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Chowla–Zassenhaus Conjecture

Fq: the finite field of order q

Any map f : Fq → Fq can be expressed uniquely as a
polynomial of degree < q.

Definition:

f is called a permutation polynomial (PP) if f is a bijection.

Definition:

A PP f is called a complete mapping polynomial (CMP) if
f(x) + x is also a PP.

Chowla–Zassenhaus Conjecture (1968): Let p be prime
with p > (d2 − 3d+ 4)2 and d ≥ 2. Then there is no CMP of
degree d over Fp.
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The Chowla–Zassenhaus conjecture was proven by Stephen D.
Cohen in 1990.

Theorem(Cohen, Mullen and Shiue, 1995):

Let p > (d2 − 3d+ 4)2 and d ≥ 2. If f and h are PPs of degree
d, then deg(f − h) ≥ 3d

5 .

A non-existence result similar to the Chowla–Zassenhaus
conjecture is given by L. Işık, A. Topuzoğlu and A. Guenther
Winterhof in 2016.
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Fact: The set of PPs over Fq forms a group G under
composition and reduction modulo xq − x.

Theorem (Carlitz, 1952): G is generated by xq−2 and ax+ b
where a, b ∈ Fq and a 6= 0.

Corollary: If f : Fq → Fq is a PP, then f(c) = Pn(c) for all
c ∈ Fq, where

Pn(x) =

(
· · ·

(
(a0x+ a1)

q−2 + a2

)q−2
+ · · ·+ an

)q−2
+ an+1

for some n ≥ 0, a0, a2, . . . , an ∈ F∗q and a1, an+1 ∈ Fq.
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Non-existence of CMP in terms of Carlitz
rank and Linearity

Definition:

The Carlitz rank of a PP f over Fq, denoted by Crk(f),

Crk(f) = min{n | f(c) = Pn(c) for all c ∈ Fq }.

Recall: The linearity of f : Fq → Fq

L(f) = maxa,b∈Fq#{ c ∈ Fq | f(c) = ac+ b }.

Theorem (Işık, Topuzoğlu, Winterhof, 2016):

Let f be a PP over Fq of Crk(f) = n with L(f) < (q + 5)/2. If
q > 2n+ 1, then f is not a CMP.
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Idea of the proof: For a, b, x ∈ Fq,

(ax+ b)q−2 =

{
1/(ax+ b) if ax+ b 6= 0,
0 otherwise.

=⇒ f(x) = Pn(x) = ax+b
cx+d = R(x) for all x ∈ Fq\O, where O is

the set of poles.

=⇒ f(x) + x = R(x) + x for all x ∈ Fq \ O.

If there exist x1, x2 ∈ Fq with x1 6= x2 and

R(x1) + x1 = R(x2) + x2 = e , (∗)

then x1 or x2 ∈ O.

(∗) holds ⇐⇒ pe(x) := cx2 + (a+ d+ ce)x+ de has roots in Fq.
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Theorem (AOPQST, 2017):

Let f and f + g be PPs over Fq such that Crk(f) = n,
deg(g) = k with 1 ≤ k < q − 1 and L(f) < (q + 5)/2. Then

nk + k(k − 1)
√
q ≥ q − n− µ ,

where µ = gcd(k, q − 1).

Remark: This result is similar to the one given by Cohen,
Mullen and Shiue in 1995.

Recall(Cohen, Mullen, Shiue, 1995): Let p > (d2− 3d+ 4)2

and d ≥ 2. If f and h are PPs of degree d, then deg(f −h) ≥ 3d
5 .

Corollary:

k = 1 =⇒ the non-existence result given by Işık, Topuzoğlu,
Winterhof in 2016
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Idea of the proof: To relate rational points of a curve over Fq

to poles of f .

f(x) = R(x) = ax+b
cx+d for all x ∈ Fq \ O.

H(x) := R(x) + g(x) =⇒ f(x) + g(x) = H(x) for all x ∈ Fq \ O.

If H(x) = H(y) for some x, y ∈ Fq with x 6= y, then x or y ∈ O.

Cohen (1970) =⇒ H(X)−H(Y )
X−Y has an absolutely irreducible

factor f(X,Y ) over Fq

X : the projective curve over Fq defined by f

For a rational point [x : y : 1] ∈ X , we have H(x) = H(y).

=⇒ # of rational points N(X ) of X gives a lower bound
on #O ≤ n
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By the Hasse-Weil Bound,

N(X ) ≥ q + 1− k(k − 1)
√
q

Bezout’s Theorem =⇒ nk + k(k − 1)
√
q ≥ q − n− µ, where

µ = gcd(k, q − 1)

�

Theorem (AOPQST, 2017):

Let f and f + cxk be PPs over Fq with 1 ≤ k < q − 1 and
Crk(f) = n. If the last pole of f is zero, then

k(n+ 3)− (m− 1)(k − 1)
√
q ≥ q − n ,

where m = gcd(k + 1, q − 1). In particular, if m = 1, then
k ≥ (q − n)(n+ 3).



Introduction Recent Work Idea of the proof

By the Hasse-Weil Bound,

N(X ) ≥ q + 1− k(k − 1)
√
q

Bezout’s Theorem =⇒ nk + k(k − 1)
√
q ≥ q − n− µ, where

µ = gcd(k, q − 1)

�

Theorem (AOPQST, 2017):

Let f and f + cxk be PPs over Fq with 1 ≤ k < q − 1 and
Crk(f) = n. If the last pole of f is zero, then

k(n+ 3)− (m− 1)(k − 1)
√
q ≥ q − n ,

where m = gcd(k + 1, q − 1). In particular, if m = 1, then
k ≥ (q − n)(n+ 3).



Introduction Recent Work Idea of the proof

By the Hasse-Weil Bound,

N(X ) ≥ q + 1− k(k − 1)
√
q

Bezout’s Theorem =⇒ nk + k(k − 1)
√
q ≥ q − n− µ, where

µ = gcd(k, q − 1)

�

Theorem (AOPQST, 2017):

Let f and f + cxk be PPs over Fq with 1 ≤ k < q − 1 and
Crk(f) = n. If the last pole of f is zero, then

k(n+ 3)− (m− 1)(k − 1)
√
q ≥ q − n ,

where m = gcd(k + 1, q − 1). In particular, if m = 1, then
k ≥ (q − n)(n+ 3).



Grazie per l’attenzione!
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