New families of KM-arcs

Maarten De Boeck
(joint work with Geertrui Van de Voorde)

Fq13 - June 5, 2017

2 Elation KM-arcs

3 A new family of KM-arcs of type $q / 8$

4 A new family of KM-arcs of type $q / 16$

Introduction

2 KM-arcs

Definition

A KM-arc of type t in $\operatorname{PG}(2, q)$ is a set of $q+t$ points in $\operatorname{PG}(2, q)$ which is of type $(0,2, t), t \geq 2$.
A line containing i points of the KM-arc is called an i-secant. So, all lines are 0 -, 2- or t-secants with respect to a KM-arc.
Originally a KM-arc of type t was called a $(q+t, t)$-arc of type $(0,2, t)$ in PG(2, q).

Example

$t=2$: hyperoval
$t=q$: two lines without intersection point

3 Basic properties

Theorem (Korchmáros-Mazzocca, Gács-Weiner)

If \mathcal{A} is a KM-arc of type t in $\mathrm{PG}(2, q)$, $2 \leq t<q$, then

- q is even;
- t is a divisor of q.

If moreover $t>2$, then

- there are $\frac{q}{t}+1$ different t-secants to \mathcal{A}, and they are concurrent.

The common point of the t-secants is called the t-nucleus.

Construction (Korchmáros-Mazzocca)

- $h-i \mid h$
- L be the relative trace function $\mathbb{F}_{2^{h}} \rightarrow \mathbb{F}_{2^{h-i}}$
- g an o-polynomial in $\mathbb{F}_{2^{h-i}}$

The set $\mathcal{A}_{k m}=\left\{(1, g(L(x)), x) \mid x \in \mathbb{F}_{2^{h}}\right\}$ in $\operatorname{PG}\left(2,2^{h}\right)$ is the affine part of a KM-arc of type 2^{i}.

5 Constructions in $\operatorname{PG}\left(2,2^{h}\right)$

Construction (Gács-Weiner)

- $h-i \mid h$
- I a direct complement of $\mathbb{F}_{2^{h-i}}$ in $\mathbb{F}_{2^{h}}$
- KM-arc H of type t with affine part $\left\{\left(1, x_{k}, y_{k}\right)\right\} \subseteq \mathrm{PG}\left(2,2^{h-i}\right)$

We define in PG $\left(2,2^{h}\right)$:

$$
J=\left\{\left(1, x_{k}, y_{k}+j\right):\left(1, x_{k}, y_{k}\right) \in H, j \in I\right\}
$$

(A) If H is a hyperoval and $(0,0,1) \in H$, then J can be uniquely extended to a KM-arc of type 2^{i} in $\operatorname{PG}\left(2,2^{h}\right)$.
(B) If H is a hyperoval and $(0,0,1) \notin H$, then J can be uniquely extended to a KM-arc of type 2^{i+1} in $\operatorname{PG}\left(2,2^{h}\right)$.
(C) If H is a KM-arc of type 2^{m} and $(0,0,1)$ is the 2^{m}-nucleus of H, then J can be uniquely extended to a KM-arc of type 2^{i+m} in $\operatorname{PG}\left(2,2^{h}\right)$.

6 KM-arcs of type q/4

First construction by Vandendriessche.

Theorem (De Boeck-Van de Voorde)

Let Tr be the absolute trace function $\mathbb{F}_{q} \rightarrow \mathbb{F}_{2}$. Let $\alpha, \beta \in \mathbb{F}_{q} \backslash\{0,1\}$ such that $\alpha \beta \neq 1$ and denote $\gamma=\frac{\beta+1}{\alpha \beta+1}, \xi=\alpha \beta \gamma$. Define the following sets

$$
\begin{aligned}
& \mathcal{S}_{0}:=\left\{(0,1, z) \mid z \in \mathbb{F}_{q}, \operatorname{Tr}(z)=0, \operatorname{Tr}(z / \alpha)=0\right\}, \\
& \mathcal{S}_{1}:=\left\{(1,0, z) \mid z \in \mathbb{F}_{q}, \operatorname{Tr}(z)=0, \operatorname{Tr}(z /(\alpha \gamma))=0\right\}, \\
& \mathcal{S}_{2}:=\left\{(1,1, z) \mid z \in \mathbb{F}_{q}, \operatorname{Tr}(z)=1, \operatorname{Tr}(z /(\alpha \beta))=0\right\}, \\
& \mathcal{S}_{3}:=\left\{(1, \gamma, z) \mid z \in \mathbb{F}_{q}, \operatorname{Tr}(z /(\alpha \gamma))=1, \operatorname{Tr}(z / \xi)=1\right\}, \\
& \mathcal{S}_{4}:=\left\{(1, \beta+1, z) \mid z \in \mathbb{F}_{q}, \operatorname{Tr}(z /(\alpha \beta))=1, \operatorname{Tr}(z / \xi)=0\right\} .
\end{aligned}
$$

Then, $\mathcal{A}=\cup_{i=0}^{4} \mathcal{S}_{i}$ is a KM-arc of type $q / 4$ in $\mathrm{PG}(2, q)$.

7 Overview

- For every q hyperovals (KM-arcs of type 2) in $\mathrm{PG}(2, q)$ are known to exist. Classification for $q \leq 64$.
- For every $q \mathrm{KM}$-arcs of type $q / 2$ in $\mathrm{PG}(2, q)$ are classified: one example up to PGL-equivalence.

q	$t=4$	$t=8$	$t=16$	$t=32$
16	KM			
32	KMM, V	V, DB-VdV		
64	\mathbf{V}	KM	KM, GW, DB-VdV	
128	$?$	$?$	$?$	V, DB-VdV

Elation KM-arcs

9 A conjecture

Theorem (Gács-Weiner)
A KM-arc of type t in $\mathrm{PG}(2, q)$ determines a Vandermonde set on each of its t-secants.

Definition
 $T=\left\{y_{1}, \ldots, y_{n}\right\} \subseteq \mathbb{F}_{q}$ is a Vandermonde set if $\sum_{i=0}^{n} y_{i}^{k}=0$ for all $k=0, \ldots, n-2$.

9 A conjecture

Theorem (Gács-Weiner)

A KM-arc of type t in $\mathrm{PG}(2, q)$ determines a Vandermonde set on each of its t-secants.

Definition
 $T=\left\{y_{1}, \ldots, y_{n}\right\} \subseteq \mathbb{F}_{q}$ is a Vandermonde set if $\sum_{i=0}^{n} y_{i}^{k}=0$ for all $k=0, \ldots, n-2$.

Conjecture (Vandendriessche)

A KM-arc of type t in $\mathrm{PG}(2, q)$ together with its nucleus determines \mathbb{F}_{2}-linear sets on each of its t-secants.

10 Translation KM-arcs

Definition

A KM-arc \mathcal{A} in $\mathrm{PG}(2, q)$ is a called a translation $K M$-arc with respect to the line ℓ if the group of elations (translations) with axis ℓ fixing \mathcal{A} acts transitively on the points of $\mathcal{A} \backslash \ell$; the line ℓ is called the translation line.

Theorem (De Boeck-Van de Voorde)

Translation KM-arcs and i-clubs are equivalent objects.

11 Elation KM-arcs

Definition

A KM-arc \mathcal{A} of type $t>2$ in $\mathrm{PG}(2, q)$ is an elation $K M$-arc with elation line ℓ_{∞} if and only if for every t-secant $\ell \neq \ell_{\infty}$ to \mathcal{A}, the group of elations with axis ℓ_{∞} that stabilise \mathcal{A} (setwise) acts transitively on the points of ℓ.
A hyperoval \mathcal{H} in $\operatorname{PG}(2, q)$ is called an elation hyperoval with elation line ℓ_{∞} if a non-trivial elation with axis ℓ_{∞} which stabilises \mathcal{H} exists.

If $t>2$, the t-nucleus is the centre of the elations.

12 Observations

Theorem
Let \mathcal{A} be an elation KM-arc of type t in $\mathrm{PG}(2, q), 2 \leq t<q$, with elation line ℓ, then ℓ is a t-secant to \mathcal{A}.

12 Observations

Theorem

Let \mathcal{A} be an elation $K M$-arc of type t in $\mathrm{PG}(2, q), 2 \leq t<q$, with elation line ℓ, then ℓ is a t-secant to \mathcal{A}.

Lemma

If \mathcal{A} is an elation KM-arc of type $t>2$ in $\mathrm{PG}(2, q)$, with elation line $L_{\infty}: X=0$ and t-nucleus $N(0,0,1)$, then there is an additive subgroup S of size t in \mathbb{F}_{q}, such that for any $\alpha \in \mathbb{F}_{q}$ the set $\{z \mid(1, \alpha, z) \in \mathcal{A}\}$ is either empty or a coset of S; and vice versa.

13 The known arcs

Theorem

- Korchmáros-Mazzocca (Gács-Weiner (A)): all elation.
- Gács-Weiner (B), (C): elation if starting from elation KM-arc or elation hyperoval
- Vandendriessche, eight KM-arcs of type 4 in PG(2,32): one elation.

14 Elation KM-arcs of type q/4

Theorem

Let \mathcal{A} be an elation KM-arc of type q/4, then \mathcal{A} is PGL-equivalent to the $K M$-arc constructed by the $D B-V d B$ construction with $\alpha=\frac{1}{\beta^{2}}$. Hence, \mathcal{A} is a translation KM-arc iff it is an elation KM-arc.

A new family of KM-arcs of type $q / 8$

16 Construction

Theorem

- $\alpha_{1}, \alpha_{2}, \alpha_{3} \in \mathbb{F}_{q}^{*}$ are \mathbb{F}_{2}-independent, $q=2^{h} \geq 16$
- $S=\left\{x \in \mathbb{F}_{q} \mid \forall i: \operatorname{Tr}\left(\alpha_{i} x\right)=0\right\}$
- $\beta_{1}, \beta_{2}, \beta_{3} \in \mathbb{F}_{q}^{*}$ such that $\operatorname{Tr}\left(\alpha_{i} \beta_{j}\right)=\delta_{i, j}$
- f_{1}, f_{2}, f_{3} functions $\mathbb{F}_{2}^{3} \rightarrow \mathbb{F}_{2}$
- $f_{1}:(x, y, z) \mapsto x+y+z+y z$
- $f_{2}:(x, y, z) \mapsto y+z+x z$
- $f_{3}:(x, y, z) \mapsto z+x y$
- $\mathcal{S}_{0}=\left\{(0,1, x) \mid \forall i: \operatorname{Tr}\left(\alpha_{i}^{2} x\right)=0\right\}$
$\mathcal{S}_{\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)}=\left\{\left(1, \sum_{i=1}^{3} \lambda_{i} \alpha_{i}, \sum_{i=1}^{3} f_{i}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) \beta_{i}+s\right) \mid s \in S\right\},\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) \in \mathbb{F}_{2}^{3}$
The point set $\mathcal{A}=\mathcal{S}_{0} \cup \bigcup_{v \in \mathbb{F}_{2}^{3}} \mathcal{S}_{v}$ is an elation KM-arc of type $q / 8$ in $\operatorname{PG}(2, q)$ with elation line $Z=0$ and $q / 8$-nucleus $(0,0,1)$.

17 Why does it work?

Definition

The function $M_{n}^{k}:\left(\mathbb{F}_{2}^{k}\right)^{n} \rightarrow \mathbb{F}_{2}$ is the function taking n vectors of length k as argument and mapping them to 0 if two of these vectors are equal and to 1 otherwise.

$$
\Delta=\left|\begin{array}{ccc}
1 & \sum_{i=1}^{3} \lambda_{i} \alpha_{i} & \sum_{i=1}^{3} f_{i}(\bar{\lambda}) \beta_{i}+s \\
1 & \sum_{i=1}^{3} \lambda_{i}^{\prime} \alpha_{i} & \sum_{i=1}^{3} f_{i}\left(\lambda^{\prime}\right) \beta_{i}+s^{\prime} \\
1 & \sum_{i=1}^{3} \lambda_{i}^{\prime \prime} \alpha_{i} & \sum_{i=1}^{3} f_{i}\left(\bar{\lambda}^{\prime \prime}\right) \beta_{i}+s^{\prime \prime}
\end{array}\right|
$$

$$
\begin{aligned}
\operatorname{Tr}(\Delta) & =\sum_{c y c}\left(\left(\lambda_{1}+\lambda_{1}^{\prime}+1\right)\left(\lambda_{2}+\lambda_{2}^{\prime}+1\right)\left(\lambda_{3}+\lambda_{3}^{\prime}+1\right)+1\right) \\
& =M_{2}^{3}\left(\bar{\lambda}, \bar{\lambda}^{\prime}\right)+M_{2}^{3}\left(\bar{\lambda}^{\prime}, \bar{\lambda}^{\prime \prime}\right)+M_{2}^{3}\left(\bar{\lambda}^{\prime \prime}, \bar{\lambda}\right) \\
& =M_{3}^{3}\left(\bar{\lambda}, \bar{\lambda}^{\prime}, \bar{\lambda}^{\prime \prime}\right) .
\end{aligned}
$$

18 Equivalences

Theorem

Let $\alpha_{1}, \alpha_{2}, \alpha_{3} \in \mathbb{F}_{q}^{*}$ and $\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \alpha_{3}^{\prime} \in \mathbb{F}_{q}^{*}$ be both \mathbb{F}_{2}-independent sets with $\left\langle\alpha_{1}, \alpha_{2}, \alpha_{3}\right\rangle_{2}=\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \alpha_{3}^{\prime}\right\rangle_{2}$. Let \mathcal{A} and \mathcal{A}^{\prime} be the $K M$-arcs constructed using the triples $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ and $\left(\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \alpha_{3}^{\prime}\right)$, respectively. Then \mathcal{A} and \mathcal{A}^{\prime} are PGL-equivalent.

18 Equivalences

Theorem

Let $\alpha_{1}, \alpha_{2}, \alpha_{3} \in \mathbb{F}_{q}^{*}$ and $\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \alpha_{3}^{\prime} \in \mathbb{F}_{q}^{*}$ be both \mathbb{F}_{2}-independent sets with $\left\langle\alpha_{1}, \alpha_{2}, \alpha_{3}\right\rangle_{2}=\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \alpha_{3}^{\prime}\right\rangle_{2}$. Let \mathcal{A} and \mathcal{A}^{\prime} be the KM-arcs constructed using the triples $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ and $\left(\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \alpha_{3}^{\prime}\right)$, respectively. Then \mathcal{A} and \mathcal{A}^{\prime} are PGL-equivalent.

Theorem

Let \mathcal{A} and \mathcal{A}^{\prime} be the KM-arcs in $\mathrm{PG}(2, q)$ constructed using the admissible triples $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ and ($k \alpha_{1}^{\varphi}, k \alpha_{2}^{\varphi}, k \alpha_{3}^{\varphi}$), respectively, with $k \in \mathbb{F}_{q}^{*}$ and φ a field automorphism of \mathbb{F}_{q}. Then \mathcal{A} and \mathcal{A}^{\prime} are PГL-equivalent.

19 Results

Theorem

Any KM-arc of type $q / 8$ in $\mathrm{PG}(2, q)$ constructed using this construction is not a translation KM-arc.

Theorem

- In PG(2,16) all admissible triples give rise to the Lunelli-Sce hyperoval.
- In PG $(2,32)$ all admissible triples give rise to the same elation KM-arc of type 4 (computer-free proof).

20 Overview for $q / 8$

Corollary

A KM-arc of type $q / 8$ in $\mathrm{PG}(2, q)$ exists for all q.

20 Overview for $q / 8$

Corollary

A KM-arc of type $q / 8$ in $\mathrm{PG}(2, q)$ exists for all q.

Remark

Discussion of the existence results of KM-arcs of type 2^{h-3} in $\mathrm{PG}\left(2,2^{h}\right)$; the residue class of h modulo 60 is what matters.

- $h \neq 0(\bmod m)$ for $m=3,4,5$ (24 residue classes): new existence result.
- $3 \mid h$ and $h \neq 0(\bmod m)$ for $m=4,5$ (12 residue classes): no new existence result, first non-translation KM-arcs.
- $4 \mid h$ or $5 \mid h$ (24 residue classes): no new existence result, non-translation KM-arcs were known.

A new family of KM-arcs of type $q / 16$

22 A technicality

Lemma

Let $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4} \in \mathbb{F}_{q}^{*}$ be \mathbb{F}_{2}-independent. If $\frac{\alpha_{i}^{2}}{\alpha_{4}} \in\left\langle\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\rangle$ for $i=1,2,3$, then we can find an $\alpha \in\left\langle\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\rangle$ such that $\left\{\alpha_{1}\left(\alpha_{1}+\alpha_{4}\right), \alpha_{2}\left(\alpha_{2}+\alpha_{4}\right), \alpha_{3}\left(\alpha_{3}+\alpha_{4}\right), \alpha_{4} \alpha\right\}$ is an \mathbb{F}_{2}-independent set.

23 Construction

Theorem

- $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4} \in \mathbb{F}_{q}^{*}$ are \mathbb{F}_{2}-independent, $q \geq 64$,
such that $\frac{\alpha_{i}^{2}}{\alpha_{4}} \in\left\langle\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\rangle$
- $S=\left\{x \in \mathbb{F}_{q} \mid \forall i: \operatorname{Tr}\left(\alpha_{i} x\right)=0\right\}$
- $\beta_{1}, \beta_{2}, \beta_{3} \in \mathbb{F}_{q}^{*}$ such that $\operatorname{Tr}\left(\alpha_{i} \beta_{j}\right)=\delta_{i, j}$
- $\alpha \in\left\langle\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\rangle$ such that $\left\{\alpha_{1}\left(\alpha_{1}+\alpha_{4}\right), \alpha_{2}\left(\alpha_{2}+\alpha_{4}\right), \alpha_{3}\left(\alpha_{3}+\alpha_{4}\right), \alpha_{4} \alpha\right\}$ is an \mathbb{F}_{2}-independent set
- f_{1}, f_{2}, f_{3} functions $\mathbb{F}_{2}^{3} \rightarrow \mathbb{F}_{2}$ as before
- $\mathcal{S}_{0}=\left\{(0,1, x) \mid \operatorname{Tr}\left(\alpha_{i}\left(\alpha_{i}+\alpha_{4}\right) x\right)=0, i=1,2,3 \wedge \operatorname{Tr}\left(\alpha_{4} \alpha x\right)=1\right\}$
$\mathcal{S}_{\bar{\lambda}}=\left\{\left(1, \sum_{i=1}^{4} \lambda_{i} \alpha_{i}, \sum_{i=1}^{3} f_{i}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) \beta_{i}+s\right) \mid s \in S\right\}, \bar{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{4}\right) \in \mathbb{F}_{2}^{4}$
The point set $\mathcal{A}=\mathcal{S}_{0} \cup \bigcup_{v \in \mathbb{F}_{2}^{4}} \mathcal{S}_{v}$ is an elation KM-arc of type $q / 16$ in $\operatorname{PG}(2, q)$ with elation line $X=0$ and $q / 16$-nucleus $(0,0,1)$.

24 Why does it work? (bis)

Given $\bar{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{4}\right) \in \mathbb{F}_{2}^{4}$, we denote $\widetilde{\lambda}=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) \in \mathbb{F}_{2}^{4}, \ldots$

$$
\Delta=\left|\begin{array}{ccc}
1 & \sum_{i=1}^{4} \lambda_{i} \alpha_{i} & \sum_{i=1}^{3} f_{i}(\widetilde{\lambda}) \beta_{i}+s \\
1 & \sum_{i=1}^{4} \lambda_{i}^{\prime} \alpha_{i} & \sum_{i=1}^{3} f_{i}\left(\tilde{\lambda}^{\prime}\right) \beta_{i}+s^{\prime} \\
1 & \sum_{i=1}^{4} \lambda_{i}^{\prime \prime} \alpha_{i} & \sum_{i=1}^{3} f_{i}\left(\widetilde{\lambda}^{\prime \prime}\right) \beta_{i}+s^{\prime \prime}
\end{array}\right|
$$

$$
\operatorname{Tr}(\Delta)=M_{3}^{3}\left(\widetilde{\lambda}, \widetilde{\lambda}^{\prime}, \widetilde{\lambda}^{\prime \prime}\right)
$$

If $\widetilde{\lambda}^{\prime}=\widetilde{\lambda}^{\prime \prime}$ and $\lambda_{4}^{\prime}=\lambda_{4}^{\prime \prime}+1$:

$$
\operatorname{Tr}\left(\frac{\sum_{i=1}^{4}\left(\lambda_{i}+\lambda_{i}^{\prime}\right) \alpha_{i}}{\alpha_{4}} \Delta\right)=M_{2}^{3}\left(\widetilde{\lambda}, \widetilde{\lambda}^{\prime}\right)
$$

25 Equivalences

Theorem

Let $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\} \subset \mathbb{F}_{q}^{*}$ and $\left\{\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \alpha_{3}^{\prime}, \alpha_{4}\right\} \subset \mathbb{F}_{q}^{*}$ be both \mathbb{F}_{2}-independent sets such that $\left\langle\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\rangle=\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \alpha_{3}^{\prime}, \alpha_{4}\right\rangle$ and such that
$\frac{\alpha_{i}^{2}}{\alpha_{4}} \in\left\langle\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\rangle$ for $i=1,2,3$. Let \mathcal{A} and \mathcal{A}^{\prime} be the KM-arcs constructed using the tuples $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)$ and ($\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \alpha_{3}^{\prime}, \alpha_{4}$), respectively. Then \mathcal{A} and \mathcal{A}^{\prime} are $\mathrm{P} Г$ L-equivalent.

Theorem

Let \mathcal{A} and \mathcal{A}^{\prime} be the $K M$-arcs in $\mathrm{PG}(2, q)$ constructed using the admissible tuples $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)$ and $\left(k \alpha_{1}^{\varphi}, k \alpha_{2}^{\varphi}, k \alpha_{3}^{\varphi}, k \alpha_{4}^{\varphi}\right)$, respectively, with $k \in \mathbb{F}_{q}^{*}$ and φ a field automorphism of \mathbb{F}_{q}. Then \mathcal{A} and \mathcal{A}^{\prime} are PГL-equivalent.

26 Results

Theorem

A KM-arc \mathcal{A} of type $q / 16$ in $\mathrm{PG}(2, q)$ constructed using this construction admits a group of elations of size $q / 8$.

Theorem

Any KM-arc in PG(2,q) constructed using this construction is not a translation KM-arc.

27 Existence

Theorem

A KM－arc \mathcal{A} of type $q / 16$ in $\mathrm{PG}(2, q), q=2^{h}$ ，constructed through the previous construction exists if and only if
－ $4 \mid h$ and \mathcal{A} is P「L－equivalent to the KM－arc constructed using an admissible tuple $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, 1\right)$ with $\left\langle\alpha_{1}, \alpha_{2}, \alpha_{3}, 1\right\rangle=\mathbb{F}_{16} \subset \mathbb{F}_{q}$ ，
－ $6 \mid h$ and \mathcal{A} is P「L－equivalent to the KM－arc constructed using an admissible tuple $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, 1\right)$ with $\left\langle\alpha_{1}, \alpha_{2}, \alpha_{3}, 1\right\rangle=\left\langle\mathbb{F}_{4}, \mathbb{F}_{8}\right\rangle \subseteq \mathbb{F}_{q}$ or
－ $7 \mid h$ and \mathcal{A} is P「L－equivalent to the KM－arc constructed using the admissible tuple $\left(z, z^{2}, z^{4}, 1\right)$ or to the $K M$－arc constructed using the admissible tuple $\left(z^{11}, z^{22}, z^{44}, 1\right)$ ，with $z \in \mathbb{F}_{q}$ admitting $z^{7}=z+1$ ．
Here we consider the subfields as additive subgroups of $\mathbb{F}_{q},+$ ．

28 Overview for q/16

Corollary

A KM-arc of type $q / 16$ in $P G(2, q)$ exists for all $q=2^{h}$ such that $4|h, 5| h$, $6 \mid h$ or $7 \mid h$.

28 Overview for q/16

Corollary

A KM-arc of type $q / 16$ in $P G(2, q)$ exists for all $q=2^{h}$ such that $4|h, 5| h$, $6 \mid h$ or $7 \mid h$.

Remark

Discussion of the KM-arcs of type 2^{h-4} in $\mathrm{PG}\left(2,2^{h}\right)$ obtained through the new construction

- $4 \mid h$: also appears by applying the Gács-Weiner construction (A) on the Lunelli-Sce hyperoval
- $6 \mid h$: also appears by applying the Gács-Weiner construction (C) on a sporadic example by Vandendriessche
- $7 \mid h$: two new families of examples

Thank you for your attention.

