

Enabling Grids for E-sciencE

The EGEE project – Building a Global Production Grid

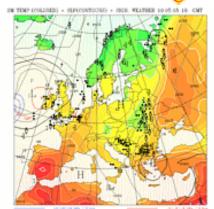
Fabrizio Gagliardi
Project Director EGEE
CERN, Switzerland

Vico Equense, Naples, 18 June 2005

www.eu-egee.org

- Grid computing is emerging as one of the most cost effective computing paradigms for a large class of data and compute intensive applications
- Still a a stiff entry cost for computational scientists
- CERN computing summer school initiated a Grid track back in 2002
 - Extraordinary success
 - Idea to start a dedicated summer school on Grid computing
 - Following excellent response in 2003 and 2004, here we are with the third run in 2005
 - From next year will continue with EU supported ICEAGE

Computing intensive science


Enabling Grids for E-sciencE

 Science is becoming increasingly digital and needs to deal with increasing amounts of data

Simulations get ever more detailed

 Nanotechnology – design of new materials from the molecular scale

- Modelling and predicting complex systems (weather forecasting, river floods, earthquake)
- Decoding the human genome
- Experimental Science uses ever more sophisticated sensors to make precise measurements
 - → Need high statistics
 - → Huge amounts of data
 - → Serves user communities around the world

The solution: the Grid

Enabling Grids for E-science

- Integrating computing power and data storage capacities at major computer centres
- Providing users with seamless access to computing resources, 24/7, independent of geographic location

- → More effective and seamless collaboration of dispersed communities, both scientific and commercial
- → Ability to run large-scale applications comprising thousands of computers, for wide range of applications
- →The term "e-Science" has been coined to express these benefits

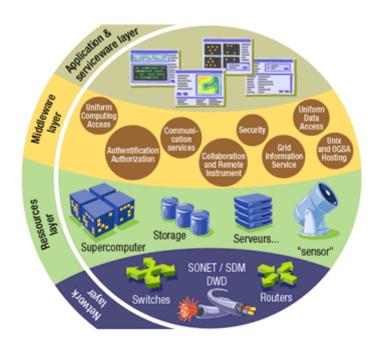
Objectives

- consistent, robust and secure service grid infrastructure
- improving and maintaining the middleware
- attracting new resources and users from industry as well as science

Structure

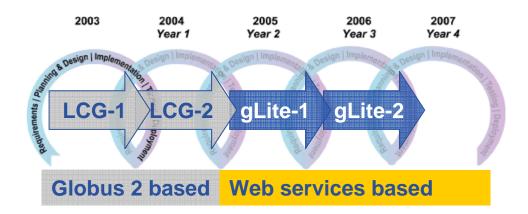
- 70 leading institutions in 27 countries, federated in regional Grids
- leveraging national and regional grid activities worldwide
- funded by the EU with ~32 M Euros for first 2 years starting 1st April 2004

EGEE Infrastructure



 The Grid relies on advanced software, called middleware, which interfaces between resources and the applications

The GRID middleware:


- Finds convenient places for the application to be run
- Optimises use of resources
- Organises efficient access to data
- Deals with authentication to the different sites that are used
- Runs the job & monitors progress
- Recovers from problems
- Transfers the result back to the scientist

EGEE Middleware - gLite

- Intended to replace present middleware with production quality services
- Developed from existing components
- Aims to address present shortcomings and advanced needs from applications
- Prototyping short development cycles for fast user feedback
- Initial web-services based prototypes being tested

Application requirements http://egee-na4.ct.infn.it/requirements/

- First release of gLite end of March 2005
 - Focus on providing users early access to prototype
- Lightweight services
- Interoperability & Co-existence with deployed infrastructure
- Robust: Performance & Fault Tolerance
- Portable
- Service oriented approach
 - Follow WSRF standardisation
- Site autonomy
- Open source license

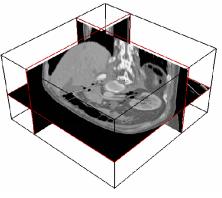
gLite Interoperability

- Interoperability with other Grids mainly needed at resource level
 - Same physical resource should be exploitable in different Grids
- Approach
 - Reduce requirements on sites
 - Computing Element: globus gatekeeper
 - Storage Element: SRM
 - Close connection with other projects
 - OSG
 - Use EGEE architecture and design documents as basis for their blueprint
 - Common members in design teams

Pilot applications

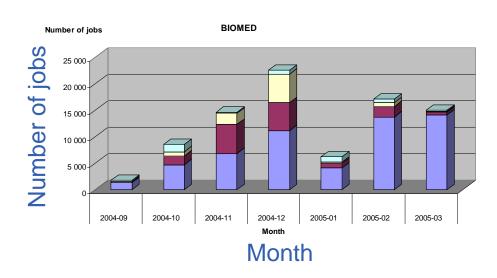
Enabling Grids for E-sciencE


High-Energy Physics (HEP)


- Provides computing infrastructure (LCG)
- Challenging:
 - thousands of processors world-wide
 - generating terabytes of data
 - 'chaotic' use of grid with individual user analysis (thousands of users interactively operating within experiment VOs)

Biomedical Applications

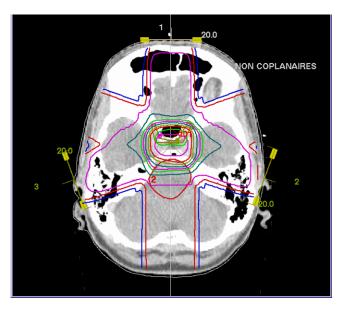
- Similar computing and data storage requirements
- Major challenge: security


BioMed Overview

Enabling Grids for E-sciencE

- Infrastructure
 - ~2.000 CPUs
 - ~21 TB disks
 - in 12 countries

- >50 users in 7 countries working with 12 applications
- 18 research labs
- ~80.000 jobs launched since 04/2004
- ~10 CPU years



GEANT4 Application to Tomography Emission

- Scientific objectives
 - Radiotherapy planning to improve treatment of tumors computed from pre-treatment MR scans
- Method
 - GEANT4-based software to model physics of nuclear medicine
 - Monte Carlo simulation to improve accuracy of computations

- Splitting the random number sequences needed for Monte Carlo simulations enables independent computations
- Parallelization reduces the total computation time
- Results and perspectives
 - computation time reduced BUT not sufficiently for clinical practice
 - → further optimizations are on-going
 - large community of users is interested in GATE

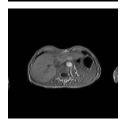
Clinical Decision Support System

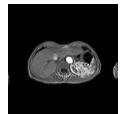
- Scientific objectives
 - Extract clinically relevant knowledge to guide practitioners in their clinical practice
- Method
 - Starting from trained databases
 - Use classifier engines
 - Compare to annotated databases to classify data

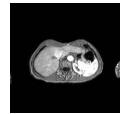
Classification of tumours in soft tissues

- Grid added value
 - Ubiquitous access to distributed databases and classifier engines
 - Grid information system to publish and discover data sources and engines
 - Automatic management of login and security
- Results and perspectives
 - 12 classification engines available
 - 1000 medical cases registered
 - Dynamic discovery of all engines can be implemented on top of the grid information system
 - Accounting will be provided by the grid

Pharmacokinetics




Enabling Grids for E-sciencE

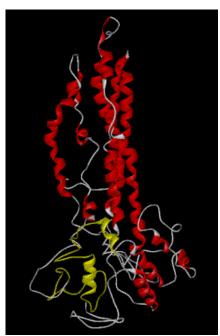

Co-registration of Medical Images

- Scientific objectives
 - Contrast Agent Diffusion to characterize tumour tissues without biopsy
- Method
 - Co-registration requires deformable registration methods
 compute intensive
- Grid added value
 - Processing of compute intensive co-registration and generation of diffusion maps for the 3D MRI Studies.
 - Parallel & independent computations on different input data sets
- Results and perspectives
 - Last clinical test:
 12 patients with 13 MRI studies each
 each study comprises 24 512x512 12-bit slices
 - Processing of the registration algorithm takes around 12 hours per study
 - Registration parameters tuned with four possible combinations
 - Each combination of parameter took 2 hours
 - → 72 times faster than with a single computer

Grid Protein Structure Analysis

- Scientific objectives
 - Integrating up-to-date databases and relevant algorithms for bio-informatic analysis of data from genome sequencing projects

Method

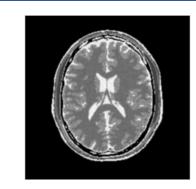

- Protein databases are stored on the grid as flat files
- Protein sequence analysis tools run unchanged on grid resources
- Output is analysed and displayed in graphic format through the web interface

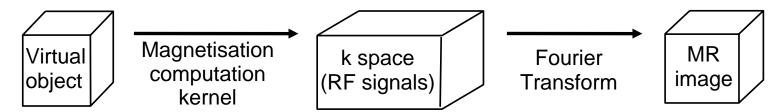
Grid added value

- Convenient way to distribute and access international databanks, and to store more and larger databases
- Compute larger datasets with available algorithms
- Open to a wider user community

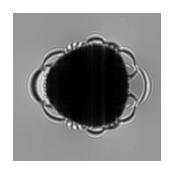
Results and perspectives

- 9 bioinformatic softwares gridified so far
- large number of rather short jobs (few minutes each)
- Optimizations on-going to
 - speed up access to databases
 - lower short jobs latencies





Enabling Grids for E-sciencE


- 3D Magnetic Resonance Image Simulator
 - Scientific objectives
 - Better understand MR physics by studying MR sequences in silico and MR artefacts
 - Validate MR Image processing algorithms on synthetic but realistic images

Method

- Grid added value
 - Speeds up the simulation time
 - Enables simulation of high resolution images
 - Offers an access to MPI-enabled clusters
- Results and perspectives
 - Manageable computation time for medium size images
 - Development of a portal to ease access to the application
 - Implementation of new artifacts

3D Medical Image Analysis Software

- Scientific objectives
 - Interactive volume reconstruction on large radiological data
- Method
 - Starting from hand-made initialization
 - Algorithm segments each slice of a medical volume
 - 3D reconstruction by triangulating contours from consecutive slices
- Grid added value
 - Interactive reconstruction time: less than 2mins and scalable
 - Permanent availability of resources for fast reconstruction
 - Access to users at non grid-enabled sites (e.g. hospital)
 - Unmodified medically optimized interface
- Results and perspectives
 - Successfully ported and demonstrated at first EGEE review
 - Streams to/from non EGEE-enabled sites specific protocol, CrossGrid glogin will be considered
 - Resource access QoS: ongoing work

xmipp_ML_refine

Enabling Grids for E-sciencE

- Macromolecules structure analysis from electron microscopy
 - Scientific objectives
 - 3D reconstruction of molecular structural information from cryo-electron microscopy
 - Method
 - Multi-reference refinement of electron microscopy structures through a maximum likelihood statistical approach
 - Grid added value
 - Very compute intensive analysis of multiple structures
 - 2D: one to several weeks on a single CPU
 - 3D: even more costly
 - Computation can be split in independent jobs that are executed in parallel
 - Results and perspectives
 - First results on 2D analysis show significant time gain:
 two months on a local cluster (20 CPUs) versus one month on the grid
 - algorithm still being optimized and ported to 3D case
 - MPI implementation is currently being developed that should significantly improve the computation time

xmipp_ML_CTFs

Enabling Grids for E-sciencE

Electron microscope images correction

- Scientific objectives
 - Electron microscopy images impaired by electron sources and defocus of magnetic lenses used in experimental practice
 - Image aberrations are described by a Contrast Transfer Function (CTF) that need to be estimated to fix images
 - CTF estimation lead to drastic image enhancement

Method

 Auto regressive modelling is used to estimate parameters of the CTF and produce more reliable results than classical Fourier transform-based approaches

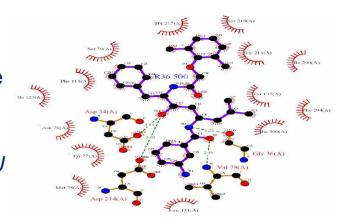
Grid added value

- Very compute intensive: complex functional, slow optimisation process
- Parallelisation on different grid resources
- Results and perspectives
 - → 2 months on a single CPU
 - → 2 days on a local 20-CPUs cluster
 - → 14 hours on the grid

Scientific objectives

- Provide docking information to help in the search for new drugs
- Propose new inhibitors (drug candidates) addressed to neglected diseases
- In silico virtual screening of drug candidate databases

Method


 Large scale molecular docking on malaria to compute millions of potential drugs with different software and parameters settings

Grid added value

- Drug discovery usually takes up to 12 years to complete
- Docking much faster, but large databases lead to heavy computations
 - → split candidate drug input on different grid resources

Results and perspectives

- Limited size computation (105 candidate drugs tested for 1 protein target) achievable in 2 days using the Grid compared to 6 months of CPU time
- Full data challenge planed
 - 3x106 candidate drugs against 5 protein targets
 - Total computing time will reach 80 years of CPU and 6 TB of storage

SPLATCHE

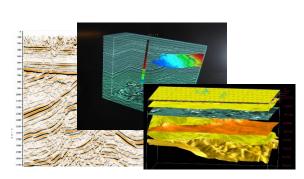
Genome evolution modeling

- Scientific objectives
 - Study human evolutionary genetics and answer questions such as
 - geographic origin of modern human populations
 - genetic signature of expanding populations
 - genetic contacts between modern humans and Neanderthals

Method

- Simulate past demography of human populations in a geographically realistic landscape
- Generate molecular diversity of samples of genes drawn from the current human's range, and compare to observed contemporary molecular diversity
- Grid added value
 - Due to the Bayesian approach used, the SPLATCHE application is very compute intensive
 - Independent simulations can be executed in parallel
- Results and perspectives
 - Application prototype ported on the EGEE middleware
 - Scale tests on the full grid infrastructure underway

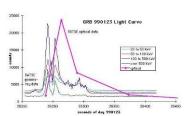
Generic Applications

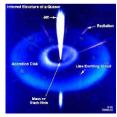

- EGEE Generic Applications Advisory Panel (EGAAP)
 - UNIQUE entry point for "external" applications
 - Reviews proposals and make recommendations to EGEE management
 - Deals with "scientific" aspects, not with technical details
 - Generic Applications group in charge of introducing selected applications to the EGEE infrastructure
 - 6 applications selected so far:
 - Earth sciences (I and II)
 - MAGIC
 - Computational Chemistry
 - PLANCK
 - Drug Discovery
 - GRACE (end Feb 2005)

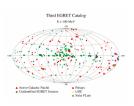
Earth sciences applications

Enabling Grids for E-sciencE

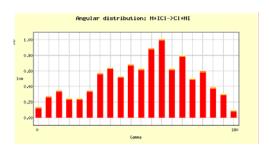
- Earth Observations by Satellite
 - ozone profiles
- Solid Earth Physics
 - Fast Determination of mechanisms of important earthquakes
- Hydrology
 - Management of water resources in Mediterranean area (SWIMED)
- Geology
 - Geocluster: R&D initiative of the Compagnie Générale de Géophysique


- A large variety of applications ported on EGEE which incites new users
- Interactive Collaboration of the teams around a project

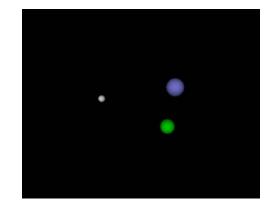




- Ground based Air Cerenkov Telescope 17 m diameter
- Physics Goals:
 - Origin of VHE Gamma rays
 - Active Galactic Nuclei
 - Supernova Remnants
 - Unidentified EGRET sources
 - Gamma Ray Burst
- MAGIC II will come 2007
- Grid added value
 - Enable "(e-)scientific" collaboration between partners
 - Enable the cooperation between different experiments
 - Enable the participation on Virtual Observatories

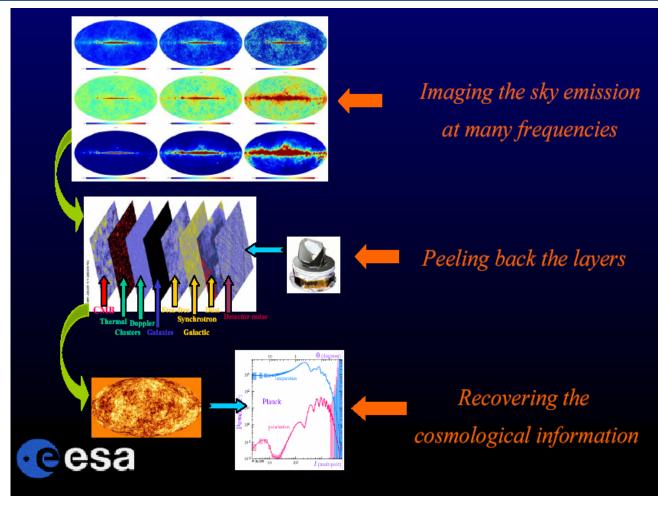



Computational Chemistry


Enabling Grids for E-sciencE

The Grid Enabled Molecular Simulator (GEMS)

- Motivation:
 - Modern computer simulations of biomolecular systems produce an abundance of data, which could be reused several times by different researchers.
 - → data must be catalogued and searchable
- GEMS database and toolkit:
 - autonomous storage resources
 - metadata specification
 - automatic storage allocation and replication policies
 - interface for distributed computation



Planck

On the Grid:

> 12 time faster (but ~5% failures)

- Complex data structure
 - data handling important
- The Grid as
 - collaboration tool
 - common user-interface
 - flexible environment
 - new approach to data and S/W sharing

User information & support

Enabling Grids for E-science

- More than 140 training events (including the GGF grid school) across many countries
 - >1200 people trained induction; application developer; advanced; retreats
 - Material archive coming online with ~200 presentations
- Public and technical websites constantly evolving to expand information available and keep it up to date
- 3 conferences organized
 - ~ 300 @ Cork
 - ~ 400 @ Den Haag
 - ~450 @ Athens

Pisa: 4th project conference 24-28 October '05

Collaborations

EGEE closely collaborates with other projects, e.g.

Flooding Crisis (CrossGrid) demonstrated at 3rd EGEE

conference in Athens

Simulation of flooding scenarios

- Display in Virtual Reality
- Optimize data transport

→ won prize for "best demo"


Collaboration with Slowak Academy of Sciences

EGEE as partner

Ongoing collaborations

- with non EU partners in EGEE: US, Israel, Russia, Korea, Taiwan...
- with other European projects, in particular:
 - GÉANT
 - DEISA
 - SEE-GRID
- with non-European projects:
 - OSG: OpenScienceGrid (USA)
 - NAREGI

EGEE as incubator

- 16 recently submitted EU proposals supported, among them:
 - Baltic states (Baltic Grid proposal to EU)
 - Latin America (EELA consortium on ALIS/CLARA networking)
 - Mediterranean Area (EUMedConnect)
 - China: EUGridChina
- EGEE supports Euro-India ICT Co-operation Initiative

Related projects under negotiation

Enabling Grids for E-sciencE

Name	Description	Common partners with EGEE
BalticGrid	EGEE extension to Estonia, Latvia, Lithuania	KTH - PSNC - CERN
EELA	EGEE extension to Brazil, Chile, Cuba, Mexico, Argentina	CSIC - UPV - INFN - CERN - LIP - RED.ES
EUChinaGRID	EGEE extension to China	INFN – CERN – DANTE – GARR – GRNET – IHEP
EUMedGRID	EGEE extension to Malta, Algeria, Morocco, Egypt, Syria, Tunisia, Turkey	INFN – CERN – DANTE – GARR – GRNET – RED.ES
ISSeG	Site security	CERN – CSSI – FZK – CCLRC
eIRGSP	Policies	CERN – GRNET
ETICS	Repository, Testing	CERN – INFN – UWM
ICEAGE	Repository for Training & Education, Schools on Grid Computing	UEDIN – CERN – KTH – SZTAKI
BELIEF	Digital Library of Grid documentation, organisation of workshops, conferences	UWM
BIOINFOGRID	Biomedical	INFN – CNRS
Health-e-Child	Biomedical – Integration of heterogeneous biomedical information for improved healthcare	CERN

Exact budget and partner roles to be confirmed during negotiation

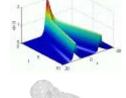
EGEE and Industry

Industry as

- partner to increase know-how on Grid technologies
- user for R&D applications
- provider of established Grid services,
 such as call centres, support centres and
 computing resource provider centres

Industry Forum

- Raise awareness of the project among industries
- Encourage businesses to participate
 - → ability to "experience" EGEE Grid in early stages

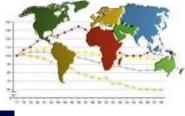


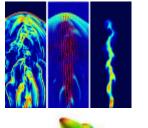
From Phase I to II

Enabling Grids for E-sciencE

From 1st EGEE EU Review in February 2005:

- "The reviewers found the overall performance of the project very good."
- "... remarkable achievement to set up this consortium, to realize appropriate structures to provide the necessary leadership, and to cope with changing requirements."




EGEE I

 Large scale deployment of EGEE infrastructure to deliver production level Grid services with selected number of applications

EGEE II

- Natural continuation of the project's first phase
- Emphasis on providing an infrastructure for e-Science
 - → increased support for applications
 - → increased multidisciplinary Grid infrastructure
 - → more involvement from Industry
- Extending the Grid infrastructure world-wide
 - → increased international collaboration

Conclusions I

- Grid deployment are creating a powerful new tool for science – as well as applications from other fields
- Several applications are already benefiting from Grid technologies
- Investments in grid projects are growing world-wide
- Europe is strong in the development of Grids also thanks to the success of EGEE

Conclusions II

- Collaboration across national and international programmes is very important:
 - Grids are above all about collaboration at a large scale
 - Science is international and therefore requires an international computing infrastructure
- ISSGC is now inspiring other similar schools such as the regional EGEE school in Budapest, other schools in the US and elsewhere
- Scientists attending these schools promote adoption of Grid computing worldwide
- Important to receive feedback and inputs from the school participants
- EGEE will be presented in more details during the rest of this week

EGEE Website

http://www.eu-egee.org

How to join

http://public.eu-egee.org/join/

EGEE Project Office

project-eu-egee-po@cern.ch