On the difference of permutation POLYNOMIALS

Nurdagül Anbar (joint work with Almasa Odžak, Vandita Patel, Luciane Quoos, Anna Somoza, Alev Topuzoğlu)

RICAM, LINZ, AUSTRIA

4-10 June 2017, Fq13

WIN-E2: Women in Numbers Europe 2, September 2016 (Organized by Irene Bouw, Rachel Newton, Ekin Özman)

2 RECENT WORK

 \mathbb{F}_q : the finite field of order q

Any map $f : \mathbb{F}_q \to \mathbb{F}_q$ can be expressed uniquely as a polynomial of degree < q.

Definition:

f is called a permutation polynomial (PP) if f is a bijection.

DEFINITION:

A PP f is called a complete mapping polynomial (CMP) if f(x) + x is also a PP.

 \mathbb{F}_q : the finite field of order q

Any map $f : \mathbb{F}_q \to \mathbb{F}_q$ can be expressed uniquely as a polynomial of degree < q.

DEFINITION:

f is called a permutation polynomial (PP) if f is a bijection.

Definition:

A PP f is called a complete mapping polynomial (CMP) if f(x) + x is also a PP.

 \mathbb{F}_q : the finite field of order q

Any map $f : \mathbb{F}_q \to \mathbb{F}_q$ can be expressed uniquely as a polynomial of degree < q.

DEFINITION:

f is called a permutation polynomial (PP) if f is a bijection.

DEFINITION:

A PP f is called a complete mapping polynomial (CMP) if f(x) + x is also a PP.

 \mathbb{F}_q : the finite field of order q

Any map $f : \mathbb{F}_q \to \mathbb{F}_q$ can be expressed uniquely as a polynomial of degree < q.

DEFINITION:

f is called a permutation polynomial (PP) if f is a bijection.

DEFINITION:

A PP f is called a complete mapping polynomial (CMP) if f(x) + x is also a PP.

The Chowla–Zassenhaus conjecture was proven by Stephen D. Cohen in 1990.

Theorem (Cohen, Mullen and Shiue, 1995):

Let $p > (d^2 - 3d + 4)^2$ and $d \ge 2$. If f and h are PPs of degree d, then $\deg(f - h) \ge \frac{3d}{5}$.

A *non-existence* result similar to the Chowla–Zassenhaus conjecture is given by L. Işık, A. Topuzoğlu and A. Guenther Winterhof in 2016.

The Chowla–Zassenhaus conjecture was proven by Stephen D. Cohen in 1990.

THEOREM(COHEN, MULLEN AND SHIUE, 1995):

Let $p > (d^2 - 3d + 4)^2$ and $d \ge 2$. If f and h are PPs of degree d, then $\deg(f - h) \ge \frac{3d}{5}$.

A *non-existence* result similar to the Chowla–Zassenhaus conjecture is given by L. Işık, A. Topuzoğlu and A. Guenther Winterhof in 2016. The Chowla–Zassenhaus conjecture was proven by Stephen D. Cohen in 1990.

THEOREM(COHEN, MULLEN AND SHIUE, 1995):

Let $p > (d^2 - 3d + 4)^2$ and $d \ge 2$. If f and h are PPs of degree d, then $\deg(f - h) \ge \frac{3d}{5}$.

A *non-existence* result similar to the Chowla–Zassenhaus conjecture is given by L. Işık, A. Topuzoğlu and A. Guenther Winterhof in 2016.

Fact: The set of PPs over \mathbb{F}_q forms a group G under composition and reduction modulo $x^q - x$.

Theorem (Carlitz, 1952): G is generated by x^{q-2} and ax + b where $a, b \in \mathbb{F}_q$ and $a \neq 0$.

Corollary: If $f : \mathbb{F}_q \to \mathbb{F}_q$ is a PP, then $f(c) = P_n(c)$ for all $c \in \mathbb{F}_q$, where

$$P_n(x) = \left(\cdots \left((a_0 x + a_1)^{q-2} + a_2\right)^{q-2} + \dots + a_n\right)^{q-2} + a_{n+1}$$

for some $n \ge 0$, $a_0, a_2, \ldots, a_n \in \mathbb{F}_q^*$ and $a_1, a_{n+1} \in \mathbb{F}_q$.

Fact: The set of PPs over \mathbb{F}_q forms a group G under composition and reduction modulo $x^q - x$.

Theorem (Carlitz, 1952): G is generated by x^{q-2} and ax + b where $a, b \in \mathbb{F}_q$ and $a \neq 0$.

Corollary: If $f : \mathbb{F}_q \to \mathbb{F}_q$ is a PP, then $f(c) = P_n(c)$ for all $c \in \mathbb{F}_q$, where

$$P_n(x) = \left(\cdots \left((a_0 x + a_1)^{q-2} + a_2\right)^{q-2} + \dots + a_n\right)^{q-2} + a_{n+1}$$

for some $n \ge 0$, $a_0, a_2, \ldots, a_n \in \mathbb{F}_q^*$ and $a_1, a_{n+1} \in \mathbb{F}_q$.

Fact: The set of PPs over \mathbb{F}_q forms a group G under composition and reduction modulo $x^q - x$.

Theorem (Carlitz, 1952): G is generated by x^{q-2} and ax + b where $a, b \in \mathbb{F}_q$ and $a \neq 0$.

Corollary: If $f : \mathbb{F}_q \to \mathbb{F}_q$ is a PP, then $f(c) = P_n(c)$ for all $c \in \mathbb{F}_q$, where

$$P_n(x) = \left(\cdots \left((a_0 x + a_1)^{q-2} + a_2\right)^{q-2} + \cdots + a_n\right)^{q-2} + a_{n+1}$$

for some $n \ge 0$, $a_0, a_2, \ldots, a_n \in \mathbb{F}_q^*$ and $a_1, a_{n+1} \in \mathbb{F}_q$.

NON-EXISTENCE OF CMP IN TERMS OF CARLITZ RANK AND LINEARITY

DEFINITION:

The Carlitz rank of a PP f over \mathbb{F}_q , denoted by $\operatorname{Crk}(f)$,

 $\operatorname{Crk}(f) = \min\{ n \mid f(c) = P_n(c) \text{ for all } c \in \mathbb{F}_q \}.$

Recall: The linearity of $f : \mathbb{F}_q \to \mathbb{F}_q$

$$\mathcal{L}(f) = \max_{a,b \in \mathbb{F}_q} \# \{ c \in \mathbb{F}_q \mid f(c) = ac + b \}.$$

Theorem (Işik, Topuzoğlu, Winterhof, 2016):

Let f be a PP over \mathbb{F}_q of $\operatorname{Crk}(f) = n$ with $\mathcal{L}(f) < (q+5)/2$. If q > 2n+1, then f is not a CMP.

NON-EXISTENCE OF CMP IN TERMS OF CARLITZ RANK AND LINEARITY

DEFINITION:

The Carlitz rank of a PP f over \mathbb{F}_q , denoted by $\operatorname{Crk}(f)$,

 $\operatorname{Crk}(f) = \min\{n \mid f(c) = P_n(c) \text{ for all } c \in \mathbb{F}_q\}.$

Recall: The linearity of $f : \mathbb{F}_q \to \mathbb{F}_q$

$$\mathcal{L}(f) = \max_{a,b \in \mathbb{F}_q} \# \{ c \in \mathbb{F}_q \mid f(c) = ac + b \}.$$

THEOREM (IŞIK, TOPUZOGLU, WINTERHOF, 2016): Let f be a PP over \mathbb{F}_q of $\operatorname{Crk}(f) = n$ with $\mathcal{L}(f) < (q+5)/2$. If q > 2n+1, then f is not a CMP.

NON-EXISTENCE OF CMP IN TERMS OF CARLITZ RANK AND LINEARITY

DEFINITION:

The Carlitz rank of a PP f over \mathbb{F}_q , denoted by $\operatorname{Crk}(f)$,

 $\operatorname{Crk}(f) = \min\{n \mid f(c) = P_n(c) \text{ for all } c \in \mathbb{F}_q\}.$

Recall: The linearity of $f : \mathbb{F}_q \to \mathbb{F}_q$

$$\mathcal{L}(f) = \max_{a, b \in \mathbb{F}_q} \# \{ c \in \mathbb{F}_q \mid f(c) = ac + b \}.$$

THEOREM (IŞIK, TOPUZOĞLU, WINTERHOF, 2016):

Let f be a PP over \mathbb{F}_q of $\operatorname{Crk}(f) = n$ with $\mathcal{L}(f) < (q+5)/2$. If q > 2n+1, then f is not a CMP.

Idea of the proof: For $a, b, x \in \mathbb{F}_q$, $(ax+b)^{q-2} = \begin{cases} 1/(ax+b) & \text{if } ax+b \neq 0, \\ 0 & \text{otherwise.} \end{cases}$

 $\implies f(x) = P_n(x) = \frac{ax+b}{cx+d} = R(x)$ for all $x \in \mathbb{F}_q \setminus \mathcal{O}$, where \mathcal{O} is the set of poles.

 $\implies f(x) + x = R(x) + x \text{ for all } x \in \mathbb{F}_q \setminus \mathcal{O}.$

If there exist $x_1, x_2 \in \mathbb{F}_q$ with $x_1 \neq x_2$ and

$$R(x_1) + x_1 = R(x_2) + x_2 = e , \qquad (*)$$

then x_1 or $x_2 \in \mathcal{O}$.

(*) holds $\iff p_e(x) := cx^2 + (a+d+ce)x + de$ has roots in \mathbb{F}_q .

Idea of the proof: For $a, b, x \in \mathbb{F}_q$, $(ax+b)^{q-2} = \begin{cases} 1/(ax+b) & \text{if } ax+b \neq 0, \\ 0 & \text{otherwise.} \end{cases}$

 $\implies f(x) = P_n(x) = \frac{ax+b}{cx+d} = R(x)$ for all $x \in \mathbb{F}_q \setminus \mathcal{O}$, where \mathcal{O} is the set of poles.

 $\implies f(x) + x = R(x) + x \text{ for all } x \in \mathbb{F}_q \setminus \mathcal{O}.$

If there exist $x_1, x_2 \in \mathbb{F}_q$ with $x_1 \neq x_2$ and

$$R(x_1) + x_1 = R(x_2) + x_2 = e , \qquad (*)$$

then x_1 or $x_2 \in \mathcal{O}$.

(*) holds $\iff p_e(x) := cx^2 + (a+d+ce)x + de$ has roots in \mathbb{F}_q .

Idea of the proof: For $a, b, x \in \mathbb{F}_q$, $(ax+b)^{q-2} = \begin{cases} 1/(ax+b) & \text{if } ax+b \neq 0, \\ 0 & \text{otherwise.} \end{cases}$

 $\implies f(x) = P_n(x) = \frac{ax+b}{cx+d} = R(x)$ for all $x \in \mathbb{F}_q \setminus \mathcal{O}$, where \mathcal{O} is the set of poles.

$$\implies f(x) + x = R(x) + x \text{ for all } x \in \mathbb{F}_q \setminus \mathcal{O}.$$

If there exist $x_1, x_2 \in \mathbb{F}_q$ with $x_1 \neq x_2$ and

$$R(x_1) + x_1 = R(x_2) + x_2 = e , \qquad (*)$$

then x_1 or $x_2 \in \mathcal{O}$.

(*) holds $\iff p_e(x) := cx^2 + (a + d + ce)x + de$ has roots in \mathbb{F}_q .

Idea of the proof: For
$$a, b, x \in \mathbb{F}_q$$
,
 $(ax+b)^{q-2} = \begin{cases} 1/(ax+b) & \text{if } ax+b \neq 0, \\ 0 & \text{otherwise.} \end{cases}$

 $\implies f(x) = P_n(x) = \frac{ax+b}{cx+d} = R(x)$ for all $x \in \mathbb{F}_q \setminus \mathcal{O}$, where \mathcal{O} is the set of poles.

$$\implies f(x) + x = R(x) + x \text{ for all } x \in \mathbb{F}_q \setminus \mathcal{O}.$$

If there exist $x_1, x_2 \in \mathbb{F}_q$ with $x_1 \neq x_2$ and

$$R(x_1) + x_1 = R(x_2) + x_2 = e , \qquad (*)$$

then x_1 or $x_2 \in \mathcal{O}$.

(*) holds $\iff p_e(x) := cx^2 + (a+d+ce)x + de$ has roots in \mathbb{F}_q .

Idea of the proof: For
$$a, b, x \in \mathbb{F}_q$$
,
 $(ax+b)^{q-2} = \begin{cases} 1/(ax+b) & \text{if } ax+b \neq 0, \\ 0 & \text{otherwise.} \end{cases}$

 $\implies f(x) = P_n(x) = \frac{ax+b}{cx+d} = R(x)$ for all $x \in \mathbb{F}_q \setminus \mathcal{O}$, where \mathcal{O} is the set of poles.

$$\implies f(x) + x = R(x) + x \text{ for all } x \in \mathbb{F}_q \setminus \mathcal{O}.$$

If there exist $x_1, x_2 \in \mathbb{F}_q$ with $x_1 \neq x_2$ and

$$R(x_1) + x_1 = R(x_2) + x_2 = e , \qquad (*)$$

then x_1 or $x_2 \in \mathcal{O}$.

(*) holds $\iff p_e(x) := cx^2 + (a + d + ce)x + de$ has roots in \mathbb{F}_q .

THEOREM (AOPQST, 2017):

Let f and f + g be PPs over \mathbb{F}_q such that $\operatorname{Crk}(f) = n$, $\operatorname{deg}(g) = k$ with $1 \leq k < q - 1$ and $\mathcal{L}(f) < (q + 5)/2$. Then

 $nk + k(k-1)\sqrt{q} \ge q - n - \mu$,

where $\mu = \gcd(k, q-1)$.

Remark: This result is similar to the one given by Cohen, Mullen and Shiue in 1995.

Recall(Cohen, Mullen, Shiue, 1995): Let $p > (d^2 - 3d + 4)^2$ and $d \ge 2$. If f and h are PPs of degree d, then $\deg(f - h) \ge \frac{3d}{5}$.

COROLLARY:

 $k=1 \Longrightarrow$ the non-existence result given by Işık, Topuzoğlu, Winterhof in 2016

THEOREM (AOPQST, 2017):

Let f and f + g be PPs over \mathbb{F}_q such that $\operatorname{Crk}(f) = n$, $\operatorname{deg}(g) = k$ with $1 \leq k < q - 1$ and $\mathcal{L}(f) < (q + 5)/2$. Then

 $nk + k(k-1)\sqrt{q} \ge q - n - \mu$,

where $\mu = \gcd(k, q-1)$.

Remark: This result is similar to the one given by Cohen, Mullen and Shiue in 1995.

Recall(Cohen, Mullen, Shiue, 1995): Let $p > (d^2 - 3d + 4)^2$ and $d \ge 2$. If f and h are PPs of degree d, then $\deg(f - h) \ge \frac{3d}{5}$.

COROLLARY:

 $k=1 \Longrightarrow$ the non-existence result given by Işık, Topuzoğlu, Winterhof in 2016

THEOREM (AOPQST, 2017):

Let f and f + g be PPs over \mathbb{F}_q such that $\operatorname{Crk}(f) = n$, $\operatorname{deg}(g) = k$ with $1 \leq k < q - 1$ and $\mathcal{L}(f) < (q + 5)/2$. Then

 $nk + k(k-1)\sqrt{q} \ge q - n - \mu$,

where $\mu = \gcd(k, q-1)$.

Remark: This result is similar to the one given by Cohen, Mullen and Shiue in 1995.

Recall(Cohen, Mullen, Shiue, 1995): Let $p > (d^2 - 3d + 4)^2$ and $d \ge 2$. If f and h are PPs of degree d, then $\deg(f - h) \ge \frac{3d}{5}$.

COROLLARY:

 $k=1 \Longrightarrow$ the non-existence result given by Işık, Topuzoğlu, Winterhof in 2016

 $f(x) = R(x) = \frac{ax+b}{cx+d} \text{ for all } x \in \mathbb{F}_q \setminus \mathcal{O}.$ $H(x) := R(x) + g(x) \Longrightarrow f(x) + g(x) = H(x) \text{ for all } x \in \mathbb{F}_q \setminus \mathcal{O}.$ If H(x) = H(y) for some $x, y \in \mathbb{F}_q$ with $x \neq y$, then x or $y \in \mathcal{O}.$ Cohen (1970) $\Longrightarrow \frac{H(X) - H(Y)}{X - Y}$ has an absolutely irreducible factor f(X, Y) over \mathbb{F}_q

 \mathcal{X} : the projective curve over \mathbb{F}_q defined by f

For a rational point $[x:y:1] \in \mathcal{X}$, we have H(x) = H(y).

 $f(x) = R(x) = \frac{ax+b}{cx+d} \text{ for all } x \in \mathbb{F}_q \setminus \mathcal{O}.$ $H(x) := R(x) + g(x) \Longrightarrow f(x) + g(x) = H(x) \text{ for all } x \in \mathbb{F}_q \setminus \mathcal{O}.$ If H(x) = H(y) for some $x, y \in \mathbb{F}_q$ with $x \neq y$, then x or $y \in \mathcal{O}.$ Cohen (1970) $\Longrightarrow \frac{H(X) - H(Y)}{X - Y}$ has an absolutely irreducible factor f(X, Y) over \mathbb{F}_q

 \mathcal{X} : the projective curve over \mathbb{F}_q defined by f

For a rational point $[x:y:1] \in \mathcal{X}$, we have H(x) = H(y).

$$\begin{split} f(x) &= R(x) = \frac{ax+b}{cx+d} \text{ for all } x \in \mathbb{F}_q \setminus \mathcal{O}. \\ H(x) &:= R(x) + g(x) \Longrightarrow f(x) + g(x) = H(x) \text{ for all } x \in \mathbb{F}_q \setminus \mathcal{O}. \\ \text{If } H(x) &= H(y) \text{ for some } x, y \in \mathbb{F}_q \text{ with } x \neq y, \text{ then } x \text{ or } y \in \mathcal{O}. \\ \text{Cohen } (1970) &\Longrightarrow \frac{H(X) - H(Y)}{X - Y} \text{ has an absolutely irreducible} \\ \text{factor } f(X, Y) \text{ over } \mathbb{F}_q \end{split}$$

 \mathcal{X} : the projective curve over \mathbb{F}_q defined by f

For a rational point $[x:y:1] \in \mathcal{X}$, we have H(x) = H(y).

$$\begin{split} f(x) &= R(x) = \frac{ax+b}{cx+d} \text{ for all } x \in \mathbb{F}_q \setminus \mathcal{O}. \\ H(x) &:= R(x) + g(x) \Longrightarrow f(x) + g(x) = H(x) \text{ for all } x \in \mathbb{F}_q \setminus \mathcal{O}. \\ \text{If } H(x) &= H(y) \text{ for some } x, y \in \mathbb{F}_q \text{ with } x \neq y, \text{ then } x \text{ or } y \in \mathcal{O}. \\ \text{Cohen (1970)} &\Longrightarrow \frac{H(X) - H(Y)}{X - Y} \text{ has an absolutely irreducible} \\ \text{factor } f(X, Y) \text{ over } \mathbb{F}_q \end{split}$$

 \mathcal{X} : the projective curve over \mathbb{F}_q defined by f

For a rational point $[x:y:1] \in \mathcal{X}$, we have H(x) = H(y).

$$\begin{split} f(x) &= R(x) = \frac{ax+b}{cx+d} \text{ for all } x \in \mathbb{F}_q \setminus \mathcal{O}. \\ H(x) &:= R(x) + g(x) \Longrightarrow f(x) + g(x) = H(x) \text{ for all } x \in \mathbb{F}_q \setminus \mathcal{O}. \\ \text{If } H(x) &= H(y) \text{ for some } x, y \in \mathbb{F}_q \text{ with } x \neq y, \text{ then } x \text{ or } y \in \mathcal{O}. \\ \text{Cohen (1970)} &\Longrightarrow \frac{H(X) - H(Y)}{X - Y} \text{ has an absolutely irreducible} \\ \text{factor } f(X, Y) \text{ over } \mathbb{F}_q \end{split}$$

 \mathcal{X} : the projective curve over \mathbb{F}_q defined by f

For a rational point $[x:y:1] \in \mathcal{X}$, we have H(x) = H(y).

$$\begin{split} f(x) &= R(x) = \frac{ax+b}{cx+d} \text{ for all } x \in \mathbb{F}_q \setminus \mathcal{O}. \\ H(x) &:= R(x) + g(x) \Longrightarrow f(x) + g(x) = H(x) \text{ for all } x \in \mathbb{F}_q \setminus \mathcal{O}. \\ \text{If } H(x) &= H(y) \text{ for some } x, y \in \mathbb{F}_q \text{ with } x \neq y, \text{ then } x \text{ or } y \in \mathcal{O}. \\ \text{Cohen } (1970) &\Longrightarrow \frac{H(X) - H(Y)}{X - Y} \text{ has an absolutely irreducible} \\ \text{factor } f(X, Y) \text{ over } \mathbb{F}_q \end{split}$$

 \mathcal{X} : the projective curve over \mathbb{F}_q defined by f

For a rational point $[x:y:1] \in \mathcal{X}$, we have H(x) = H(y).

$$\begin{split} f(x) &= R(x) = \frac{ax+b}{cx+d} \text{ for all } x \in \mathbb{F}_q \setminus \mathcal{O}. \\ H(x) &:= R(x) + g(x) \Longrightarrow f(x) + g(x) = H(x) \text{ for all } x \in \mathbb{F}_q \setminus \mathcal{O}. \\ \text{If } H(x) &= H(y) \text{ for some } x, y \in \mathbb{F}_q \text{ with } x \neq y, \text{ then } x \text{ or } y \in \mathcal{O}. \\ \text{Cohen (1970)} &\Longrightarrow \frac{H(X) - H(Y)}{X - Y} \text{ has an absolutely irreducible} \\ \text{factor } f(X, Y) \text{ over } \mathbb{F}_q \end{split}$$

 \mathcal{X} : the projective curve over \mathbb{F}_q defined by f

For a rational point $[x:y:1] \in \mathcal{X}$, we have H(x) = H(y).

By the Hasse-Weil Bound,

$$N(\mathcal{X}) \geq q + 1 - k(k-1)\sqrt{q}$$

Bezout's Theorem $\implies nk + k(k-1)\sqrt{q} \ge q - n - \mu$, where $\mu = \gcd(k, q - 1)$

Theorem (AOPQST, 2017):

Let f and $f + cx^k$ be PPs over \mathbb{F}_q with $1 \le k < q - 1$ and $\operatorname{Crk}(f) = n$. If the last pole of f is zero, then

$$k(n+3) - (m-1)(k-1)\sqrt{q} \ge q - n$$
,

where $m = \gcd(k+1, q-1)$. In particular, if m = 1, then $k \ge (q-n)(n+3)$.

By the Hasse-Weil Bound,

$$N(\mathcal{X}) \ge q + 1 - k(k-1)\sqrt{q}$$

Bezout's Theorem $\implies nk + k(k-1)\sqrt{q} \ge q - n - \mu$, where $\mu = \gcd(k, q - 1)$

Theorem (AOPQST, 2017):

Let f and $f + cx^k$ be PPs over \mathbb{F}_q with $1 \le k < q - 1$ and $\operatorname{Crk}(f) = n$. If the last pole of f is zero, then

$$k(n+3) - (m-1)(k-1)\sqrt{q} \ge q - n$$
,

where $m = \gcd(k+1, q-1)$. In particular, if m = 1, then $k \ge (q-n)(n+3)$.

By the Hasse-Weil Bound,

$$N(\mathcal{X}) \ge q + 1 - k(k-1)\sqrt{q}$$

Bezout's Theorem $\implies nk + k(k-1)\sqrt{q} \ge q - n - \mu$, where $\mu = \gcd(k, q - 1)$

THEOREM (AOPQST, 2017):

Let f and $f + cx^k$ be PPs over \mathbb{F}_q with $1 \le k < q - 1$ and $\operatorname{Crk}(f) = n$. If the last pole of f is zero, then

$$k(n+3) - (m-1)(k-1)\sqrt{q} \ge q-n$$
,

where $m = \gcd(k+1, q-1)$. In particular, if m = 1, then $k \ge (q-n)(n+3)$.

Grazie per l'attenzione!