOs.
The NJS keeps a record of significant changes of states and so can restore the
state of executing AJOs even if it is not brought to a controlled stop (e.g. if it
crashes). However this way of restarting does lose some information, mainly the
Outcome log (it should not lose any files and should “reconnect” with jobs
executing on the BSS). Furthermore it should be noted that it is possible that the
NJS stopped this way was in an inconsistent state and so some AJOs may not
reload.
The NJS is a multithreaded application and the pausing and state saving runs in a
thread of its own. This means that it may be possible to save the state of an
apparently hung NJS (so before killing a hung NJS process it is worth while
trying to save a consistent state using “njs_admin stop now”).
Stopping the NJS does not stop the execution of tasks that are running on the
BSS.

7.2.1 Pause the NJS first
The NJS is a multithreaded event-driven application simultaneously interacting
with a number of applications (multiple clients, multiple TSIs and multiple client
NJSs). It has no direct control over the behaviour of these other applications and
so can only be restored to a state if the saved state is consistent.
The NJS is brought into a consistent state by pausing it. Pausing the NJS has two
effects; it prevents any new interaction being started and it signals all existing
external activity to stop execution when a consistent point has been reached. This
means that some execution can continue for some time after a pause command.
The NJS should be stopped only when pause says that the NJS is fully paused.
The default stop command will wait until the NJS is paused before stopping. This
can take a while if the NJS is involved in, for example, a long file transfer4.
Alternatively, the “stop now” command will stop the NJS giving a short grace
period for execution to stop. However, you should bear in mind that it is possible
that some AJOs will not reload properly after such a stop.
The safest way to stop the NJS is to use the interactive option on the njs_admin
command and issue pause command(s) until the NJS is properly paused and then
stop the NJS.

7.2.2 Interesting AJOs
The NJS categorises AJOs into two types: interesting and uninteresting.

4 Note that if no TSI is connected the stop command may hang until a TSI connects.

Page 12 of 26

Interesting AJOS are those that contain tasks that do things on the main
system, such as execute a job and manipulate files. Other interesting AJOs are
those that apply controls to other AbstractActions (e.g hold, cancel)
Uninteresting AJOs are all other AJOs. These are “service” AJOs that can
easily be recreated and reconsigned by clients. The results of “uninteresting”
AJOs become irrelevant if the NJS is stopped and restarted some time later.

7.2.3 NJS State
The NJS will save its state into a number of files in the directory given by the
njs.save_dir configuration option.
Each “interesting” AJO is saved to a different file. These files have different
extensions depending on their state.
Files with an “sajo” extension contain the state of AJOs that have been saved by
the NJS while they are still executing. These will be read at the next NJS restart
and deleted.
Files with a “dajo” extension contain the state of AJOs that have finished their
execution but not yet deleted by the client. These files will be read at the next
NJS restart, deleted and immediately rewritten5.
Files with a “kajo” extension contain the state of AJOs that have finished
execution and been deleted by the client (are completed). These are created if the
appropriate value of the njs.save_completed_ajos configuration option
is set. These files are not read at restart.
The NJS may also create other files in this directory that contain further state
information.
Note that part of the state of finished and execution AJOs is also kept on the
execution system(s) - in the Uspace, Outcome and Spool directories, as well as in
any jobs executing on the BSS.
Deleting an AJO from the NJS removes all files from the execution system
(Uspace, outcome directory). “kajo” files do not contain these files.
It is possible to change some of the NJS configuration and have the NJS restart
correctly. If the root directories of the Uspace, Outcome or Spool areas are
changed, then any existing files must be moved to the new areas before restarting.
Note also that on restart the AbstractActions are matched to the new resources
offered by TSIs, if there is a big change in resources it may be possible that some
AbstractAction fail or that incarnated BSS jobs cannot be found

7.3 Executing the njs_admin command
The njs_admin command can be run in two modes, as a single command or
interactively. All commands except for pause will work in both modes. Pause
can only be used in interactive mode.
To execute a single command the required command is supplied as the arguments
to njs_admin e.g.
njs_admin stop now
If there are no arguments, then njs_admin starts interactively (if authenticated by
the NJS).
The following optional arguments are interpreted by the njs_admin script and not
passed to the NJS:
-h prints a help message about the admin command
-v prints version information

5 So that the state information is encapsulated in instances of the most up to date Java classes.

Page 13 of 26

The following optional arguments are interpreted by the njs_admin script and not
passed to the NJS (and so if only these appear on the command line njs_admin
will start interactively):
-m <name> contacts the NJS on the named machine
-p <number> contacts the NJS using the given port number (the NJS is listening
on the port number given in the njs.admin_port comfiguration value).
These values are optional and the njs_admin script itself can be edited to set local
values for them.

7.3.1 Authentication
The NJS authenticates administrators by asking the script to write a file in the
NJS’s configuration directory. This means that the NJS administrators are all the
users that can write to the configuration directory6. This also means that
administrators can contact the NJS from remote workstations only if the
configuration directory is on a shared file system.

IMPORTANT
The NJS administration command set contains commands that can delete user’s
jobs and delete user’s Outcome files. It is essential that the permissions and/or

access control on the NJS configuration directory is set to allow only those users
who are Unicore Administrators write permission.

IMPORTANT
7.3.2 Excluding administration commands

It is possible to remove an administration command from the NJS by adding lines
to the configuration file e.g.
To prevent the NJS from installing the cancel command add the line:
admin.no_cancel

7.4 NJS administration commands
All admin commands accept help and will print a summary of their options.
debug_scripts [on|off]
Toggles the production of verbose (debug) output by the NJS wrapper scripts
(setting of –vx flags)
test_commands xlogin
Run some simple tests to check that the NJS built in Unix commands are properly
initialised in the IDB (e.g. that the paths are correct). These tests are not
exhaustive.
You should study the output of this command to see if the tests work as expected.
Successful completion of these test does not mean that the commands will always
work correctly.
xlogin is a valid user that will be used to execute the commands.
gw_registrar [list|delete|update|add]
Administer NJS registrations with Gateways.
This command is only available if the njs.gw_registration configuration value is
set to true.

6 At some time an alternative administrator interface may be developed that uses a Unicore PKI
and the UUDB to authenticate administrators.

Page 14 of 26

In the commands below gateway_uri stands for a Gateway machine address, plus
port number as below:
arcon.fle.fujitsu.com:4433

list
List the current registration with the time and status of the last registration
attempt
delete gateway_uri
Delete the Gateway from the list of gateways to register with (this does not
cancel a current registration but will not renew it so in time, at most 30
minutes, the Gateway will stop contacting and listing the NJS)
update gateway_uri
Register with the Gateway (e.g. if the Gateway has been restarted this will
immediately reregister rather than wait for the normal update – up to 15
minutes)
add getway_uri
Add the Gateway to the list of registrations.

pause_njs [number]
Pause the execution of the NJS, waiting number seconds before returning.
If all the components of the NJS are in a consistent save state this command
returns with:
NJS paused
Note that this command can only be executed in interactive mode.
resume_njs
Resume the execution of a paused NJS
stop [nosave] [now]
Stop the NJS executing waiting until the NJS is in a consistent state.
The now option will force the NJS to stop after a short time even if some parts
are not definitely in a consistent state.
If the nosave option is used, then the NJS stops without saving state.
sync [now]
Write the current state of executing interesting jobs to disk and continue
executing.
The now option will force the NJS to sync after a short time even if some parts
are not definitely in a consistent state.
status
List the status of the components of the NJS that can be paused
help
Print help about the commands recognised by the NJS.
Note that each of the commands will print detailed help if the help option is
selected e.g.
stop help
quit
Stops execution of the njs_admin command.
Note that you can not quit if the last command was a pause, you must either
resume or stop the NJS before quitting.

Page 15 of 26

list [short|detailed|long] [selection]
List information about the selected AbstractActions at the selected level (default
is short)

The default selection is all AJOs on the NJS.
If selection is “ajos” all the AJOs on the NJS are also listed.
If selection is “all”, then all actions on the NJS are selected.
If selection can be interpreted as a number (hexadecimal), then the action
with that Identifier is selected.
Otherwise, selection is treated as an expression.
Expressions can combine selections using an and operator (e.g. &) or an
or operator (|).
Expressions can be grouped using brackets.
The expression terms are:
status value
Selects all actions on the NJS that have the status value. The valid values
are derived from the AJO class
org.unicore.outcome.AbstractActionStatus. The strings are:
CONSIGNED, DONE, EXECUTING, FAILED_IN_C, FAILED_IN_E,
FAILED_IN_I, HELD, KILLED, NEVER_RUN, NEVER_TAKEN,
NOT_DONE, NOT_SUCCESSFUL, PENDING, QUEUED, READY,
RUNNING, SUCCESSFUL, SUSPENDED.
For example, to produce a short listing for all actions that are currently
executioning:
list status executing

type value
Selects all actions on the NJS are of the type value. The valid values are
the classes in the AJO class structure. The Strings are printed in the
listings.
For example, to produce a long listing of all imports that failed in
execution:
list long (type IMPORT & status FAILED_IN_E)

rootajo value
Selects all actions that have the AJO identified by value as their root AJO.
For example to produce a short listing of all pending actions from the AJO
with identifier AA45FG:
list status PENDING & rootajo AA45FG

user xlogin
Selects all actions on the NJS that are executed by the xlogin (local user
name).
For example to list all root actions that will execute as user ZZFG or
XXDE:
list (user ZZFG | user XXDE)

ulogin value
Selects all actions on the NJS that were consigned to the NJS by a Unicore
user whose common name (CN) contains the string value.

Page 16 of 26

For example to list all root AJOs that were consigned by a user with
“Fred” in the common name and that will execute either as ZZFG or as
XXDE:
list (ulogin Fred & (user ZZFG | user XXDE))

bssid value
Selects the action on the NJS (if any) that is incarnated and running with
this BSS identifier.
Example:
list bssid 9987

abort selection
Abort execution of the selected actions on the NJS.
selection is described in the list section
cancel selection
Cancel the execution of the selected actions on the NJS.
This aborts execution and removes any outcomes. Cancelled AJOs are deleted
from the NJS and their Uspace and Outcome directories are deleted.
selection is described in the list section.
hold [selection]
Hold execution of the selected actions on the NJS.
selection is described in the list section.
resume [selection]
Resume execution of the selected actions, if held and whether held by an admin
command or by a user command.
selection is described in the list section.
tsi [up] [down] [status] [stop] [refresh]
Controls the TSI and the NJS view of the TSI status.
The down option tells the NJS that the TSI is not available for use. The NJS will
not try to send any commands to any existing TSI workers and it will not try to
create any new TSI workers. Most AbstractActions that require a TSI connection
will be HELD until the TSI becomes avaulable (up command) but some attempts
to use the TSI will result in failures (e.g. new jobs that have data sent with them)
The up option tells the NJS that the TSI is available for use, any AbstractActions
that were held because the NJS was not available (down) will be RESUMEd
The stop option causes the NJS to send a command to the TSI shepherd to stop it
executing. The TSI is marked as unavailable (just like the down option). The NJS
will only start using a TSI that is restarted after a stop if it is told that the TSI us
available up option).
Note that the NJS does not automatically detect that the TSI is unavailable or that
it has become available, its view of the TSI is determined by the up, down or
stop options. If the NJS regards the TSI as available and it is not, then the NJS
will try to use the TSI and generate errors.
The refresh option causes the NJS to stop all current TSI workers but leaves the
TSI shepherd running. The TSI is still available and when necessary the NJS will
create new workers.
The status option lists the current TSI status (according to the NJS)
ls [outcomes|uspaces|spool] [xlogin]

Page 17 of 26

List the names of the directories used to hold Outcomes, Uspaces or spooled files
with information about the owning AJO if it can be found on the NJS.
The listing is obtained with the supplied xlogin (if none is supplied, then the
value in the IDB for QSTAT_XLOGIN is used)7.
Uspaces are tagged as “orphaned” if their owning AJO is not on the NJS or is on
the NJS and has completed execution (Uspaces should be removed as soon as an
AJO has completed execution).
Outcomes are tagged as “orphaned” if their owning AJO cannot be found on the
NJS.
Spool directories are tagged as “orphanned”if the NJS cannot find information
about which Unicore User created them.
remove [outcome|uspace|spool] identifier xlogin [project]
Delete the Upsace, Outcome or Spool directory owned by the identified AJO (or
Portfolio in the case of Spool directories). The xlogin must be supplied and match
the owner of the actual directories8.
Uspaces and Outcomes can only be removed if they are tagged as orphaned by
the ls command (otherwise the owning AJO should be cancelled).
Spool directories can always be removed, care should be taken that the person
who spooled the files has really finished with them.
archive [on|off]
Turn saving of the completed AJOs on or off (see also the configuration value
njs.save_completed_ajos).
logging [new_file|level|interval|info]
Control NJS logging.

new_file Close the current log file and open a new one

level new_level [area] Set a new logging level
Values for new_level are S, W, I, C, T. D (see also the configuration
parameter njs.logging_level).
area is optional. If it is not given, then all NJS logging is changed to the
new level. Otherwise, the logging is changed only for the given area of the
NJS. Recognised areas are: “g” for general NJS functions, “a” for the
execution of AbstractActions, “r” for accepting new AJOS and consigning
sub-AJOs, “u” for user authorisation and “t” for TSI interaction.

interval Set a new interval for changing the log file (see also the
configuration value njs.log_file_change_interval) The value following
this is interpreted as follows
If this is a number (n), then the log file will be changed every n hours.
If this starts with the letter “h”, then a new log file will be opened every
hour on the hour.

7 The incarnation will substitute $USER and $HOME in the Uspace and Outcome root directories
and so “xlogin” is required if these values appear in the IDB definitions of Uspace or Outcome
root directories.
8 Remove uses the IDB Incarnation value for the CLEANUP task. If this is set to keep the
directories rather than remove them, then the remove command cannot delete them. Furthermore,
the standard incarnation is rm –rf which means that no errors will be reported from the execution
of this command.

Page 18 of 26

If this starts with a “d”, then a new log file will be opened every day on
the day change (midnight).

info Summarises current logging parameters
clear_fifo identifier user_id [project]
Sends an EOF to all fifos in the Outcome of the AJO nominated by identifier.
The user_id and (optional) project are used to incarnate the script to write the
EOF.
This command is intended to clear any fetches of Outcomes by client applications
that are blocked because they have accidentally read an open fifo that has no
application writing data to it.

7.5 Remote Administration through AJOs
NJS administration can also be performed using AbstractJobs. If an AbstractJob
contains an instance if the class
com.fujitsu.arcon.nsj.interfaces.AdministrationService, then the command string
is executed as if it was received through the njs_admin command described
above (the raw response from the NJS is returned in the AJO’s Outcome).

7.5.1 Authorising users to execute administration AbstractActions
Users must be authorised to execute administration commands. Normal users
cannot execute the administration AbstractAction.
A user is authorised to execute administration AbstractActions if she is entered
with the ADMINISTRATOR role in the UUDB9.

7.5.2 Allowing admin commands
Each admin command must be explicitly allowed for remote administration.
Commands that are not listed as allowed cannot be executed using
AbstractActions10.
To allow a command add the following line to the NJS configuration file
(njs.properties):
remote_admin.allow_<command>
Where <command> is the name of the command that is allowed e.g.
remote_admin.allow_list
Allows listing of AbstractActions on the NJS.
The selection of commands to allow will be determined by the site’s policy for
remote administration but it is not recommended that any of stop, pause_njs
or resume_njs are ever allowed for AJO execution.

9 To add a user with the ADMINISTRATOR role into the FLE UUDB issue the command “add
admin-<xlogin>” where xlogin is as for normal users.
10 There is a mechanism to specify the commands that a local administrator can use (see Section
7.3.2) but this excludes commands whereas AJO administration commands must be included.

Page 19 of 26

8 TSI administration
The TSI requires Perl 5.004 as pervious versions of Perl have security
vulnerability. If you use a previous version of Perl, then you should read and
change the first few lines of the “tsi” file.
The TSI now uses an auxiliary script to list directories. This is supplied with the
TSI code and the IDB should be changed so that incarnations of ListDirectory use
the “tsi_ls” file.

8.1 TSI script file permissions
The permissions on the TSI script files should be set to read only for the owner.
As the TSI is executed as root you should not leave any of these files (or the
directories) writable after any update.
The execption is tsi_ls which must be world readable (the directory
permissions must also be set so to world readable).

8.2 Execution model
The TSI has two modes of execution. The first process to be started is the “TSI
shepherd” which will respond to NJS requests and start up “TSI workers” to do
the work for the NJS.
Since the TSI runs with setuid permissions it must authenticate the source of
commands as a genuine NJS. To do this the TSI is initialised with the address of
the machine that runs the NJS together with a port number that the NJS will listen
on for TSI worker connections. The TSI shepherd will only accept requests from
the NJS machine and all TSI processes will establish connections to the NJS
machine/port.
If the NJS process dies any TSI workers that are connected to the NJS will also
die. However, the TSI shepherd will continue executing and will supply new TSI
processes when the NJS is restarted. Therefore, it is no longer necessary to restart
the TSI daemon when restarting the NJS.
If a TSI worker stops execution the NJS will request a new one to replace it.
If the TSI shepherd stops execution, then all TSI processes will also be killed.
The TSI shepherd must then be restarted, this does not happen automatically.

8.3 Configuring
The TSI can be configured by editing the TSI files. The configuration has been
concentrated into the “tsi” file and the part of this file that should be changed is
clearly marked.
Changes outside this part should not be necessary, but if they are made they
should be passed on to Fujitsu Labs or Pallas so that they can be incorporated into
future releases of the scripts.
The necessary changes can be different for different systems and so you should
read the first part of your TSI script where the required changes are marked and
commented.

8.3.1 Directories used by the TSI
The TSI must have access to the directories specified in the IDB to hold Uspaces,
Outcomes and Spooled files. These directories are written with the TSI’s uid set
to the xlogin for which the work is being performed and so must be writable by
all xlogins11.

11 Note that the TSI no longer writes files to its current directory so that it is no longer necessary to
start up the TSI in a particular directory.

Page 20 of 26

8.4 Starting the TSI
8.4.1 Starting

The TSI can be started with or without command line arguments.
When executed with command line arguments the format is:
perl tsi njs_machine njs_port my_port
where the NJS is executing on njs_machine and is listening for TSI worker
connections on njs_port (njs_port must match the first port number in the
SOURCE entry of the EXECUTION_TSI section in the NJS’s IDB file). A TSI
process in shepherd mode will listen for NJS requests on my_port (my_port
must match the second port number in the SOURCE entry of the
EXECUTION_TSI section in the NJS’s IDB file).
Alternatively, the TSI can be started without command line arguments. In this
case the variables $main::njs_machine, $main::njs_port,
$main::my_port must be set in the tsi Perl file for your system.
Depending on the shell used to start the TSI it may be necessary to execute these
commands through nohup if you want to log out afterwards.

8.5 Stopping the TSI
The TSI can be stopped through the njs_admin command tsi stop.
All TSI workers can be stopped using the njs_admin command tsi
refresh (the TSI will continue running and the NJS will make new workers as
required).
TSI worker processes will stop executing when the NJS stops executing.
It is possible to kill a TSI worker process but this could result in the failure of an
AJO (but the NJS will recover and create new TSI processes).
The TSI shepherd can be killed (preferably using SIGTERM). Since this results
in the killing of all TSI processes this should only be done when the NJS has been
stopped.

8.6 TSI logging
The TSI processes return any logging information to the NJS. The TSI daemon
writes log information to stdout and stderr, to save these they should be redirected
to a file.

9 APIs to the NJS
9.1 Executable environment

The NJS sets the following environment variable for all executables:
UC_NODES

The number of nodes requested by the job
UC_PROCESSORS

The number of processors requested by the job
USPACE_WD

The initial working directory of the job (this may be a subdirectory of the
Upsace diirectory)

USPACE_HOME
The top level directory of the Uspace

Page 21 of 26

UC_ITERATION_COUNTS
The current count of the iteration(s) of any org.unicore.ajo.RepeatGroup or
org.unicore.ajo.ForGroup that are parents of the AbstractAction that was
incarnated to become the executable.
The structure of the value is a_b_c_d where a, b, c, d etc are the current count
of any nested RepeatGroup or ForGroup (d is the innermost loop). An
executable within a single loop gets just the number - a – and no underscore.
Naming files as “file_name_$UC_ITERATION_COUNT” will give unique
names for all iterations.
The following script extracts the iteration count for the innermost loop:
echo $UC_ITERATION_COUNTS | awk ‘BEGIN {FS=”_”} {print $NF}`

UC_DECISION_FILE
The file from which the NJS reads the executable’s “Decision”.
The “decision” is some text passed from an executable to the NJS and used to
control execution of an AJO (through If and RepeatGroup AbstractActions).
The NJS reads an executable’s Decision from the file named in
$UC_DECISION_FILE.
If an AbstractAction contains a resource “MakeReturnCodeDecision”, then
the NJS will insert code to return the executable’s return code as the Decision.
A script can use UC_DECISION_FILE to write some other decision to the
file (there must be no “MakeReturnCodeDecision” resource in this case).

9.2 Code APIs
The NJS has a number of APIs that allow installations to add or tailor NJS
functions. These APIs are in the Java package “com.fujitsu.arcon.njs.interfaces”
and JavaDoc for these interfaces and classes is part of the standard NJS
distribution. This section provides a brief introduction to the interfaces.

9.2.1 Alternative File Transfer
Files are transferred between Vsite using the streamed data in the UPL. However,
many Vsites have some special relationship that could allow much more efficient
methods of file transfer to be used (they could be part of the same Usite etc). The
NJS checks before each file transfer to see if there is an alternative route for the
files before using the (default) UPL streaming.
Alternative File Transfer code can be created by implementing the
com.fujitsu.arcon.njs.interfaces.AFT interfaces (these are
loaded into the NJS using the aft.factories configuration value).

9.2.2 UUDB
The NJS can use site specific implementations of the user database by loading
code that extends the com.fujitsu.arcon.njs.interfaces.UUDB
class.
The NJS uses the class named in the configuration value uudb.class_name,
which defaults to com.fujitsu.arcon.njs.uudb.UUDBImpl

9.2.3 Resource Brokering
The com.fujitsu.arcon.njs.interfaces.ResourceBroker
interface is used to add brokering and quality of service capabilities to the NJS.
Resource brokering code is loaded if the NJS finds the BROKER keyword in the
GENERAL section of the IDB.
If resource brokering code is loaded, then NJS will add instances of the
ResourceCheck and QoSCheck resources to its list of advertised resources and so
will execute jobs requesting these resources. If there is no resource brokering

Page 22 of 26

code, then these resources will not be added and jobs requesting these will not be
executed.

9.2.4 Argument checking
The com.fujitsu.arcon.njs.interfaces.ExecuteTaskChecker
interface can be used to enforce policies on the arguments that a user can supply
to executables (so that, for example, users cannot execute arbitrary code in
“interactive” commands).
The NJS uses the class named in the configuration value njs.checker_class,
which defaults to com.fujitsu.arcon.njs.priest.CheckerImpl (this does nothing).

Page 23 of 26

10 Miscellenea
10.1 Trusting other NJSs

Generally other NJSs are not trusted to execute AJOs. They are allowed to
consign and retrieve AJOs created and signed by Unicore users but nothing else.
However, to run some advanced Unicore functions (e.g. Resource Brokering)
NJSs need to be able to create and run AJOs on behalf of users (e.g. to make
concrete requests about available resources). This can be allowed, but the trust
must be established individually for each external NJS.
This method of allowing trust applies to the default UUDB shipped with the NJS
only. Other implementations of the UUDB may or may not allow this, consult
their documentation.
To trust another NJS you need to add its public certificate to the UUDB using the
“add_njs” command. An Xlogin is required by the command but never used.
Any attempt to execute code on the TSI by a trusted TSI is disallowed. The only
AbstractActions that are allowed are those that execute within the NJS and
consigning sub-AJOs.

10.2 Allow registration of NJSs
NJSs can register with Gateways. If a registration is accepted by a Gateway, then
the Gateway will accepts jobs targeted at the NJS and will advertise the NJS’s
existence to clients.
Registration means that there is less configuration of the Gateways, since NJSs
can supply much of the required information (e.g. AJO class version used by the
NJS, NJS address). It also means that an NJS can be moved to different machines
without having to stop the Gateways.
Registrations must be maintained by an NJS. If they are not renewed after a
certain time the Gateway will deregister the NJS. An NJS will automatically
maintain all registrations while it is running.
Registration is turned on by setting the njs.gw_registration configuration value
to true. The Gateways contacted are those on the njs.gateway list.
Registrations can be checked and updated at run time by using the gw_registrar
command of the NJS admin utility.
Gateways need to be configured to accept NJS registration.

Page 24 of 26

11 Connections between Unicore processes12

There are four types of socket connections used by the Unicore servers.
11.1 CG - Client to Gateway

Clients (JPAs or NJSs) contact Gateways using SSL (the Gateway is the server)
The Gateway listens for clients on the port named in the
gateway.properties file using the gw.port entry.
The way that Clients find which machine and port to use depends on their
configuration methods. Client NJSs use the values given to them in the AJOs they
are consigning.

11.2 GN - Gateway to NJS
Gateways contact NJSs over sockets, the NJS is the server.
The NJS listens for connections from the Gateway on the port named in the
njs.properties file using the njs.gateway_port entry and will accept
connections only from the machine listed in the njs.gateway entry.
The Gateway finds out which port (and machine) to contact a particular NJS on in
the connections file or through its configuration parameters.
The Gateway and NJS must be configured to use the same type of socket, both
use ordinary sockets by default.
If an SSL connection is required, then SSL must be selected on both
(njs.gateway_ssl for the NJS and setting the SSL string in the appropriate Vsite
definition line in the Gateway).

11.3 NT – NJS to TSI
NJSs talk to the TSI workers over plain sockets, the NJS is the server.
The TSI is told which machine and port to contact the NJS on either as command
line arguments or as entry in the tsi file ($main::njs_machine and
$main::njs_port).
The NJS listens for TSI connections on the first port named in the IDB using the
SOURCE keyword of the TSI description section.

12 Note that the Gateway can actually listen on multiple ports.

Gateway

NJS

NJS

TSI

TSI

CG

CG

CG

GN

GN

NT

NT

Admin
AN

Page 25 of 26

A TSI in shepherd mode listens on $main::my_port. The NJS contact a TSI
shepherd on the second port named in the IDB using the SOURCE keyword of the
TSI description section.

11.4 AN – Administrator to NJS
The njs_admin process contacts the NJS. The NJS is listening on the
njs.admin_port defined in the njs.properties file. Edit the njs_admin script to set
this value.

Page 26 of 26

12 Setting up Alternative File Transfers
This section discusses how to set up the sample AFT implementation. Note that
as this uses “rcp” as the alternative transfer mechanism it should only be installed
when this route can be trusted. Furthermore, all rcp specific initialisation (.rhosts
etc) must have been done.

12.1 Gateway
Set up a connection handler that will pass mapping requests from remote AFT
peers through to the AFT code in the NJS by adding the following line to the
Gateway “connections” file:

vsite=njs1_aft arcon 1204 class=com.fecit.arcon.gateway.AFTVsiteConnectionFactory
type=AFT

Where the local NJS - called “njs1” - is running on “arcon” and listening on port
“1024” for AFT requests (not normal Unicore traffic).
Note that the convention for the NJS AFT code is that AFT services are provided
through a Vsite whose name has “_aft” added to the end of the main Vsite’s name
e.g the main Vsite is defined as:

vsite=njs1 arcon 4444 type=NJS

12.2 NJS
Add the following lines to the “njs.properties” files:

aft.factories= com.fecit.arcon.utils.AFTGateway

rcp_aft.port=1024

rcp_aft.tsi_location=vpp5000

rcp_aft.peers=remote@somewhere_else.com:4433,\

 remote2@there.com:4433

Note that the rcp_aft.port entry matches the Gateway initialisation value and that
the peer entries refer to Gateway machines (where the Gateway entries would be
“remote” for the main NJS entry point and “remote_aft” for the AFT code entry
point etc).

13 Change history
Version 4.0.2 Added remote administration commands (enabling), added
clear_fifo admin command.
Version 4.0.1 Added njs.broker_only, debug_scripts
Version 1.7.2 Revised AFT entries (added setting up), added dynamic resources
entry
Version 1.7.1 Added test_commands to njs_admin
Version 1.7 4.0.0 release, restructured a bit
Version 1.6 New TSI controls in njs_admin
Version 1.5 Handles Globus proxies in AJO SSOs (NJS configuration –
njs.sso_type), uudb.check_signers entry

