PROVA SCRITTA FONDAMENTI DI ANALISI MATEMATICA 1

Esercizio 1. Posto $\mathbb{R}^2 \setminus \{0\} \equiv X$, sia \mathcal{B} la famiglia di sottoinsiemi di X formata dall'insieme vuoto e da tutti i sottoinsiemi $A \subset X$ della forma:

$$A := \{ (x, y) \in X \mid r_1^2 < x^2 + y^2 < r_2^2 \},\$$

con $r_1, r_2 \in \mathbb{R} \ e \ 0 \le r_1 < r_2$.

- (1) Si dimostri che \mathcal{B} è una base per una toplogia di X.
- (2) Dati gli insiemi A_+ , A_- definiti da:

$$A_{\pm} := \{ (x, y) \in X \mid \max(|x \pm 2|, |y \pm 2|) < 1 \}$$

si dimostri che $A_+ \cup A_-$ è connesso. Descrivere gli insiemi connessi.

(3) Dire per quali valori di $\alpha \in \mathbb{R}$ la funzione $f \colon X \to \mathbb{R}$ definita da:

$$f(x,y) = \frac{1}{x^2 + \alpha y^2}$$

è continua.

Esercizio 2. Sia $I_n = [\sin n, \sin \frac{n^2+1}{n}]$ e si consideri la successione di funzioni

$$f_n(x) = \chi_{I_n}(x)$$

Discutere la convergenza puntuale e in in $L^p[-1,1]$ (al variare di $p\in[1,+\infty]$) della successione.

Esercizio 3. Si sviluppi in serie di Fourier nell'intervallo [0,1] la funzione xe^x .