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Irreducible polynomials with prescribed coefficients

“The long-term goal here is to provide existence and counting results for
irreducibles with any number of prescribed coefficients to any given values.
This goal is completely out of reach at this time. Incremental steps seem
doable, but it would be most interesting if new techniques were introduced to
attack these problems.”

– Daniel Panario (2015)

On the problem of existence the best result to date is:

Theorem (Ha 2016)
For any 0 < ε < 1/4 and q ≥ q0(ε) for some large q0 , there exists a monic
irreducible of degree n in Fq[x] with r prescribed coefficients in any
positions, provided that r ≤ b(1/4− ε)nc (unless the constant term is 0 ).
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Counting results

A subproblem of the long-term goal is to determine the number of monic
irreducible polynomials in Fq[x] of degree n for which the first l coefficients
have the prescribed values t1, . . . , tl , which we denote by Iq(n, t1, . . . , tl) .

• In 1952 Carlitz gave formulae for Iq(n, t1)

• In 1990 Kuz’min gave formulae for Iq(n, t1, t2)

• In 1999 Cattell et al. reproduced Kuz’min’s results for the base field F2

• In 2001 formulae for I2(n, t1, t2, t3) were given by Fitzgerald and Yucas
for n odd, and by Yucas and Mullen for n even

• In 2007 Moisio-Ranto gave formulae for I2r (n, 0, ∗, t3) for all r ≥ 1

• In 2013 Ri et al. gave formulae for I2r (n, t1, t2) for all r ≥ 1

• In 2016 Ahmadi et al. gave formulae for I2r (n, 0, 0, 0) for all r ≥ 1

Note: Over Fq , in 2004 Yucas obtained formulae for prescribed norm, while
in 2007 Moisio obtained some results for prescribed trace and norm.



An equivalent formulation

For a ∈ Fqn the characteristic polynomial of a w.r.t. the extension Fqn/Fq is

n−1∏
i=0

(x −aqi
) = xn −T1(a)x

n−1 +T2(a)x
n−2 −· · ·+(−1)n−1Tn−1(a)x +(−1)nTn(a),

with Tl : Fqn → Fq , 1 ≤ l ≤ n the successive trace functions

Tl(a) =
∑

0≤i1<···<il≤n−1

aq i1+···+q il
.

For any n ≥ l and t1, . . . , tl ∈ Fq , let Fq(n, t1, . . . , tl) be the number of
elements a ∈ Fqn for which T1(a) = t1 , . . . , Tl(a) = tl .

The Fq(n, t1, . . . , tl) can be expressed in terms of the Iq(n, t1, . . . , tl) , and
vice versa using an elementary Möbius inversion-type argument.

=⇒ The problem of computing the Iq(n, t1, . . . , tl) reduces to the problem of
computing the Fq(n, t1, . . . , tl) .
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Preliminary remarks
For t1, . . . , tl ∈ F2 we would like to compute a formula as a function of n for

F2(n, t1, . . . , tl) = #{a ∈ F2n | T1(a) = t1, . . . , Tl(a) = tl} (1)

This appears to be non-trivial in general, since the degree of each Tj(a) in a
and its conjugates is j , while a priori we only know how to solve T1(a) = t1 :

Lemma (Thm. 2.25, Lidl & Niederreiter)

1. For a ∈ F2n , T1(a) = 0⇐⇒ a = a2
0 + a0 for two a0 ∈ F2n .

2. For a ∈ F2n , n odd, T1(a) = 1⇐⇒ a = a2
0 + a0 + 1 for two a0 ∈ F2n .

We shall use (for n odd) a degree-lowering idea and the parameterisation of
the count by an associated affine algebraic set.

The technique is a natural extension of “Fibre Products of Supersingular
Curves and the Enumeration of Irreducible Polynomials with Prescribed
Coefficients” by Ahmadi, Göloğlu, G., McGuire, Yilmaz, F.F.A., Vol. 42, 2016.

Assume for 2 ≤ j ≤ l that Tj(x2 + x) is expressible as a multivariate
polynomial in traces of lower degree whose arguments are polynomials in x .



Preliminary remarks
For t1, . . . , tl ∈ F2 we would like to compute a formula as a function of n for

F2(n, t1, . . . , tl) = #{a ∈ F2n | T1(a) = t1, . . . , Tl(a) = tl} (1)

This appears to be non-trivial in general, since the degree of each Tj(a) in a
and its conjugates is j , while a priori we only know how to solve T1(a) = t1 :

Lemma (Thm. 2.25, Lidl & Niederreiter)

1. For a ∈ F2n , T1(a) = 0⇐⇒ a = a2
0 + a0 for two a0 ∈ F2n .

2. For a ∈ F2n , n odd, T1(a) = 1⇐⇒ a = a2
0 + a0 + 1 for two a0 ∈ F2n .

We shall use (for n odd) a degree-lowering idea and the parameterisation of
the count by an associated affine algebraic set.

The technique is a natural extension of “Fibre Products of Supersingular
Curves and the Enumeration of Irreducible Polynomials with Prescribed
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Example: F2(n, t1, t2, t3, t4)
Suppose t1 = 0. Write a = a2

0 + a0 and for n odd F2(n, 0, t2, t3, t4) =

1
2
#{a0 ∈ F2n | T2(a

2
0 + a0) = t2, T3(a

2
0 + a0) = t3, T4(a

2
0 + a0) = t4}

=
1
2
#{a0 ∈ F2n | T1(a

3
0 + a0) = t2, T1(a

5
0 + a0) = t3,

T2(a
3
0) + T2(a0) + T1(a

3
0)T1(a0) + T1(a

7
0 + a5

0 + a3
0) = t4}

=
1
8

∑
r1,r2∈F2

#{(a0, a1, a2) ∈ (F2n)3 | T1(a
3
0 + a0) = t2, T1(a

5
0 + a0) = t3,

a2
1 + a1 + r1 = a0, a2

2 + a2 + r2 = a3
0,

T1

(
a3

2 + a2 + a3
1 + a1 + a7

0 + a5
0 + r1r2 + r2 + (r1 + r2)

(
n
2

))
= t4}

=
1

64

∑
r1,r2∈F2

#{(a0, a1, a2, a3, a4, a5) ∈ (F2n)6 | a2
3 + a3 + t2 = a3

0 + a0,

a2
4 + a4 + t3 = a5

0 + a0, a2
1 + a1 + r1 = a0, a2

2 + a2 + r2 = a3
0,

a2
5 + a5 + t4 = a3

2 + a2 + a3
1 + a1 + a7

0 + a5
0 + r1r2 + r2 + (r1 + r2)

(
n
2

)
}
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General strategy
For each 2 ≤ j ≤ l do the following:

• Expand Tj(a2
j,0 + aj,0 + rj,0) in terms of lower degree trace functions.

• If not of the form T1(·) then pick an argument of a trace function
featuring in a non-linear term, say f (aj,0) , and introduce aj,1 and its
linear trace rj,1 and write a2

j,1 + aj,1 + rj,1 = f (aj,0) and expand.
• Introduce new variables aj,2, . . . , aj,sj−1 and their traces rj,2, . . . , rj,sj−1

as required until the original expression has been linearised, i.e., is of
the form T1(fj,rj (aj,0, . . . , aj,sj−1)) = tj .

Let U be the union of all auxiliary variable equations, s = #U ≤
∑l

j=2 sj ,
a0, . . . , as−1 be the variables & r = (r0, . . . , rs−1) their possible linear traces.

The l trace equations are parameterised by introducing a final variable asj

and writing a2
sj
+ asj + tj = fj,r(a0, . . . , as−1) , giving a system of l + s − 1

equations in l + s variables.

Equations may feature
(n

j

)
of period 21+blog2 jc mod n , so let n ∈

{1, 3, 5, . . . , 21+blog2 lc − 1} . ∀n ≡ n (mod 21+blog2 lc) with n ≥ l we have:

F2(n, t1, . . . , tl) =
1

2l+s

∑
r∈(F2)s

#Ur,n(F2n).
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Example: F2(n, t1, t2, t3, t4)
For p ∈ Z[X ] let ρn(p) denote the sum of the n -th powers of the roots of p ,
and let

p2,1 = X 2 + 2X + 2,

p2,2 = X 2 + 2,

p4,1 = X 4 + 2X 3 + 2X 2 + 4X + 4,

p8,1 = X 8 + 4X 7 + 6X 6 + 4X 5 + 2X 4 + 8X 3 + 24X 2 + 32X + 16,

p8,2 = X 8 + 2X 6 + 4X 5 + 2X 4 + 8X 3 + 8X 2 + 16.
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Computing Tl(α− β)
We recall Newton’s identities over Z with indeterminates α1, . . . , αn .
Working in the ring of symmetric functions, for all l ≥ 1 and n ≥ l we have

l Tl(α) =
l∑

k=1

(−1)k−1Tl−k(α)T1(α
k).

In order to use the argument α− β we need to work instead in the ring
Z[α1, . . . , αn, β1, . . . , βn] and with the ring of multisymmetric functions in
two variables. Abusing notation slightly, we have:

l Tl(α− β) =
l∑

k=1

(−1)k−1Tl−k(α− β)T1((α− β)k).

• Want r.h.s. to have all coefficients divisible by l so that expression for
Tl(α− β) is over Z , and thus valid in positive characteristic.

• Rewriting any trace occurring to a power higher than 1 using Newton’s
identities leads to such a r.h.s. for 2 ≤ l ≤ 7, but not l ≥ 8.

• If it worked then could compute algebraic sets for any number of
coefficients prescribed in any positions.



Open problems for F2(n, t1, . . . , tl)

For F2(n, t1, . . . , t6) and n odd we obtained ab. irred. curves, all of genus 50.

For F2(n, t1, . . . , t7) and n odd we obtained ab. irred. curves, all of genus 58.

Problems:

• What are their zeta functions?

• Is there a method/formulae for all l ≤ 7 cases for n even?

• Can one compute Tl(α+ β) mod 2 for any (or all) l ≥ 8?
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The main algorithm

Let q = pr , l < p and n ≥ l coprime to p . Degree lowering easy since

Tl(α− β) =
1
l

l∑
k=1

(−1)k−1Tl−k(α− β)T1((α− β)k),

so all are expressible in terms of T1 ’s only whose arguments are αcβd .

The method is the same as before, except need only consider
n ∈ {1, . . . , p − 1} and final equations are

aq
sj
− asj + tj/n = fj,r(a0, . . . , as−1),

and we have

Fq(n, t1, . . . , tl) =
1

q l+s

∑
r∈(Fq)s

#Ur,n(Fqn).

The same approach works for Fq(n, tl0 , . . . , tlm−1) , for which any subset of
coefficients are prescribed.



The main algorithm
Let Q be an algebraic closure of Q & let Z be the integral closure of Z in Q .

Theorem (G. 2017)
For every q = pr , 1 ≤ l0 < · · · < lm−1 < p , (tl0 , . . . , tlm−1) ∈ (Fq)

m and
n ∈ {1, . . . , p − 1} there exists α1, . . . , αN ∈ Z and c1, . . . , cN ∈ Q such
that for all n ≡ n (mod p) with n ≥ lm−1 one has

Fq(n, tl0 , . . . , tlm−1) =
1

qm

N∑
i=1

ciα
n
i .

Conjecture

For every q = pr , 1 ≤ l0 < · · · < lm−1 < p , (tl0 , . . . , tlm−1) ∈ (Fq)
m and

n ∈ {1, . . . , p − 1} there exists α1, . . . , αN ∈ Z , all of norm
√

q ,
d1, . . . , dN ∈ Z and an integer s ≥ 0 such that for all n ≡ n (mod p) with
n ≥ lm−1 one has

Fq(n, tl0 , . . . , tlm−1) =
1

qm

(
qn +

1
qs

N∑
i=1

diα
n
i

)
= qn−m + O(qn/2−m).
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Summary and open problems

• The prescribed traces enumeration problem should be regarded as an
algorithmic problem.

• Proposed algorithms which parameterise such sets by associating to
them certain affine algebraic sets.

• Although computing these algebraic sets is easy, computing their
characteristic values is in general non-trivial.

Open problems (10 proposed in the paper):

• Can one obviate the failure of Newton’s identities by working p -adically
and in Galois rings, circumventing the l < p constraint and allowing
exact counts for any number of coefficients prescribed in any positions?

• By analysing properties of these algebraic sets can one prove
interesting existence results?
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Preprint and code

“On the Enumeration of Irreducible Polynomials over Fq with Prescribed
Coefficients”

• Preprint is available from https://arxiv.org/abs/1610.06878

• All interesting Maple and Magma code is available from
https://github.com/robertgranger/CountingIrreducibles

https://arxiv.org/abs/1610.06878
https://github.com/robertgranger/CountingIrreducibles
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