l.'.
5 + %

nject Orleng F’rogramml
with Java 0/introduction |

* Raffaele I\/Iontellaq, ﬁ : a

Unlvers}Tty of Naples* Parthenope ' S o
s D
F '[‘ll i 1
| ir N e
e I Jrlm 3 i
. i L

" Outline

Introduction to Java

The HelloWorld program

Code features

Comments

Packages and Namespaces

OOQOP Basics: Classes, Objects, Methods and Attributes

= Welcome to the
- Java world (1/2)

e Java was developed at Sun Microsystems in the
first part of '90s with the following goals:

— One language

— One binary

— More architectures

— The same running application!

& Welcome to the
- Java world (2/2)

e The JVM abstracts the real machine

 The same compiled code can be executed on different
hardware and software architectures each provided by a
JVM

¥ Java Features (1/2)

e Simple and powerful:
— The use of best practices and design patterns is suggested

e Secure:
— The executable code is very far from the real machine

¥ Java Features (2/2)

* Interactive:
— Graphical User Interface
— Multithread
— Networking

» Architecture independent:
— Everything runs inside the virtual machine
— The same binary code runs on Linux, Mac-OS, Windows, etc...

' Java@Work

 What you need:
— Java Development Kit

— A text editor
Vi or notepad are enough
» jEdit is a dedicated editor (developed in Java)

* Netbeans and Eclipse are powerful, free and very cool (IDE,
Integrated Development Environment)

* Hello World!

 We break the process of programming in Java into three
steps:

— create the pro?ram by typing it into a text editor and saving it to a
file named HelloWorld. java

vi HelloWorld. java

" HelloWorld.java

e Java public classes are implemented in a file named as
the class

« Any Java public class can contain one main method
e Here you are the HelloWorld.java file:

// A very simple HelloWorld Java code

* Look at the Code

Each statement line ends with a semicolon ;
as in C/C++

Each code block is inside curly brackets {,}

Variables defined inside a code block are
local to it

Java is not positional: _
carrige return and space sequences outside

C

Il A very simple HelloW Java code
public class HelloWorl

public static void main(String[] args) {
System.out.printin(*Hello Worl cm

> Comments

a

C++ style comment

// this i1s a single line slash
// slash C++ style comment

C style comment

/* this are few comment lines
a C style fashion */

in

Il A very simple HelloWorld Java code
public class HelloWorld {

public static void main(String[] args) {
System.out.printin("Hello World!");

}
}

¥ Pac kages and Namespaces

« Java classes definitions are grouped into namespaced packages.

« Packages stored in compressed zip or jar (Java ARchive) files must
be specified in the CLASSPATH environment variable.

 Namespaces are used:
— to avoid omonimous class ambiguity
— to produce better code

® Primitive Types

In Java primitive types are similar to their C counterparts:

Iint numl=0;

float num2;

num2=5_3;

double num3=10.0;
boolean condition=true;

A variable can be

" Exercise 1

 Type, compile and run the HelloWorld.java
program

* Solution 1

// File: HelloWorld. java
public HelloWorld {
public static void main(String[] args) {
System.out.printin(“Hello World!”);

}

¥ Defining a Class

e The skeleton of a Java /I File HelloWorld java
program is the class definition| | // A demo Helloworld Java code
class A {
e One file can contain more - AN /

than one class definition class B extends A {

AN
« Only one public class canbe | |}
defined for each .java file public class Helloworld {
class C{ ™\

}

public static void main(String[] args) {
System.out.printin("Hello World!");

}

}

¢ OOP Basics:
- Classes

* A class represents an abstract data type
e A class is an object generalization
* An object is an instance of a specific class

* Example:

. OOP Basics:
- Objects

* An object stores some data (its state);

* Provides methods to access and
manipulate that data (its behavior);

 Represents an individual unit (its identity).

£ Example:
- The ComputingMachine Object

* The state of a computing machine might be
characterized by

— The type of CPU
— The number of CPUs
— The speed of each CPU

= Example:
- The Computing Machine Class

» Coding the ComputingMachine class in Java:

// File: ComputingMachine.java
public class ComputingMachine {w The ComputingMachine class is public:

// Attributes : —— ted in th
public String fqdn; ™~ Attributes definition ['€Nted In the
public String cpuType; 1ine. java file
public int cpuCount;

public float cpuSpeed;

// Methods

public double~X=2Sgmething(double a, double b) {
double result=:

Methods definition

: OOP Basics:
- Access Specifiers

* Attributes and methods can /Il A very simple HelloWorld Java code
be declared with the following | public class Helloworld {
access specifiers:

public static void main(String[] args) {

— public: System.out.printin(*Hello World!");

Accessible both inside and }
outside the class }

. OOP Basics:
~ Attributes

o stores the object state

e can be both primitive |and abstract data types

« can be defined asstatic |
(shared between all object instances)

class ComputingMachine {
// Attributes

public String fqdn;

. OOP Basics:
- Methods

e are functions acting on the object behaviour

e can be qualified as|public,|private|and protected like
attributes

 can be defined as static | _
(allowing the invocation by statically used objects)

class ComputingMachine {
// Attributes

* The Constructor

* |s a special method invoked when the object is instanced using the
new operator

e The name of the constructor must be the same of the class

* In java there is no destructor counterpart as in C++
(except the finalize method)

class ComputingMachine {

// Attributes ‘\\\

" The Main Me

thod
\

Is the entry point for a Java program

Interfaces the program with the

//\Q very simple HelloWeprld Java code
public clafs HeIIoWor/If{

command line shell throw parameters | public static void main(String[]"args) {

and returned value
(using System.exit(..))

Any public class can have one main
method

Syistem.out.printin("Hello World!");
}

}

¥ Class Types

Are considered as reference to object instance

ComputingMachine myCM;

— myCM is a reference to an object belonging to ComputingMachine class:
myCM is not the object

— We can use only static attributes and methods of ComputingMachine class
— The constructor is not invoked

Have to be first declared and then instanced

* Exercise 2

e Implement the ComputingMachine class In
the file named ComputingMachine.java

e Modify the HelloWorld main method to

¥ Solution 2

// File: ComputingMachine.java

public class ComputingMachine {
// Attributes
public String fqdn;
public String cpuType;
public int cpuCount;
public float cpuSpeed;

// Methods

public double doSomething(double a, double b) {
double result=a+b;
return result;

+
}

// File: Exercise2.java
public class Exercise2 {
public static void main(String[] args) {
ComputingMachine cm = new ComputingMachine();
double r = cm.doSomething(3.5,2.7);
System.out.printin(*doSomething=" + r);

}

}

* Classes for Primitive Types

e For each primitive type there is a predefined
wrapper class:

— Double

— Float String myAge = age;
— Integer System.out.printIn(*I’m ” + myAge
+ “ years old”);

* The String class

* |s a class with a special behaviour:
— Strings are used as primitive types
— The new operator is not needed

String si1;
sl = “ISS on Grid Computing 2005”;
String s2 = “7;

 The String class is

¥ String class methods

orovided by power

manipulation methc

Returns the number of chars belonging to the

Compares the string s1 with s3.

string sl

P

Splits the string sl in an array

Returns true if s1==s3, false otherwise. D (of Strings using the specified

separator “,”

Compares the string s1 with s2.

The returned value is the
function.

same of the

Returns the index of the first occurrence of the
“<form” string in s1, -1 if the string isn't in s1.

¥ Arrays

can be declared and instantiated using the new operator;
the array elements values can be assigned in a separate step;

int[] ai;

al = new Int[5];

double[] a2 = new double[10];
a2[0] = 1.0;

* Command Line Arguments

* Are passed to the main method using an array of strings

public class ShowArguments {

public static Int main(String[] args) {

* Loops are implemented in the same way as in C/C++

for(
set _index variable,
loop condition,
iteration_alteration_to _index) {.}

while (condition) {.}

" Exercise 3

 Modify the HelloWorld program to show
each argument passed in separate rows
on the console window.

* Solution 3

// File Exercise3. java
public class Exercise3 {

public static void main(String[] args) {
for(int 1=0;1<args.length;1++) {
System.out.printin(i+”:”+args|1]);

" Conditions

e The If —else statement is the same as in C/C++ and can
take three forms:

if(condition){.}
if(condition){.} else {.}
if(chdition}){m}

* Exercise 4

 Modify the previous exercise to accept just
and only 3 parameters on the command
line.

* Solution 4

// File Exercise4.java
public class Exercised4 {

public static void main(String[] args) {
1T (args.length==3)

Converting strings to
- numbers

» Alltext input is treated as a string.
 Any number must be converted to their primitive type.

e This can be done using static methods contained in the classes
corresponding to each primitive type.

String number_string = “1.57;
double number = Double.parseDouble(number string);
String number_string2 = “10”;

" OOP Basics: Exceptions

* The term exception is shorthand for the phrase
"exceptional event.”

* Definition: |
An exception is an event that occurs during the
execution of a program that disrupts the normal

¥ Catch them all!

* The try/catch construct permits to catch exceptions
thrown inside a code block:

try {
block of code

} catch (Exception ex) {

Example: string to number

* When the conversion fails an exception of type NumberFormatException is thrown by
the parse method and the program jumps to the statements in the catch block.

try {
number = Double.parseDouble(number_string);

+

catch(NumberFormatException nfe) {
System.err.printIn(“Error in converting to double™);
System.exit(l);

+

" Exercise 5

* \Write a Java adder program accepting
operands on command line and displaying
the result on the console window.

* Solution 5

// File Exercise5. java
public class Exercise5 {
public static void main(String[] args) {

double r=0;
for(int 1=0;i<args.length;i++) {
try {

r=r+Double.parseDouble(args|i]);
} catch (NumberFormatException nfe) {

* The Stack Trace

The stack trace output is a very useful feature used to discover the position of a runtime error.
Example: string to number conversion exception

public class Test {
public static void main(String[] args) {
double d = Double.parseDouble(args[0]);
System.out.printin(d);

}
}

« Passing the value ‘foo’ as argument (foo is not convertible to double

® Input and output streams

 In previous examples inputs have been
performed via the command line

arguments.

 Now we will read the input from the

" The input stream

System.in can only read bytes.
System.in is used to initialize an InputStreamReader
object

The InputStreamReader object is passed as argument to
the BufferedReader object constructor.

A line of text can be read using the BufferedReader
method readLine()

Input stream exceptions

 |/O problems can occur when trying to
perform the reading.
— The readLine() method throws a IOException

— The read operation must be enclosed in an
appropriate try-catch block.

£ Example:
- Read input stream

import java.io.*;

public class ReadlnputStream {
public static void main() {

try{
InputStreamReader iIsr = new

InputStreamReader(System.in);
BufferedReader br = new BufferedReader(isr);
String name = br.readLine();
br.close();

System.out.println(name);
}
catch(10Exception i1o0e){
System.err.printIn(*Error In reading name’);

System.exit(l);

}

¥ Manage multiple exceptions

» The following not trivial example points out the multiple exception
management tecnique.

try {
block of code

} catch (10Exception exl0) {
catch 1nput output exception block
} catch (ArithmeticException exAr) {

* Exercise 6

e \Write a Java adder program accepting 2
operands from the standard input and

showing the output on the console
window.

P Solution 6 (1/2)

// Exercise6.java
import java.io0.>;
public class Exercise6 {

private double getOperand(String prompt) {
double operand=0;
System.out.print(prompt);

try {

BufferedReader br = new BufferedReader(
new InputStreamReader(System.in));
operand = Double.parseDouble(br.readLine());

} catch (10Exception exl10) {
System.out.printin(exl0O.getMessage());

} catch (NumberFormatException exNF) {
System.out.printin(exlO.getMessage());

}

return operand;

P Solution 6 (2/2)

public static void main(String[] args) {
Exercse6 e6 = new Exercise6();
double a = e6.getOperand(“A:”);
double b = e6.getOperand(““B:"");
double sum = a + b;
System.out.printlIn(**‘A+B="“+sum) ;

* The output stream

Output to the console can be handled in a similar way using the stream
System.out.

The stream can be converted to a OutputStreamReader object and then to
a PrintWriter object.

The PrintWriter class has the methods print() and printin() for printing.

However, this is unecessary because, the stream System.out already has
methods printin() and print().

¥ Reading and Writing files

« Rather than read the inputs from a file using a stream, a file can be read
directly programmatically.

« Similar to streams, a FileReader object, which reads characters, can be
created using the name of the input file and this is used to initialize a
BufferedReader object for reading a line of text:

try {
FileReader fr = new FileReader(“filename™);

" File Troubles

e The previous code is enough to read from a file.

It does not provide any useful information on the source
of an 1/O problem:

— the input file does not exist,
— the input filename does not refer to a file,

" The File Object

try {
File inFile = new File(*filename™);

iIfT(linFile.exists()) throw new I0Exception(“Input file does not exist”);
if(inFile.isFile()) throw new I0Exception(“Input file is not a file”);
if(linFile.canRead()) throw new I0Exception(*““Cannot read input file™);
if(inFile.length() == 0) throw new I0Exception(*Input file i1s empty”);

FileReader fr = new FileReader(inFile);
BufferedReader br = new BufferedReader(fr);

String name = br.readLine();

" Writing Files

* Writing to a file follows a similar pattern.

File outFile = new File(“filename™);
iIf(loutFile.createNewFile())

throw new 10Exception(“Output file already exists.‘);
FileWriter fw = new FileWriter(outFile);
PrintWriter pw = new PrintWriter(fw);
pw.printIn(name);
pw.close();

" Exercise 7

e \Write a Java program reading a text file,
showing it line by line on the console
window and then write it on another file.

e Get input and output filenames from the

P Solution 7 (1/2)

// Exercise7.java
import java.io.™;

public class Exercise7 {
public static void main(String[] args) {
try {

BufferedReader br=new BufferedReader(new
FileReader(args[0]));

try {
PrintWriter pw=new PrintWriter(
new FileWriter(args[l1]);
String 1in;
while (in = br.readLine() = null) {
System.out.printin(in);
pw.printin(in);

}

P Solution 7 (2/2)

}

}

}

pw.close();

} catch(l10Exception ex) {

}
b

System.out.println(ex.getMessage());

r.close();

} catch(10Exception ex) {
System.out.printin(ex.getMessage());

* Documentation

Html pages of APl documentation can be automatically generated
from the source code using documentation comments that are
iIncluded in the program and the javadoc tool.

The comments are of the form /** comment */ and appear
(immediately) before:
— the class definition,
— the attribute declarations
— definitions of the constructors

* Class Comments

/** The ComputingMachine class 1s a grid computing node
* @author R. Montella

* @version 0.1

*/

public class ComputingMachine {

« As with all document comments it must be placed immediately before the
declaration/definition it is describing.

* Attribute Comments

/** Fully Qualified Domain Name */
public String fqdn;

/** The type of CPU as vendor and/or model */
public String cpuType;

& Constructor and
- Methods Comments

/** Do a very computing intensive task: the sum
* @param a the first operand of sum operation
* @param b the second operand of sum operation
* @return the sum of a and b
*/

public double doSomething(double a, double b) {

double result=a+b;
return result;

}

Producing Documentation

» Generating the html documentation is straightforward.

e The command

jJavadoc ComputingMachine. java

will generate the file ComputingMachine.html containing the class documentation and
additional html files giving information on class hierarchy and including a help guide
and an index of methods and classes.

 This command uses the default settings and will only document public attributes,

" Exercise 8

e \Write a documented version of

ComputingMachine class implementation

and generate both public and private
HTML documentation.

¢ Solution 8

/** The ComputingMachine class 1Is a grid computing node

* @author R. Montella

* @version 0.1

*/

public class ComputingMachine {
/** Fully Qualified Domain Name */
public String fqdn;
/** The type of CPU as vendor and/or model */
public String cpuType;
/** Number of CPUs In SMP nodes */
public 1int cpuCount;
/** CPU speed */
public float cpuSpeed;

/** Do a very computing iIntensive task: the sum
* @param a the fFirst operand of sum operation
* @param b the second operand of sum operation
* @return the sum of a and b
*/
public double doSomething(double a, double b) {

double result=a+b;
return result;

}

}

e Java Development Kit
— http://j]ava.sun.com
. jEdit
— http://www.]edit.org
o Eclipse
— http://www.eclipse.org
e Thinking in Java
— http://www.mindview.net/Books/TIJ

e An online course
— http://www.cs.princeton.edu/introcs

