
Enabling Grids for E-sciencE

www.eu-egee.org

ISSGC 05
Web Service Tools

NeSC Training Team

Web Services Tools 2

Enabling Grids for E-sciencE

ISSGC 05

Overview

• Goals
– To Understand the context and basic workings of the JAVA Web

Services Development Pack
• Structure

– General
– JWSDP (JAX-RPC)
– Some Details

Web Services Tools 3

Enabling Grids for E-sciencE

ISSGC 05

PERL / C-based
PERL
• SOAP::LITE - Collection of Perl modules which provides a simple and

lightweight interface to SOAP on both client and server side.

C-Based
• gSOAP

– C and C++ toolkit which provides C/C++ - XML bindings for web services
development

– Comments from developers suggest that this implementation is fragile and
can be buggy

• .NET
– Microsoft web services implementation based on C# super-set of C.
– Comments form developers – easy entry but lacks flexibility in more

complex situations

Web Services Tools 4

Enabling Grids for E-sciencE

ISSGC 05

XML Parsing
• Xerces (originally Java, also C++ now)

– Used in JWSDP modules, Axis

• DOM (Document Object Model)
– Creates representation of document structure in memory

• SAX (Simple API for XML)
– Simpler but less powerful parsing model

Web Services Tools 5

Enabling Grids for E-sciencE

ISSGC 05

JAVA

• Build Tool – ANT
• Containers

– add functionality to web servers
– Tomcat originally designed to add servlets to web servers –

became used to support web services
– Axis new development to specifically support web services

Axis also includes a web services development environment
• Development environments

– Java 2 Enterprise Edition (J2EE)
– Java Beans
– Java Web Services Development Package (JWSDP)

Web Services Tools 6

Enabling Grids for E-sciencE

ISSGC 05

JWSDP

• Goals
– To Understand the context and basic workings of the JAVA Web

Services Development Pack
• Structure

– General
– JWSDP (JAX-RPC)
– Some Details

Web Services Tools 7

Enabling Grids for E-sciencE

ISSGC 05

JWSDP packages

JWSDP Packages
• saaj

– soap with attachments API for java
• jaxp

– jax parsing (XML)
• jaxb

– XML → Java “bindings” = de-serialisation
• jaxr

– Jax for registries
• jax-rpc

– Jax remote procedure call

Web Services Tools 8

Enabling Grids for E-sciencE

ISSGC 05

What does JAX-RPC do
The jax-rpc provides packages which:

• Given WSDL or Java Interface definitions
generate ‘stub’ classes for web service providers or consumers.

• Handle Java ↔XML serialisations / de-serialisation

• Handle the generation of SOAP messages

API Packages

• javax.xml.rpc Core classes for the client side programming mode

• javax.xml.rpc.encoding Java objects <-> XML SOAP messages

• javax.xml.rpc.handler processing XML messages
• javax.xml.rpc.handler.soap

• javax.xml.rpc.holders support the use of holder lasses

• javax.xml.rpc.server minimal API for web service implementation

• Javax.xml.rpc.soap specific SOAP binding

Web Services Tools 9

Enabling Grids for E-sciencE

ISSGC 05

JAX-RPC Architecture

Client Application WSDL Web Services Endpoint

Stubs

JAX-RPC API

Client Side
RPC Runtime

SOAP

HTTP Network

JAX-RPC API

Ties

Server Side
RPC Runtime

SOAP

HTTP

Web Services Tools 10

Enabling Grids for E-sciencE

ISSGC 05

Client operation modes
• JAX-RPC allows two modes of operation

• Synchronous – two-way RPC
– This involves blocking the client until it receives a response
– Is similar to a traditional java method call
– Even if no actual return value – Public void request (…)
– Have wait for a success/exception response

• One-way RPC - Asynchronous
– No client blocking
– Service performs a operation without replying.
– Not analogous to traditional method calls
– Cannot throw an exception

Web Services Tools 11

Enabling Grids for E-sciencE

ISSGC 05

Interface method definitions

A java web service end point interface must obey the following rules:
• The interface must extend java.rmi.remote

• Service endpoint interfaces may be extensions of other interfaces

• Interface methods must declare that it throws
java.rmi.RemoteException

• Service dependent exceptions can be thrown if they are checked
exceptions derived from java.lang.Exception

Web Services Tools 12

Enabling Grids for E-sciencE

ISSGC 05

Types
Types That can be in the interface
• Java primitives (eg. bool, int, float, etc)
• Primitive wrappers (Boolean, Integer, Float, etc)
• Standard java classes

java.lang.String, java.util.Calendar,
java.util.Date, java.math.BigDecimal,
java.math.BigInteger

• Holder classes
• “Value types”

– Class has a public no-argument constructor
– May be extended from any other class, may have static and instance methods,

may implement any interface (except java.rmi.Remote and any derived)
– May have static fields, instance fields that are public, protected, package

private or private but these must be supported types.
• Arrays (where all elements are supported types)

Object by reference is not supported

Web Services Tools 13

Enabling Grids for E-sciencE

ISSGC 05

(de-) serialisation

• Java web services (also C based ones) allow a developer to treat service classes as
if they are local - i.e. stubs are created

• All web services messages are XML (SOAP)
• This means that objects sent across web services must be translated to XML and

back – (de-)serialisation
• What is serialised is the “accessible state”; either

– directly accessible fields
– Fields with mutator/accessor methods

• The values returned by service methods are in fact local classes created by JAX-
RPC from the XML serialisation
– Classes seen by either side may not be identical
– So avoid comparisons using == ; equals() should be used instead

• If you want to pass an un-supported java class you have to create your own serialiser
/ de-serialiser to translate to and from XML.

• This not a trivial task as there is no JAX-RPC framework.

Java XML JavaSerialise

De-Serialise

De-Serialise

Serialise

Web Services Tools 14

Enabling Grids for E-sciencE

ISSGC 05

Wscompile

“Model” –
Partially compiled interface
Usage Modes –
Interface → Model, WSDL
WSDL → Model, Interface
Model → Interface, Interface

wscompile

WSDL
JAVA
Model file

JAVA
interface

Client side
Stubs

Service side
Ties

Web Services Tools 15

Enabling Grids for E-sciencE

ISSGC 05

wscompile – usage patterns

Local
Client and Server
same organisation

interface

wscompile Model Ties wscompile

Remote
Client and Server
different organisation

WSDL

wscompile WSDL Ties wscompile

publish

Remote
Starting from Java
Rather than WSDL

Interface

wscompile WSDL Ties wscompile

Stubs

Stubs

WSDL

Stubs

Web Services Tools 16

Enabling Grids for E-sciencE

ISSGC 05

Some Details

• Goals
– To Understand the context and basic workings of the JAVA Web

Services Development Pack
• Structure

– General
– JWSDP (JAX-RPC)
– Some Details

Web Services Tools 17

Enabling Grids for E-sciencE

ISSGC 05

Obtaining the WSDL

• WSDL can be downloaded from a UDDI registry

• If the service uses JAXRPCServlet you can attach ?WSDL (or
?model) to the URL request to get the WSDL (or model file).
– E.g. http://localhost:8080/Service/Servicename?WSDL

Web Services Tools 18

Enabling Grids for E-sciencE

ISSGC 05

wscompile
wscompile

–gen:client –d outputdir –classpath dir1 –keep –s dir2 config.xml

wscompile
–gen:server –d outputdir –classpath dir1 –keep –s dir2
- model mfile.z config.xml

Client-side use

Where to put
generated
artefacts

To override
standard
classpath

To retain
Java source
For
generated
Output; and
where to
put it

Definition
of the
Service –
Model
or WSDL
or
Interface

To generate a model file and where to put it – for use by wsdeploy

server-side use

artefact=stubs

artefact=ties

Web Services Tools 19

Enabling Grids for E-sciencE

ISSGC 05

Configuration File – from interface

<?xml version=“1.0” encoding=“UTF-8” ?>
<configuration

xmlns=“http://java.sun.com/.../config”>
<service name=“……..”

targetNamespace=“ …// …/…/wsdl”
typeNamespace=“…// …/…/types”
packageName=“…”>

<interface name=“…”
servantName=“…”/></>

</configuration>

service name = name of service for WSDL definition
targetNamespace = namespace of WSDL for names associated with the

service e.g. port type
typeNamespace = namespace of WSDL for data types
packageName = name of java package
interface name = name of the java interface
servantName = the name of the class that implements the interface

config.xml
interface

wscompile Model

Artefacts
Ties
Or
Stubs

WSDL

Web Services Tools 20

Enabling Grids for E-sciencE

ISSGC 05

Configuration File – from WSDL /
Model

<?xml version=“1.0” encoding=“UTF-8” ?>
<configuration

xmlns=“http://java.sun.com/.../config”>
<wsdl

location-”..//…/serviceDef .wsdl”
packageName=“….”/>

</configuration>
Location = URL for the WSDL
packageName = name of java package to be generated

config.xml
WSDL

wscompile Model

Artefacts
Ties
Or
Stubs

Interface

Model wscompile

Artefacts
Ties
Or
Stubs

<?xml version=“1.0” encoding=“UTF-8” ?>
<configuration

xmlns=“http://java.sun.com/.../config”>
<model location-”myModel.z”/>

</configuration>
Location = file name of previously generated model

Web Services Tools 21

Enabling Grids for E-sciencE

ISSGC 05

Generated files
Some of the client side generated files:

method.java

Interface_Stub.javaInterface

Info_SOAPBuilder.java

Info_SOAPSerializer.javaValue type

ServiceException_SOAPBuilder.java

ServiceException_SOAPSerializer.javaException

Service_SerializerRegistry.java

Service_Impl.java

Service.javaService

Web Services Tools 22

Enabling Grids for E-sciencE

ISSGC 05

Accessing the Service
• The Service.java file corresponds to the definition of the interface for

the web service,

• An object implementing the interface is like a “service factory” –
• getServicePort returns an instance of (the stub for) the actual service
• The required service factory is Service_Impl

– (Unfortunately this name is only recommended)

package servicePackage;
import javax.xml.rpc.*;
Public interface Service extends javax.aml.rpc.Service
{ public servicePackage getServicePort(); }

Service_Impl service = new Service_Impl ();
value* name = (value)service.getServicePort ();

With this reference you can call the methods of the service.

Web Services Tools 23

Enabling Grids for E-sciencE

ISSGC 05

Deploying to a web container

• Create a WAR file
– Java class file for service endpoint interface
– Java class files for service implementation and resources
– web.xml file containing deployment information
– Class files for JAX-RPC tie classes

• JAX-RPC tie classes are implementation specific.

Web Services Tools 24

Enabling Grids for E-sciencE

ISSGC 05

Additional WAR files required for
JWSDP

Model file generated by
wscompile

WEB-INF/model

JWSDP-specific deployment
information

WEB-INF/jaxrpc-ri.xml

Web application deployment
descriptor

WEB-INF/web.xml

Web Services Tools 25

Enabling Grids for E-sciencE

ISSGC 05

web.xml file
<?xml version=“1.0” encoding=“UTF-8” ?>

<!DOCTYPE web-app
PUBLIC “-//Sun Microsystems, Inc.//DTD Web Application
2.3//EN”
“http://java.sun.com/j2ee/dtds/web-app_2_3.dtd”>

<web-app>
<display-name>Service Name</display-name>
<description>A web service application</description>

</web-app>

Web Services Tools 26

Enabling Grids for E-sciencE

ISSGC 05

Creating a deployable WAR file

wsdeploy –o targetFileName portableWarFileName

The process is informed by the content of the jaxrpc-ri.xml file.

The archive contains:
class files and resources
compiled class files for the ties
compiled class files for serializers
WSDL (in WEB-INF directory)
model file for the service (in WEB-INF)
modified web.xml file
jaxrpc-ri-runtime.xml (based on jaxrpc-ri.xml)

Web Services Tools 27

Enabling Grids for E-sciencE

ISSGC 05

Package Structure for JAX-RPC
Service Endpoint

Web Services Tools 28

Enabling Grids for E-sciencE

ISSGC 05

Files required in the JAR

META-INF/mapping.xml or META-
INF/model

META-INF/application-client.xmlDeployment descriptors
Service.wsdlWSDL file
Classpath.client.ServiceAppClien
t

Application implementation

Classpath.service.Exception
Classpath.service.Info
Classpath.service.nameService end point interface

FilenameFile type

Classpath.service.ServiceService interface

META-INF/MANIFEST.MFManifest file
META-INF/webservicesclient.xml

