
Java Refresh Exercises

Object Oriented Programming
with Java: an introduction

Raffaele Montella
University of Naples “Parthenope”

11/07/2005 15:08 International Summer School on
Grid Computing 2005

2

Outline

• Introduction to Java

• The HelloWorld program
• Code features
• Comments
• Packages and Namespaces
• OOP Basics: Classes, Objects, Methods and Attributes
• Primitive and Class Types
• Loops and Conditions

• Exceptions
• Input / Output

• Documentation

11/07/2005 15:08 International Summer School on
Grid Computing 2005

3

Welcome to the
Java world (1/2)

• Java was developed at Sun Microsystems in the
first part of ’90s with the following goals:
– One language
– One binary
– More architectures
– The same running application!

• The Java compiler produces a “bytecode” binary

• The bytecode binary is executed by a virtual
machine (JVM, Java Virtual Machine)

11/07/2005 15:08 International Summer School on
Grid Computing 2005

4

Welcome to the
Java world (2/2)

• The JVM abstracts the real machine

• The same compiled code can be executed on different
hardware and software architectures each provided by a
JVM

• Java is freely downloadable from Sun website
– Java Development Kit (JDK)
– Java Runtime Environment (JRE)

• JDK & JRE are not Open Source, but an Open Source
implementation is avalaiable (Kaffe)

11/07/2005 15:08 International Summer School on
Grid Computing 2005

5

Java Features (1/2)

• Simple and powerful:
– The use of best practices and design patterns is suggested

• Secure:
– The executable code is very far from the real machine

• Object Oriented:
– In Java everything is an object: from the ‘main class’ to ‘Integer’

• Robust:
– No pointers allowed, only references
– Strongly typed

11/07/2005 15:08 International Summer School on
Grid Computing 2005

6

Java Features (2/2)

• Interactive:
– Graphical User Interface
– Multithread
– Networking

• Architecture independent:
– Everything runs inside the virtual machine
– The same binary code runs on Linux, Mac-OS, Windows, etc…

• Interpreted, but “high performance”:
– The bytecode is easy to translate into machine code
– Just in time compilers can improve this feature

– NB: high performance, but not so high for high performance computing!

• Easy to learn: I will demonstrate it…

11/07/2005 15:08 International Summer School on
Grid Computing 2005

7

Java@Work

• What you need:
– Java Development Kit

– A text editor
• vi or notepad are enough
• jEdit is a dedicated editor (developed in Java)
• Netbeans and Eclipse are powerful, free and very cool (IDE,

Integrated Development Environment)
• Commercial tools: JBuilder, IBM Visual Age for Java

– A book
• “Thinking in Java” by Bruce Eckel (freely downloadable)

• All needed files are on the ISSGC05 repository.

11/07/2005 15:08 International Summer School on
Grid Computing 2005

8

Hello World!

• We break the process of programming in Java into three
steps:

– create the program by typing it into a text editor and saving it to a
file named HelloWorld.java

vi HelloWorld.java

– compile it by typing in the terminal window

javac HelloWorld.java

– run (or execute) it by typing in the terminal window

java HelloWorld

11/07/2005 15:08 International Summer School on
Grid Computing 2005

9

HelloWorld.java

• Java public classes are implemented in a file named as
the class

• Any Java public class can contain one main method
• Here you are the HelloWorld.java file:

// A very simple HelloWorld Java code
public class HelloWorld {

public static void main(String[] args) {
System.out.println("Hello World!");

}
}

11/07/2005 15:08 International Summer School on
Grid Computing 2005

10

Look at the Code

• Each statement line ends with a semicolon ;
as in C/C++

• Each code block is inside curly brackets {,}

• Variables defined inside a code block are
local to it

• Java is not positional:
carrige return and space sequences outside
quotes are ignored:

public class HelloWorld { public
static void main(String[] args) {
System.out.println(“Hello
World!”);}}

is a correct code, but very hard to be
managed by humans!

// A very simple HelloWorld Java code
public class HelloWorld {

public static void main(String[] args) {
System.out.println("Hello World!");

}
}

11/07/2005 15:08 International Summer School on
Grid Computing 2005

11

Comments
• C++ style comment

// this is a single line slash
// slash C++ style comment

• C style comment

/* this are few comment lines in
a C style fashion */

• Javadoc auto documentation comments

/**
* @params args Command Line Arguments
**/

more information about Javadoc later in this
lesson

// A very simple HelloWorld Java code
public class HelloWorld {

public static void main(String[] args) {
System.out.println("Hello World!");

}
}

11/07/2005 15:08 International Summer School on
Grid Computing 2005

12

Packages and Namespaces

• Java classes definitions are grouped into namespaced packages.

• Packages stored in compressed zip or jar (Java ARchive) files must
be specified in the CLASSPATH environment variable.

• Namespaces are used:
– to avoid omonimous class ambiguity
– to produce better code

• The import statement imports a package namespace:

// Imports all namespaces in java.io
import java.io.*;

// Imports the specified namespace
import java.io.InputStreamReader;

11/07/2005 15:08 International Summer School on
Grid Computing 2005

13

Primitive Types

• In Java primitive types are similar to their C counterparts:

int num1=0;
float num2;
num2=5.3;
double num3=10.0;
boolean condition=true;

• A variable can be
– declared and assigned a value in two different steps…
– …or in one statement.

• Any variable specified as final is considered as a constant:

final double pi=3.1415;

11/07/2005 15:08 International Summer School on
Grid Computing 2005

14

Exercise 1

• Type, compile and run the HelloWorld.java
program

11/07/2005 15:08 International Summer School on
Grid Computing 2005

15

Solution 1

// File: HelloWorld.java
public HelloWorld {
public static void main(String[] args) {
System.out.println(“Hello World!”);

}
}

11/07/2005 15:08 International Summer School on
Grid Computing 2005

16

Defining a Class

• The skeleton of a Java
program is the class definition

• One file can contain more
than one class definition

• Only one public class can be
defined for each .java file

• Nested classes are allowed

• A class can extends another
one by inheritance

// A very simple HelloWorld Java code
public class HelloWorld {

public static void main(String[] args) {
System.out.println("Hello World!");

}
}

// File HelloWorld.java
// A demo HelloWorld Java code
class A {
...

}
class B extends A {
...

}
public class HelloWorld {
class C {

...
}
public static void main(String[] args) {
System.out.println("Hello World!");

}
}

11/07/2005 15:08 International Summer School on
Grid Computing 2005

17

OOP Basics:
Classes

• A class represents an abstract data type
• A class is an object generalization
• An object is an instance of a specific class

• Example:
myComputingMachine object is an instance of
the ComputingMachine class of objects

• The class is the ‘idea’, the general model, of an
object

11/07/2005 15:08 International Summer School on
Grid Computing 2005

18

OOP Basics:
Objects

• An object stores some data (its state);
• Provides methods to access and

manipulate that data (its behavior);
• Represents an individual unit (its identity).

• An example:
the computing machine object…

11/07/2005 15:08 International Summer School on
Grid Computing 2005

19

Example:
The ComputingMachine Object

• The state of a computing machine might be
characterized by
– The type of CPU
– The number of CPUs
– The speed of each CPU

• We can communicate with the computing
machine and do something.

• We can identify a computing machine by its fully
qualified domain name or IP.

11/07/2005 15:08 International Summer School on
Grid Computing 2005

20

Example:
The Computing Machine Class

• Coding the ComputingMachine class in Java:

// File: ComputingMachine.java
public class ComputingMachine {

// Attributes
public String fqdn;
public String cpuType;
public int cpuCount;
public float cpuSpeed;

// Methods
public double doSomething(double a, double b) {

double result=a+b;
return result;

}
}

• Using the ComputingMachine class in Java:

ComputingMachine myCM=new ComputingMachine();
myCM.fqdn=“193.205.230.114”;
double myResult = myCM.doSomething(14.5f, 40.85f);

The class
definition

The ComputingMachine class is public:
it must be implemented in the
ComputingMachine.java file

Attributes definition

Methods definition

11/07/2005 15:08 International Summer School on
Grid Computing 2005

21

OOP Basics:
Access Specifiers

• Attributes and methods can
be declared with the following
access specifiers:

– public:
Accessible both inside and
outside the class

– private:
Accessible only inside the class

– protected:
Accessible inside the class and
inside derived classes, but not
outside

// A very simple HelloWorld Java code
public class HelloWorld {

public static void main(String[] args) {
System.out.println("Hello World!");

}
}

11/07/2005 15:08 International Summer School on
Grid Computing 2005

22

OOP Basics:
Attributes

• stores the object state
• can be both primitive and abstract data types
• can be defined as static

(shared between all object instances)

class ComputingMachine {
// Attributes
public String fqdn;
public String cpuType;
public int cpuCount;
public float cpuSpeed;
private float cpuLoad;

public static int count;
// Methods
...

}

11/07/2005 15:08 International Summer School on
Grid Computing 2005

23

OOP Basics:
Methods

• are functions acting on the object behaviour
• can be qualified as public, private and protected like

attributes
• can be defined as static

(allowing the invocation by statically used objects)

class ComputingMachine {
// Attributes
...
// Methods
public double doSomething(double a, double b) {
double result=a+b;
return result;

}
private void updateCPULoad() {
...

}
}

11/07/2005 15:08 International Summer School on
Grid Computing 2005

24

The Constructor

• Is a special method invoked when the object is instanced using the
new operator

• The name of the constructor must be the same of the class
• In java there is no destructor counterpart as in C++

(except the finalize method)

class ComputingMachine {
// Attributes
...
// Methods
...

ComputingMachine() {
fqdn=“0.0.0.0”;
cpyType=“Unknown”;
cpuSpeed=0;
cpuCount=0;
count++;

}
}

11/07/2005 15:08 International Summer School on
Grid Computing 2005

25

The Main Method

• Is the entry point for a Java program

• Interfaces the program with the
command line shell throw parameters
and returned value
(using System.exit(..))

• Any public class can have one main
method

• The main method MUST be defined as
public AND static so the JVM can
execute it

• For class testing purposes I suggest to
write a main method for each class.

// A very simple HelloWorld Java code
public class HelloWorld {

public static void main(String[] args) {
System.out.println("Hello World!");

}
}

11/07/2005 15:08 International Summer School on
Grid Computing 2005

26

Class Types

• Are considered as reference to object instance

ComputingMachine myCM;

– myCM is a reference to an object belonging to ComputingMachine class:
myCM is not the object

– We can use only static attributes and methods of ComputingMachine class
– The constructor is not invoked

• Have to be first declared and then instanced

myCM=new ComputingMachine();

– myCM references to an instance of a ComputingMachine object
– The ComputingMachine constructor is invoked
– We can use any kind of attributes and methods (both static and not static)
– There is no destructor:

the Java garbage collector frees automatically allocated, but unreferenced
objects

11/07/2005 15:08 International Summer School on
Grid Computing 2005

27

Exercise 2

• Implement the ComputingMachine class in
the file named ComputingMachine.java

• Modify the HelloWorld main method to
show the result of the ComputerMachine
doSomething method invocation.

11/07/2005 15:08 International Summer School on
Grid Computing 2005

28

Solution 2
// File: ComputingMachine.java
public class ComputingMachine {

// Attributes
public String fqdn;
public String cpuType;
public int cpuCount;
public float cpuSpeed;

// Methods
public double doSomething(double a, double b) {
double result=a+b;
return result;

}
}

// File: Exercise2.java
public class Exercise2 {
public static void main(String[] args) {
ComputingMachine cm = new ComputingMachine();
double r = cm.doSomething(3.5,2.7);
System.out.println(“doSomething=” + r);

}
}

11/07/2005 15:08 International Summer School on
Grid Computing 2005

29

Classes for Primitive Types

• For each primitive type there is a predefined
wrapper class:

– Double
– Float
– Integer
– Boolean

• Static members for primitive types operations
– Parsing
– To string conversions

String yearOfBirth=“1972”;
int age=2005-Integer.parseInt(yearOfBirth);

String myAge = age;
System.out.println(“I’m ” + myAge
+ “ years old”);

11/07/2005 15:08 International Summer School on
Grid Computing 2005

30

The String class

• Is a class with a special behaviour:
– Strings are used as primitive types
– The new operator is not needed

String s1;
s1 = “ISS on Grid Computing 2005”;
String s2 = “”;
String s3 = “Hello”;

– String concatenation is done with the + operator

s1 = s2 + “ there!”;
String s3 = “number “+1;

11/07/2005 15:08 International Summer School on
Grid Computing 2005

31

String class methods

• The String class is provided by power
manipulation methods:

int len = s1.length();
int comp = s1.compareTo(s2);
boolean eq = s1.equals(s3);
int p = s1.indexOf(“<form”);
String[] astrParts=s1.split(“,”);

Returns the number of chars belonging to the
string s1

Compares the string s1 with s2.
The returned value is the same of the strcmp C
function.

Compares the string s1 with s3.
Returns true if s1==s3, false otherwise.

Returns the index of the first occurrence of the
“<form” string in s1, -1 if the string isn’t in s1.

Splits the string s1 in an array
of Strings using the specified
separator “,”

11/07/2005 15:08 International Summer School on
Grid Computing 2005

32

Arrays

• can be declared and instantiated using the new operator;
• the array elements values can be assigned in a separate step;

int[] a1;
a1 = new int[5];
double[] a2 = new double[10];
a2[0] = 1.0;

• elements can be initialized when the array is declared;

String[] colors = {“red”,”blue”,”green”};
int len = colors.length;

• The length of an array is stored in the length class attribute

11/07/2005 15:08 International Summer School on
Grid Computing 2005

33

Command Line Arguments

• Are passed to the main method using an array of strings

public class ShowArguments {

public static int main(String[] args) {
System.out.println(args.length);
System.out.println(args[0]);
System.out.println(args[1]);
System.out.println(args[2]);

}
}

11/07/2005 15:08 International Summer School on
Grid Computing 2005

34

Loops

• Loops are implemented in the same way as in C/C++

for(
set_index_variable,
loop_condition,
iteration_alteration_to_index) {…}

while (condition) {…}

do {…} while (condition);

• Example:

for (a=0;a<args.length:a++) System.out.println(args[a])

11/07/2005 15:08 International Summer School on
Grid Computing 2005

35

Exercise 3

• Modify the HelloWorld program to show
each argument passed in separate rows
on the console window.

11/07/2005 15:08 International Summer School on
Grid Computing 2005

36

Solution 3

// File Exercise3.java
public class Exercise3 {

public static void main(String[] args) {
for(int i=0;i<args.length;i++) {

System.out.println(i+”:”+args[i]);
}

}
}

11/07/2005 15:08 International Summer School on
Grid Computing 2005

37

Conditions

• The if –else statement is the same as in C/C++ and can
take three forms:

if(condition){…}
if(condition){…} else {…}
if(condition1){…}
elseif (condition2){…}
else{…}

• where a condition can be formed using the comparative
and logical operators
(==, >, <, >=, <=, !=, &&, ||).

11/07/2005 15:08 International Summer School on
Grid Computing 2005

38

Exercise 4

• Modify the previous exercise to accept just
and only 3 parameters on the command
line.

11/07/2005 15:08 International Summer School on
Grid Computing 2005

39

Solution 4

// File Exercise4.java
public class Exercise4 {

public static void main(String[] args) {
if (args.length==3)

for(int i=0;i<args.length;i++)
System.out.println(i+”:”+args[i]);

}
}

11/07/2005 15:08 International Summer School on
Grid Computing 2005

40

Converting strings to
numbers

• All text input is treated as a string.
• Any number must be converted to their primitive type.

• This can be done using static methods contained in the classes
corresponding to each primitive type.

String number_string = “1.5”;
double number = Double.parseDouble(number_string);
String number_string2 = “10”;
int number2 = Integer.parseInt(number_string2);

• At run-time there is the possibility that the String variable may not contain
the string representation of a number.

• Rather than leaving the program to crash, this possibility is managed by
enclosing the conversion in a try-catch statement to handle an exceptional
condition.

11/07/2005 15:08 International Summer School on
Grid Computing 2005

41

OOP Basics: Exceptions

• The term exception is shorthand for the phrase
"exceptional event.“

• Definition:
An exception is an event that occurs during the
execution of a program that disrupts the normal
instructions flow.

• Java has an efficient way to catch and manage
exceptions derived as an evolution of C++
fashion.

11/07/2005 15:08 International Summer School on
Grid Computing 2005

42

Catch them all!

• The try/catch construct permits to catch exceptions
thrown inside a code block:

try {
block of code

} catch (Exception ex) {
exception manager code block

}

• If inside the try block of code an exception rises, is
executed the code inside the catch block.

11/07/2005 15:08 International Summer School on
Grid Computing 2005

43

Example: string to number
• When the conversion fails an exception of type NumberFormatException is thrown by

the parse method and the program jumps to the statements in the catch block.

try {
number = Double.parseDouble(number_string);

}
catch(NumberFormatException nfe) {
System.err.println(“Error in converting to double”);
System.exit(1);

}

• If the catch block does not include a statement for the program to exit, the program
will continue with any statements that come after it

• error messages are printed using the standard error stream System.err rather than
System.out.

• This is useful when the program output is redirected to a file.

11/07/2005 15:08 International Summer School on
Grid Computing 2005

44

Exercise 5

• Write a Java adder program accepting
operands on command line and displaying
the result on the console window.

11/07/2005 15:08 International Summer School on
Grid Computing 2005

45

Solution 5

// File Exercise5.java
public class Exercise5 {
public static void main(String[] args) {
double r=0;
for(int i=0;i<args.length;i++) {
try {
r=r+Double.parseDouble(args[i]);

} catch (NumberFormatException nfe) {
System.out.println(args[i] +
“ is not a valid operand!”);

}
}
System.out.println(“Result=“+r);

}
}

11/07/2005 15:08 International Summer School on
Grid Computing 2005

46

The Stack Trace
• The stack trace output is a very useful feature used to discover the position of a runtime error.
• Example: string to number conversion exception

public class Test {
public static void main(String[] args) {
double d = Double.parseDouble(args[0]);
System.out.println(d);

}
}

• Passing the value ‘foo’ as argument (foo is not convertible to double)

Exception in thread "main" java.lang.NumberFormatException: For input
string: “foo"

at sun.misc.FloatingDecimal.readJavaFormatString(FloatingDecimal.java:1224)
at java.lang.Double.parseDouble(Double.java:482)
at Test.main(Test.java:4)

11/07/2005 15:08 International Summer School on
Grid Computing 2005

47

Input and output streams

• In previous examples inputs have been
performed via the command line
arguments.

• Now we will read the input from the
console using the stream System.in.

• Input and output streams allow the use of
file redirecting with Java programs.

11/07/2005 15:08 International Summer School on
Grid Computing 2005

48

The input stream

• System.in can only read bytes.
• System.in is used to initialize an InputStreamReader

object
• The InputStreamReader object is passed as argument to

the BufferedReader object constructor.
• A line of text can be read using the BufferedReader

method readLine()

InputStreamReader isr = new
InputStreamReader(System.in);

BufferedReader br = new BufferedReader(isr);
String name = br.readLine();

11/07/2005 15:08 International Summer School on
Grid Computing 2005

49

Input stream exceptions

• I/O problems can occur when trying to
perform the reading.
– The readLine() method throws a IOException
– The read operation must be enclosed in an

appropriate try-catch block.

• After all input is read from the stream it
should be closed using br.close().

11/07/2005 15:08 International Summer School on
Grid Computing 2005

50

Example:
Read input stream

import java.io.*;

public class ReadInputStream {
public static void main() {

try{
InputStreamReader isr = new

InputStreamReader(System.in);
BufferedReader br = new BufferedReader(isr);
String name = br.readLine();
br.close();
System.out.println(name);

}
catch(IOException ioe){

System.err.println(“Error in reading name”);
System.exit(1);

}

11/07/2005 15:08 International Summer School on
Grid Computing 2005

51

Manage multiple exceptions

• The following not trivial example points out the multiple exception
management tecnique.

try {
block of code

} catch (IOException exIO) {
catch input output exception block

} catch (ArithmeticException exAr) {
catch arithmetic exception block

} finally {
in any case do something

}

• Different exception types are handled in separate catch blocks
• The finally clause specifies a block of code executed in any case

11/07/2005 15:08 International Summer School on
Grid Computing 2005

52

Exercise 6

• Write a Java adder program accepting 2
operands from the standard input and
showing the output on the console
window.

• Remember to manage both
NumberFormatException and
IOException!

11/07/2005 15:08 International Summer School on
Grid Computing 2005

53

Solution 6 (1/2)
// Exercise6.java
import java.io.*;
public class Exercise6 {

private double getOperand(String prompt) {
double operand=0;
System.out.print(prompt);

try {

BufferedReader br = new BufferedReader(
new InputStreamReader(System.in));

operand = Double.parseDouble(br.readLine());

} catch (IOException exIO) {
System.out.println(exIO.getMessage());

} catch (NumberFormatException exNF) {
System.out.println(exIO.getMessage());

}

return operand;
}
...

11/07/2005 15:08 International Summer School on
Grid Computing 2005

54

Solution 6 (2/2)

...

public static void main(String[] args) {
Exercse6 e6 = new Exercise6();
double a = e6.getOperand(“A:”);
double b = e6.getOperand(“B:”);
double sum = a + b;
System.out.println(“A+B=“+sum);

}
}

11/07/2005 15:08 International Summer School on
Grid Computing 2005

55

The output stream

• Output to the console can be handled in a similar way using the stream
System.out.

• The stream can be converted to a OutputStreamReader object and then to
a PrintWriter object.

• The PrintWriter class has the methods print() and println() for printing.

• However, this is unecessary because, the stream System.out already has
methods println() and print().

// Solution 1
OutputStreamReader osw = new

OutputStreamReader(System.out);
PrintWriter pw = new PrintWriter(osw);
pw.println(“Hello World!”);

// Solution 2
System.out.println(“Hello World!”);

11/07/2005 15:08 International Summer School on
Grid Computing 2005

56

Reading and Writing files

• Rather than read the inputs from a file using a stream, a file can be read
directly programmatically.

• Similar to streams, a FileReader object, which reads characters, can be
created using the name of the input file and this is used to initialize a
BufferedReader object for reading a line of text:

try {
FileReader fr = new FileReader(“filename”);
BufferedReader br = new BufferedReader(fr);
String name = br.readLine();
br.close();

}
catch(IOException ioe) {
System.out.println(“Error reading name”);

}

11/07/2005 15:08 International Summer School on
Grid Computing 2005

57

File Troubles

• The previous code is enough to read from a file.
• It does not provide any useful information on the source

of an I/O problem:

– the input file does not exist,
– the input filename does not refer to a file,
– the permissions on the file are such the file cannot be read,
– the file is empty,
– the file contains not enough data.

• Almost all of these events can be tested using a File
object,

11/07/2005 15:08 International Summer School on
Grid Computing 2005

58

The File Object
try {

File inFile = new File(“filename”);

if(!inFile.exists()) throw new IOException(“Input file does not exist”);
if(!inFile.isFile()) throw new IOException(“Input file is not a file”);
if(!inFile.canRead()) throw new IOException(“Cannot read input file”);
if(inFile.length() == 0) throw new IOException(“Input file is empty”);

FileReader fr = new FileReader(inFile);
BufferedReader br = new BufferedReader(fr);
String name = br.readLine();
fr.close();

}
catch(IOException ioe) {

System.err.println(“Error reading name”);
System.err.println(ioe.getMessage());
System.exit(1);

}

• The File methods exists(), isFile() etc do not automatically throw an IOExeception
• If a problem is detected an exception can be thrown.
• A FileReader object can also be created using a File object..

11/07/2005 15:08 International Summer School on
Grid Computing 2005

59

Writing Files
• Writing to a file follows a similar pattern.

File outFile = new File(“filename”);
if(!outFile.createNewFile())

throw new IOException(“Output file already exists.“);
FileWriter fw = new FileWriter(outFile);
PrintWriter pw = new PrintWriter(fw);
pw.println(name);
pw.close();

• This code is enclosed in a suitable try-catch.
• A new file is created for the output.
• If an existing file is to be used, the File method canWrite() can be used to check that

the file is writeable.
• The statement

FileWriter fw = new FileWriter(outFile,true);

will cause output to be appended to the file.

11/07/2005 15:08 International Summer School on
Grid Computing 2005

60

Exercise 7

• Write a Java program reading a text file,
showing it line by line on the console
window and then write it on another file.

• Get input and output filenames from the
comand line.

11/07/2005 15:08 International Summer School on
Grid Computing 2005

61

Solution 7 (1/2)

// Exercise7.java
import java.io.*;

public class Exercise7 {
public static void main(String[] args) {
try {
BufferedReader br=new BufferedReader(new

FileReader(args[0]));
try {
PrintWriter pw=new PrintWriter(
new FileWriter(args[1]);

String in;
while (in = br.readLine() != null) {
System.out.println(in);
pw.println(in);

}
...

11/07/2005 15:08 International Summer School on
Grid Computing 2005

62

Solution 7 (2/2)

...
pw.close();

} catch(IOException ex) {
System.out.println(ex.getMessage());

}
br.close();

} catch(IOException ex) {
System.out.println(ex.getMessage());

}
}
}

11/07/2005 15:08 International Summer School on
Grid Computing 2005

63

Documentation

• Html pages of API documentation can be automatically generated
from the source code using documentation comments that are
included in the program and the javadoc tool.

• The comments are of the form /** comment */ and appear
(immediately) before:
– the class definition,
– the attribute declarations
– definitions of the constructors
– definitions of methods.

• The comments should describe the class, attributes and methods
without detailing the implementation.

• Implementation details can be added using // or /* comments */.

11/07/2005 15:08 International Summer School on
Grid Computing 2005

64

Class Comments

/** The ComputingMachine class is a grid computing node
* @author R. Montella
* @version 0.1
*/
public class ComputingMachine {

• As with all document comments it must be placed immediately before the
declaration/definition it is describing.

• If an import statement is placed between ‘*/’ and ‘public ..’ the comment
will not be found by the javadoc tool.

• The comment begins with a brief description of the class and is followed by
two tagged comments.:

– ‘author’,
– ‘version’

11/07/2005 15:08 International Summer School on
Grid Computing 2005

65

Attribute Comments

/** Fully Qualified Domain Name */
public String fqdn;

/** The type of CPU as vendor and/or model */
public String cpuType;

• Both public and private attributes and methods
can be commented

• With default javadoc settings only public
methods and attributes are published.

11/07/2005 15:08 International Summer School on
Grid Computing 2005

66

Constructor and
Methods Comments

/** Do a very computing intensive task: the sum
* @param a the first operand of sum operation
* @param b the second operand of sum operation
* @return the sum of a and b
*/

public double doSomething(double a, double b) {
double result=a+b;
return result;

}

• The format for constructors and methods is to start with a brief description
followed by the tagged parameter comments

• For methods which return a value, a tagged return comment

• The return tagged comment is avoided in the case of void methods

11/07/2005 15:08 International Summer School on
Grid Computing 2005

67

Producing Documentation
• Generating the html documentation is straightforward.

• The command

javadoc ComputingMachine.java

will generate the file ComputingMachine.html containing the class documentation and
additional html files giving information on class hierarchy and including a help guide
and an index of methods and classes.

• This command uses the default settings and will only document public attributes,
constructors and methods.

• Private class members can be included using

javadoc –private ComputingMachine.java

• If the documentation comments are omitted, the html file will still be generated but
without any description of the class or of its members.

11/07/2005 15:08 International Summer School on
Grid Computing 2005

68

Exercise 8

• Write a documented version of
ComputingMachine class implementation
and generate both public and private
HTML documentation.

11/07/2005 15:08 International Summer School on
Grid Computing 2005

69

Solution 8
/** The ComputingMachine class is a grid computing node
* @author R. Montella
* @version 0.1
*/

public class ComputingMachine {
/** Fully Qualified Domain Name */
public String fqdn;
/** The type of CPU as vendor and/or model */
public String cpuType;
/** Number of CPUs in SMP nodes */
public int cpuCount;
/** CPU speed */
public float cpuSpeed;

/** Do a very computing intensive task: the sum
* @param a the first operand of sum operation
* @param b the second operand of sum operation
* @return the sum of a and b
*/
public double doSomething(double a, double b) {

double result=a+b;
return result;

}
}

11/07/2005 15:08 International Summer School on
Grid Computing 2005

70

Links

• Java Development Kit
– http://java.sun.com

• jEdit
– http://www.jedit.org

• Eclipse
– http://www.eclipse.org

• Thinking in Java
– http://www.mindview.net/Books/TIJ

• An online course
– http://www.cs.princeton.edu/introcs

