
ISSGC’05 Information for Practical Work

Day 2 Exercise – Web Services Details 1 of 4 15/07/2005

GGF International Summer School on Grid Computing
2005 (ISSGC05)

Day 5 Exercise – Using established Grid Services

1 Introduction
This exercise will follow the GT4 tutorial in which you will have developed a range of GT4 skills.
It should let you build on that experience and return to the progressive exercise. It is not
necessary to complete every part of this exercise.
Here you apply what you have learned about the GT4 toolkit and WSRF by converting your
Explorer client to use stateful services that offer similar functions to those used in Day 2. You
can then test this on one of the surfaces modelled on Tuesday and optionally employ your
Explorer on one or two new surfaces.

When you have completed this exercise, you should have

1. Experience of reading WSDL to understand the functionality of a service
2. Gained experience of using stateful Services which incorporate the WSRF mechanisms
3. Started to develop an initial appreciation of resource allocation issues in Grids

2 Background Information
Compared with the web services from Day 2, the stateful services used here exhibit significant
changes in the structure and interfaces. Some particular changes are:

• Each user now has a file-space Allocation, as the maximum number of kilobytes of file
space that they can be using at any one time. Each file has a lifetime and supports scheduled
termination.

• The FileStore service has become two stateful services - FileStoreFactory and
FileService. The diagram below shows how these services and their resources operate
in one possible usage. This will be explained in a talk introducing the exercise

• Before storing data into a file it has to be created, as a separate operation. The create
operation specifies a file size. This has the effect of reserving the space for the file and so
reduces the available file space. However when the file is actually stored, the size may be
different from that reserved, with the corresponding effect on the remaining available file
space.

ISSGC’05 Information for Practical Work

Day 2 Exercise – Web Services Details 2 of 4 15/07/2005

DN = Distinguished Name in certificate

3 Stages in the Progressive Exercise
All of the work in this stage can be done as group work, and you might consider different team
members working on different steps in parallel.

Step 3.1 Install provided software
We have provided a number of stateful services corresponding the previous web services, and a
number of “test” clients which exercise those services. Here you will install the test clients and
check that they work.

1. mkdir /tmp/part2/

2. cd /tmp/part2

3. cd ~lcc/part2

4. cp exercise-install2.tar.gz /tmp/part2/exercise-install2.tar.gz

5. cp gt-install2 /tmp/part2/gt-install2.tar.gz

6. cd /tmp/part2

7. tar xzf gt-install2.tar.gz

8. cd gt-install2

9. export GLOBUS_LOCATION=$PWD

10. echo $GLOBUS_LOCATION

 check that it is /tmp/part2/gt-install

11. cd /tmp/part2

12. tar xzf exercise-install2.tar.gz

13. cd gridSchool0705

ISSGC’05 Information for Practical Work

Day 2 Exercise – Web Services Details 3 of 4 15/07/2005

14. from the gridSchool0705 directory, edit the file
ws-clients/ws-clients/src/org/globus/tutorial/client/FileStoreClient.java

 making two changes:
a. change http://localhost:8080/wsrf/services/FileStoreFactoryService
 to http://192.167.2.4:8111/wsrf/services/FileStoreFactoryService

b. change http://localhost:8080/wsrf/services/FileService
 to http://192.167.2.4:8111/wsrf/services/FileService

15. from the gridSchool0705 directory, do ant deploy

Note you should not proceed unless this step 15 ends with “build
successful” being output.
16. Generate a proxy by executing the following commands:

a. source $GLOBUS_LOCATION/etc/globus-devel-env.sh
b. java org.globus.tools.ProxyInit

17. cd ws-clients/ws-clients
18. ant fileStoreClient

Note you should not proceed unless this step 13 ends with “build
successful” being output. The ant build also automatically runs the client that has
been built. This test client outputs various messages pertaining to the clients it is testing. It
runs a test on each opertation of each client.

Step 3.2 Port Your Explorer Client
Here you will make the minimum necessary changes to you Explorer program so that it now
operates using the resourceful Services, build it and test it out using the Surface1 Service.
The strategy we suggest for doing the port is

• Read the portytype definitions (and associated message types etc.) in the WSDLs for the
provided services, in order to understand where the functionality has changed.

• Read the Java code for the provided test clients in order to understand how to invoke
the new services.

• Use the code for your existing client and parts of the code for the test clients to
construct a new explorer client which has the same functionality as the previous
Explorer client, but now using the stateful services.

In detail the steps for building your new client are:
1. cd /tmp/part2/gridSchool0705/ws-

clients/wsclients/src/org/globus/tutorial/client
 The above is all one line
2. create a new file in this directory called Explorer.java with your new Explorer client code
3. add the new client file as a build target in

 /tmp/part2/gridSchool0705/ws-clients/ws-clients/build.xml
4. Invoke the explorer client

Step 3.3 Developing the Explorer Client
Having obtained a least-effort port of your Explorer client, you now need to develop it to be
more appropriate to its new environment. This is open-ended, your criteria should be:

• what you think may be useful when you start to use your client as a tool for substantial
surface exploration work latter in the course.

• what provides you with experience in the learning domain of WSRF.

ISSGC’05 Information for Practical Work

Day 2 Exercise – Web Services Details 4 of 4 15/07/2005

We suggest, e.g.

• allowing for the separation of file creation from data storage. The reason for this would be
so that file space can be pre-allocated, since otherwise there is the danger that a job will fail
at the end due to lack of available file space for its output file, thus wasting the time that was
taken in the execution of the job. At this stage, this may not be a significant consideration as
the computations have low execution times. However in later stages (and in “real life”)
execution times may be much longer.

• dealing with the additional exceptions that now can be thrown by the service stubs.

• extending your CLI to provide file management facilities, such as file deletion.
Building each new version of the Explorer client will of course require the steps 3.2.1 – 3.2.4
described above.

Step 3.4 Using your Client to obtain data
Use the client you have built to explore the surface provided by the service cone. Find the cone.
Estimate its height and the coordinates of its centre.
You are not expected to write an algorithm to find these values, rather you should perform a
coarse scan to locate the cone, and then direct successive scans using your client until you have a
number of samples in a small area including the apex. By displaying this small sample you should
be able to estimate the coordinates and height above the surrounding plane of the apex.
You can, of course, automate this iterative search if you wish.

Step 3.5 Extending your Client to obtain measurements
This is an optional extra for teams that are progressing rapidly. The code that you develop will
be useful in an exercise tomorrow.
Use the client you have built to explore the surface provided by the service cuboid. Find the
cuboid. Estimate its dimensions and the coordinates of its min_x, min_y (bottom right hand)
corner using a strategy similar to that used in Step 3.4.
Now modify your client to automate the search and measurement, assuming that the cuboid is
aligned with the axes. That is, it should do a (random?) scan to find locations where there are
coordinates above the plane. Then perform progressively more fine-step traversals to locate the
edges precisely. Return x_min, y_min and height, where: height is the height of the cuboid
above the surrounding plane; x_min and y_min are the co-ordinates of the cuboids bottom left
corner. If you have time, also determine the coordinates of the cuboids top right corner.

