THE CYLINDER CONJECTURE(S) AND A REDUCTION THEREOF

Work in progress with J. De Beule (VUB), J. Demeyer (UGent), P. Sziklai (ELTE Budapest)

Sam Mattheus
June 6, 2017

Problem

Problem

Let p be a prime number.

Problem

Let p be a prime number.

- p^{2} balls

Problem

Let p be a prime number.

- p^{2} balls
- p^{2} points of $\mathbb{F}_{p}^{2} \cong A G(2, p)$

Problem

Let p be a prime number.

- p^{2} balls
- p^{2} points of $\mathbb{F}_{p}^{2} \cong A G(2, p)$

Problem

Problem

1. On each point we have at most $p-1$ balls;

Problem

1. On each point we have at most $p-1$ balls;
2. on every line the number of balls is a multiple of p;

Problem

1. On each point we have at most $p-1$ balls;
2. on every line the number of balls is a multiple of p;

Problem

1. On each point we have at most $p-1$ balls;
2. on every line the number of balls is a multiple of p;
3. there are no balls on the X-axis or the Y-axis;

Problem

1. On each point we have at most $p-1$ balls;
2. on every line the number of balls is a multiple of p;
3. there are no balls on the X -axis or the Y -axis;

Problem

1. On each point we have at most $p-1$ balls;
2. on every line the number of balls is a multiple of p;
3. there are no balls on the X -axis or the Y -axis;

Problem

1. On each point we have at most $p-1$ balls;
2. on every line the number of balls is a multiple of p;
3. there are no balls on the X-axis or the Y-axis;
4. the distribution of balls is given by a weight function $w(X, Y)$ of degree at most $p-3$.

Problem

1. On each point we have at most $p-1$ balls;
2. on every line the number of balls is a multiple of p;
3. there are no balls on the X-axis or the Y-axis;
4. the distribution of balls is given by a weight function $w(X, Y)=X Y g(X, Y)$, where g is of degree at most $p-5$.

Example

$$
p=2
$$

Example

$$
p=2
$$

Example

$p=3$

Example
$p=3$

Results for small p

Theorem (M., De Beule, Demeyer, Sziklai) There exists no such function for all primes $p \leq 13$.

Results for small p

Theorem (M., De Beule, Demeyer, Sziklai)
There exists no such function for all primes $p \leq 13$.

Conjecture

There exist no such function for all primes p.

The cylinder conjecture(s)

The cylinder conjecture(s)

Definition

A cylinder in $\mathrm{AG}(3, p)$ is the union of p parallel lines.

The cylinder conjecture(s)

Definition
A cylinder in $\operatorname{AG}(3, p)$ is the union of p parallel lines.

Example

A plane in $\mathrm{AG}(3, p)$ is a trivial example of a cylinder.

The cylinder conjecture(s) (Ball, 2006)

The cylinder conjecture(s) (Ball, 2006)

Weak Cylinder Conjecture
Let S be a set of p^{2} points in $\mathrm{AG}(3, p)$, not determining at least $p+1$ directions, then S is a cylinder.

The cylinder conjecture(s) (Ball, 2006)

Weak Cylinder Conjecture
Let S be a set of p^{2} points in $\mathrm{AG}(3, p)$, not determining at least $p+1$ directions, then S is a cylinder.

Strong Cylinder Conjecture

Let S be a set of p^{2} points in $\mathrm{AG}(3, p)$ such that every plane intersects it in $0(\bmod p)$ points, then S is a cylinder.

The cylinder conjecture(s) (Ball, 2006)

Weak Cylinder Conjecture
Let S be a set of p^{2} points in $\operatorname{AG}(3, p)$, not determining at least $p+1$ directions, then S is a cylinder.

Strong Cylinder Conjecture

Let S be a set of p^{2} points in $\mathrm{AG}(3, p)$ such that every plane intersects it in $0(\bmod p)$ points, then S is a cylinder.

Theorem

Let S be a set of p^{2} points in $\mathrm{AG}(3, p)$ not determining at least $p+1$ directions, then every plane intersects it in 0 $(\bmod p)$ points.

Facts about S

Embed $\mathrm{AG}(3, p)$ in $\operatorname{PG}(3, p)$ with plane at infinity $W=0$. The affine point (x, y, z) then has projective coordinates $(x, y, z, 1)$.

Let $S=\left\{\left(a_{i}, b_{i}, c_{i}, 1\right) \mid i=1, \ldots, p^{2}\right\}$, and suppose it is not a cylinder.

Facts about S

Embed $\mathrm{AG}(3, p)$ in $\operatorname{PG}(3, p)$ with plane at infinity $W=0$. The affine point (x, y, z) then has projective coordinates $(x, y, z, 1)$.

Let $S=\left\{\left(a_{i}, b_{i}, c_{i}, 1\right) \mid i=1, \ldots, p^{2}\right\}$, and suppose it is not a cylinder.
i. S cannot contain any lines (Blokhuis);

Facts about S

Embed $\mathrm{AG}(3, p)$ in $\operatorname{PG}(3, p)$ with plane at infinity $W=0$. The affine point (x, y, z) then has projective coordinates $(x, y, z, 1)$.

Let $S=\left\{\left(a_{i}, b_{i}, c_{i}, 1\right) \mid i=1, \ldots, p^{2}\right\}$, and suppose it is not a cylinder.
i. S cannot contain any lines (Blokhuis);
ii. every plane contains $0(\bmod p)$ points;

Facts about S

Embed $\mathrm{AG}(3, p)$ in $\operatorname{PG}(3, p)$ with plane at infinity $W=0$. The affine point (x, y, z) then has projective coordinates $(x, y, z, 1)$.

Let $S=\left\{\left(a_{i}, b_{i}, c_{i}, 1\right) \mid i=1, \ldots, p^{2}\right\}$, and suppose it is not a cylinder.
i. S cannot contain any lines (Blokhuis);
ii. every plane contains $0(\bmod p)$ points;
iii. there exist two planes not containing any point of S;

Facts about S

Embed $\mathrm{AG}(3, p)$ in $\operatorname{PG}(3, p)$ with plane at infinity $W=0$. The affine point (x, y, z) then has projective coordinates $(x, y, z, 1)$.

Let $S=\left\{\left(a_{i}, b_{i}, c_{i}, 1\right) \mid i=1, \ldots, p^{2}\right\}$, and suppose it is not a cylinder.
i. S cannot contain any lines (Blokhuis);
ii. every plane contains $0(\bmod p)$ points;
iii. there exist two planes not containing any point of S;
iv. $\sum_{i=1}^{p^{2}} a_{i}^{k} b_{i}^{\prime}=0$ for all $k+I \leq p$.

Reduction by projection

Reduction by projection

i. S cannot contain any lines (Blokhuis);
ii. every plane contains $0(\bmod p)$ points;
iii. there exist two planes not containing any point of S;
iv. $\sum_{i=1}^{p^{2}} a_{i}^{k} b_{i}^{\prime}=0$ for all $k+I \leq p$.

Reduction by projection

i. S cannot contain any lines (Blokhuis);
ii. every plane contains $0(\bmod p)$ points;
iii. there exist two planes not containing any point of S;
iv. $\sum_{i=1}^{p^{2}} a_{i}^{k} b_{i}^{l}=0$ for all $k+I \leq p$.

1. On each point we have at most $p-1$ balls;

Reduction by projection

i. S cannot contain any lines (Blokhuis);
ii. every plane contains $0(\bmod p)$ points;
iii. there exist two planes not containing any point of S;
iv. $\sum_{i=1}^{p^{2}} a_{i}^{k} b_{i}^{l}=0$ for all $k+I \leq p$.

1. On each point we have at most $p-1$ balls;
2. on every line the number of balls is a multiple of p;

Reduction by projection

i. S cannot contain any lines (Blokhuis);
ii. every plane contains $0(\bmod p)$ points;
iii. there exist two planes not containing any point of S;
iv. $\sum_{i=1}^{p^{2}} a_{i}^{k} b_{i}^{l}=0$ for all $k+I \leq p$.

1. On each point we have at most $p-1$ balls;
2. on every line the number of balls is a multiple of p;
3. there are no balls on the X -axis or the Y -axis;

Reduction by projection

i. S cannot contain any lines (Blokhuis);
ii. every plane contains $0(\bmod p)$ points;
iii. there exist two planes not containing any point of S;
iv. $\sum_{i=1}^{p^{2}} a_{i}^{k} b_{i}^{l}=0$ for all $k+I \leq p$.

1. On each point we have at most $p-1$ balls;
2. on every line the number of balls is a multiple of p;
3. there are no balls on the X -axis or the Y -axis;
4. the distribution of balls is given by a weight function $w(X, Y)$ of degree at most $p-3$.

Reduction by projection

i. S cannot contain any lines (Blokhuis);
ii. every plane contains $0(\bmod p)$ points;
iii. there exist two planes not containing any point of S;
iv. $\sum_{i=1}^{p^{2}} a_{i}^{k} b_{i}^{l}=0$ for all $k+I \leq p$.

1. On each point we have at most $p-1$ balls;
2. on every line the number of balls is a multiple of p;
3. there are no balls on the X -axis or the Y -axis;
4. the distribution of balls is given by a weight function $w(X, Y)=X Y g(X, Y)$, where g is of degree at most $p-5$.

If a counterexample to the Weak Cylinder Conjecture existed, then it would give us a function satisfying the four properties.

If a counterexample to the Weak Cylinder Conjecture existed, then it would give us a function satisfying the four properties.

Theorem

There exists no such function for all primes $p \leq 13$.

If a counterexample to the Weak Cylinder Conjecture existed, then it would give us a function satisfying the four properties.

Theorem
There exists no such function for all primes $p \leq 13$.

Corollary

The Weak Cylinder Conjecture is true for all primes $p \leq 13$.

What about the Strong Cylinder Conjecture?

What about the Strong Cylinder Conjecture?

1. On each point we have at most $p-1$ balls;
2. on every line the number of balls is a multiple of p;
3. there are no balls on the X -axis or the Y -axis;
4. the distribution of balls is given by a weight function $w(X, Y)$ of degree at most $p-2$.

What about the Strong Cylinder Conjecture?

Counterexample
For all $p \geq 5$,

$$
\begin{gathered}
f(t)=1-\frac{t^{p}-t}{t^{2}-t} \\
w(X, Y)=f(X)+f(Y)-f(X+Y) .
\end{gathered}
$$

Thank you for your attention!

sammattheus.wordpress.com

