On some iterative constructions of irreducible polynomials over finite fields

Simone Ugolini

University of Trento

The 13th International Conference on Finite Fields and their Applications (Gaeta, 6 June 2017)

Summary

Iterative constructions of irreducible polynomials The Q-transform and some variants Transforms based on elliptic curve endomorphisms

1 Iterative constructions of irreducible polynomials

2 The *Q*-transform and some variants

Transforms based on elliptic curve endomorphisms

Iterative constructions of irreducible polynomials

2 The *Q*-transform and some variants

Transforms based on elliptic curve endomorphisms

Polynomial transforms

- Let ${\mathbb F}$ be a finite field.
- A polynomial transform T is a map

$$\begin{array}{rccc} T : & \mathbb{F}[x] & \to & \mathbb{F}[x] \\ & f & \mapsto & T(f) = f^T. \end{array}$$

• For any polynomial $f \in \mathbb{F}[x]$ we can consider its orbit

$$\{f_i\}_i := \{f_i : i \in \mathbb{N}\}$$

where $f_0 := f$ and

$$f_{i+1} := f_i^T$$
 for any $i \in \mathbb{N}$.

Polynomial transforms and irreducibility

Some questions

- Can we find a transform T which preserves the irreducibility in the sequence $\{f_i\}_i$ once we know that f_0 is irreducible?
- Can we construct irreducible polynomials of large degree just by repeated applications of a transform *T*?

1 Iterative constructions of irreducible polynomials

2 The Q-transform and some variants

Transforms based on elliptic curve endomorphisms

The Q-transform

Definition

If $f \in \mathbb{F}[x]$, then the *Q*-transform of *f* is

$$f^Q(x) := x^{\deg(f)} \cdot f\left(x + x^{-1}\right).$$

Remark

We notice that f^Q is a self-reciprocal polynomial of degree $2 \deg(f)$.

The Q-transform

Theorem [Varshamov-Garakov (1969)]

If $f(x) = x^n + \cdots + a_1 x + a_0$ is irreducible in $\mathbb{F}_2[x]$, then f^Q is irreducible if and only if $a_1 = 1$.

Theorem [Meyn (1990)]

Let \mathbb{F} be a finite field of characteristic two. The *Q*-transform of a *self-reciprocal irreducible monic (srim)* polynomial $f(x) = x^n + \cdots + a_1x + a_0$ with $\operatorname{Tr}(a_1) = 1$ is a *srim* $f^Q(x) = x^{2n} + \cdots + \tilde{a_1}x + 1$ with $\operatorname{Tr}(\tilde{a_1}) = 1$.

Constructing irreducible polynomials via the Q-transform

A Q-transform based iterative construction [Meyn (1990)]

Let f₀(x) := xⁿ + a_{n-1} ⋅ xⁿ⁻¹ + · · · + a₁ ⋅ x + a₀ be an irreducible polynomial in F₂[x] with

$$a_{n-1} = a_1 = 1.$$

The polynomials of the sequence {f_i}_i, where f_{i+1} := f_i^Q for any i ∈ N, are irreducible and deg(f_{i+1}) := 2 deg(f_i) for any i.

Question

What can we say if the condition $a_{n-1} = a_1 = 1$ does not hold?

Constructing irreducible polynomials via the Q-transform

A patched Q-transform based construction (Ugolini, 2013)

- If f ∈ 𝔽₂[x] is irreducible, then either f^Q is irreducible or it is the product of two equal-degree irreducible polynomials.
- If f₀ is irreducible in 𝔽₂[x], then we can set f_{i+1} equal to one of the at most two irreducible factors of f_i^Q for any i ∈ ℕ.
- After a finite number of steps we get an irreducible polynomial

$$f_j(x) = x^m + 1 \cdot x^{m-1} + \dots + 1 \cdot x + 1$$

of positive degree *m*.

• Setting $f_{h+1} := f_h^Q$ for any $h \ge j$ we get an infinite sequence of increasing degree irreducible polynomials.

Constructing irreducible polynomials via the Q-transform

A patched Q-transform based construction: some remarks

- The number of factorizations required in the construction is bounded by ℓ + 3, where ℓ is a non-negative integer such that 2^ℓ is the greatest power of 2 which divides the degree of f₀.
- The bound has been obtained relying upon the structure of the graphs associated with the map θ(x) = x + x⁻¹ over finite fields of characteristic two (Ugolini, 2012).
- The map ϑ is involved in the definition of an endomorphism of the Koblitz curve having equation

$$y^2 + xy = x^3 + 1$$
 over \mathbb{F}_2 .

Variants of the Q-transform

From Meyn's paper (1990)

When p is an odd prime the conditions under which an irreducible polynomial $f(x) \in \mathbb{F}_p[x]$ generates an infinite sequence of irreducible polynomials by iterated application of Q are much more complicated.

Variants of the Q-transform

Some variants

- Let 𝔽 be a finite field of odd characteristic and *f* a polynomial in 𝔅[x].
- Cohen (1992) proposed an iterative construction of irreducible polynomials based on the transform

$$f^{R}(x) = (2x)^{\deg(f)} \cdot f\left(\frac{1}{2}(x+x^{-1})\right)$$

• Other quadratic transforms have been proposed (see for examples the papers by Kyuregyan (2003, 2006)).

Iterative constructions of irreducible polynomials

2 The *Q*-transform and some variants

Transforms based on elliptic curve endomorphisms

Endomorphism based transforms

- The map ϑ(x) = x + x⁻¹, upon which the Q-transform is based, is involved in the definition of an endomorphism of an elliptic curve over 𝔽₂.
- Certain maps ϑ_k(x) = k ⋅ (x + x⁻¹) are also involved in the definition of endomorphisms of elliptic curves over fields of odd characteristic p, with some restrictions on p and the constant k.
- The maps ϑ_k can be used to define the Q_k -transforms

$$f^{Q_k}(x) = \left(\frac{x}{k}\right)^{\deg(f)} \cdot f(\vartheta_k(x))$$

which can be used to produce infinite sequences of (finally) increasing degree (Ugolini (2015)).

Endomorphism based transforms

- The rational maps so far presented are quadratic and are involved in the definitions of endomorphisms of degree 2.
- Using such maps we can produce sequences of polynomials $\{f_i\}_i$ such that (finally)

$$\deg(f_{i+1}) = 2 \cdot \deg(f_i).$$

 More in general (see Ugolini (2017)) we can employ rational maps involved in the definition of endomorphisms of odd prime degree ℓ and produce sequences {f_i}_i of irreducible polynomials such that (finally)

$$\deg(f_{i+1}) = \ell \cdot \deg(f_i).$$

Endomorphism based transforms

An endomorphism based iterative construction (1)

- Let 𝑘 be a finite field of odd characteristic and 𝔅 an elliptic curve over 𝑘 (more restrictions apply).
- Let α(x, y) := (r(x), y ⋅ s(x)) be an endomorphism of E having odd prime degree ℓ, where r(x) = a(x)/b(x) for certain polynomials a(x) and b(x) in 𝔽[x].

• For any polynomial $g \in \mathbb{F}[x]$ let

$$g^{r}(x) := (b(x))^{\deg(g)} \cdot g(r(x)).$$

 Let f₀ be an irreducible polynomial having positive degree d over 𝔽.

Endomorphism based transforms

An endomorphism based iterative construction (2)

- Define f_{i+1} equal to one of the irreducible factors of f_i^r for any $i \in \mathbb{N}$.
- There exists a positive integer j such that f_{j+1} has degree $\tilde{d}\ell$, where $\tilde{d} \in \{d, 2d\}$.
- For any positive integer h we have that f_{j+h} is irreducible and has degree $\tilde{d}\ell^h$.

References I

S.D.Cohen

The explicit construction of irreducible polynomials over finite fields

Des. Codes Cryptogr., 2: 169–174, 1992.

🔋 M.K. Kyuregyan

Recurrent methods for constructing irreducible polynomials over \mathbb{F}_q of odd characteristic *Finite Fields Appl.*, 9 (1): 39–58, 2003.

📔 M.K. Kyuregyan

Recurrent methods for constructing irreducible polynomials over \mathbb{F}_q of odd characteristic. II *Finite Fields Appl.*, 12 (3): 357–378, 2006.

References II

🔒 H.Meyn

On the construction of irreducible self-reciprocal polynomials over finite fields *AAECC*, 1: 43–53, 1990.

S. Ugolini

Graphs associated with the map $x \mapsto x + x^{-1}$ in finite fields of characteristic two

Theory and Applications of Finite Fields, Contemp. Math., 579 (2012): 187–204, 2012.

🔋 S. Ugolini

Sequences of binary irreducible polynomials *Discrete Math.*, 313: 2656–2662, 2013.

References III

🔋 S. Ugolini

Sequences of irreducible polynomials over odd prime fields via elliptic curve endomorphisms

J. Number Theory, 152: 21-37, 2015.

🔋 S. Ugolini

On the construction of irreducible polynomials over finite fields via odd prime degree endomorphisms of elliptic curves to appear in *Periodica Math. Hungarica*, 2017.

R.R. Varshamov, G. A. Garakov On the theory of selfdual polynomials

On the theory of selfdual polynomials over a Galois field *Bull. Math. Soc. Sci. Math. R. S. Roumanie*, 13: 403–415, 1969.