ON THE DIFFERENCE OF PERMUTATION POLYNOMIALS

Nurdagül Anbar
(joint work with Almasa Odžak, Vandita Patel, Luciane Quoos, Anna Somoza, Alev Topuzoğlu)

RICAM, LINZ, AUSTRIA
4-10 June 2017, Fq13

WIN-E2: Women in Numbers Europe 2, September 2016 (Organized by Irene Bouw, Rachel Newton, Ekin Özman)

Outline

(1) Introduction
(2) Recent Work
(3) IdEA OF THE PROOF

Chowla-Zassenhaus Conjecture

\mathbb{F}_{q} : the finite field of order q
Any map $f: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ can be expressed uniquely as a polynomial of degree $<q$.

Chowla-Zassenhaus Conjecture

\mathbb{F}_{q} : the finite field of order q
Any map $f: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ can be expressed uniquely as a polynomial of degree $<q$.

DEFINITION:

 f is called a permutation polynomial (PP) if f is a bijection.
Chowla-Zassenhaus Conjecture

\mathbb{F}_{q} : the finite field of order q
Any map $f: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ can be expressed uniquely as a polynomial of degree $<q$.

DEFINITION:

f is called a permutation polynomial (PP) if f is a bijection.

DEFINITION:

A PP f is called a complete mapping polynomial (CMP) if $f(x)+x$ is also a PP.

Chowla-Zassenhaus Conjecture (1968): Let p be prime with $p>\left(d^{2}-3 d+4\right)^{2}$ and $d \geq 2$. Then there is no CMP of degree d over \mathbb{F},

Chowla-Zassenhaus Conjecture

\mathbb{F}_{q} : the finite field of order q
Any map $f: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ can be expressed uniquely as a polynomial of degree $<q$.

DEFINITION:

f is called a permutation polynomial (PP) if f is a bijection.

DEFINITION:

A PP f is called a complete mapping polynomial (CMP) if $f(x)+x$ is also a PP.

Chowla-Zassenhaus Conjecture (1968): Let p be prime with $p>\left(d^{2}-3 d+4\right)^{2}$ and $d \geq 2$. Then there is no CMP of degree d over \mathbb{F}_{p}.

The Chowla-Zassenhaus conjecture was proven by Stephen D. Cohen in 1990.

Theorem(Cohen, Mullen and Shiue, 1995):

Let $p>\left(d^{2}-3 d+4\right)^{2}$ and $d \geq 2$. If f and h are PPS of degree d, then $\operatorname{deg}(f-h) \geq \frac{3 d}{5}$.

A non-existence result similar to the Chowla-Zassenhaus conjecture is given by L. Işık, A. Topuzoğlu and A. Guenther Winterhof in 2016.

The Chowla-Zassenhaus conjecture was proven by Stephen D. Cohen in 1990.

Theorem(Cohen, Mullen and Shiue, 1995):

Let $p>\left(d^{2}-3 d+4\right)^{2}$ and $d \geq 2$. If f and h are PPs of degree d, then $\operatorname{deg}(f-h) \geq \frac{3 d}{5}$.

A non-existence result similar to the Chowla-Zassenhaus conjecture is given by L. Işık, A. Topuzoğlu and A. Guenther Winterhof in 2016.

The Chowla-Zassenhaus conjecture was proven by Stephen D. Cohen in 1990.

Theorem(Cohen, Mullen and Shiue, 1995):

Let $p>\left(d^{2}-3 d+4\right)^{2}$ and $d \geq 2$. If f and h are PPs of degree d, then $\operatorname{deg}(f-h) \geq \frac{3 d}{5}$.

A non-existence result similar to the Chowla-Zassenhaus conjecture is given by L. Işık, A. Topuzoğlu and A. Guenther Winterhof in 2016.

Fact: The set of PPs over \mathbb{F}_{q} forms a group G under composition and reduction modulo $x^{q}-x$.

Theorem (Carlitz, 1952): G is generated by x^{q-2} and $a x+b$ where $a, b \in \mathbb{F}_{q}$ and $a \neq 0$.

Corollary: If $f: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ is a PP, then $f(c)=P_{n}(c)$ for all $c \in \mathbb{F}_{q}$, where

$$
P_{n}(x)=\left(\cdots\left(\left(a_{0} x+a_{1}\right)^{q-2}+a_{2}\right)^{q-2}+\cdots+a_{n}\right)^{q-2}+a_{n+1}
$$

for some $n \geq 0, a_{0}, a_{2}, \ldots, a_{n} \in \mathbb{F}_{q}^{*}$ and $a_{1}, a_{n+1} \in \mathbb{F}_{q}$.

Fact: The set of PPs over \mathbb{F}_{q} forms a group G under composition and reduction modulo $x^{q}-x$.

Theorem (Carlitz, 1952): G is generated by x^{q-2} and $a x+b$ where $a, b \in \mathbb{F}_{q}$ and $a \neq 0$.

Corollary: If $f: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ is a PP, then $f(c)=P_{n}(c)$ for all $c \in \mathbb{F}_{q}$, where

$$
P_{n}(x)=\left(\cdots\left(\left(a_{0} x+a_{1}\right)^{q-2}+a_{2}\right)^{q-2}+\cdots+a_{n}\right)^{q-2}+a_{n+1}
$$

for some $n \geq 0, a_{0}, a_{2}, \ldots, a_{n} \in \mathbb{F}_{q}^{*}$ and $a_{1}, a_{n+1} \in \mathbb{F}_{q}$.

Fact: The set of PPs over \mathbb{F}_{q} forms a group G under composition and reduction modulo $x^{q}-x$.

Theorem (Carlitz, 1952): G is generated by x^{q-2} and $a x+b$ where $a, b \in \mathbb{F}_{q}$ and $a \neq 0$.

Corollary: If $f: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ is a PP, then $f(c)=P_{n}(c)$ for all $c \in \mathbb{F}_{q}$, where

$$
P_{n}(x)=\left(\cdots\left(\left(a_{0} x+a_{1}\right)^{q-2}+a_{2}\right)^{q-2}+\cdots+a_{n}\right)^{q-2}+a_{n+1}
$$

for some $n \geq 0, a_{0}, a_{2}, \ldots, a_{n} \in \mathbb{F}_{q}^{*}$ and $a_{1}, a_{n+1} \in \mathbb{F}_{q}$.

Non-EXISTENCE OF CMP IN TERMS OF CARLITZ RANK AND LINEARITY

DEFINITION:

The Carlitz rank of a PP f over \mathbb{F}_{q}, denoted by $\operatorname{Crk}(f)$,

$$
\operatorname{Crk}(f)=\min \left\{n \mid f(c)=P_{n}(c) \text { for all } c \in \mathbb{F}_{q}\right\}
$$

Recall: The linearity of $f: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$

$$
\mathcal{L}(f)=\max _{a, b \in \mathbb{F}_{q}} \#\left\{c \in \mathbb{F}_{q} \mid f(c)=a c+b\right\} .
$$

Theorem (Işık, TopuzoğLu, Winterhof, 2016):

Let f be a PP over \mathbb{F}_{q} of $\operatorname{Crk}(f)=n$ with $\mathcal{L}(f)<(q+5) / 2$. If $q>2 n+1$, then f is not a CMP.

Non-EXISTENCE OF CMP IN TERMS OF CARLITZ RANK AND LINEARITY

DEFINITION:

The Carlitz rank of a PP f over \mathbb{F}_{q}, denoted by $\operatorname{Crk}(f)$,

$$
\operatorname{Crk}(f)=\min \left\{n \mid f(c)=P_{n}(c) \text { for all } c \in \mathbb{F}_{q}\right\}
$$

Recall: The linearity of $f: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$

$$
\mathcal{L}(f)=\max _{a, b \in \mathbb{F}_{q}} \#\left\{c \in \mathbb{F}_{q} \mid f(c)=a c+b\right\}
$$

Theorem (Işik, TopuzoğLu, Winterhof, 2016):

Let f be a PP over \mathbb{F}_{q} of $\operatorname{Crk}(f)=n$ with $\mathcal{L}(f)<(q+5) / 2$. If $q>2 n+1$, then f is not a CMP.

Non-EXISTENCE OF CMP In TERMS OF CARLITZ RANK AND LINEARITY

Definition:

The Carlitz rank of a PP f over \mathbb{F}_{q}, denoted by $\operatorname{Crk}(f)$,

$$
\operatorname{Crk}(f)=\min \left\{n \mid f(c)=P_{n}(c) \text { for all } c \in \mathbb{F}_{q}\right\}
$$

Recall: The linearity of $f: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$

$$
\mathcal{L}(f)=\max _{a, b \in \mathbb{F}_{q}} \#\left\{c \in \mathbb{F}_{q} \mid f(c)=a c+b\right\}
$$

Theorem (Işık, TopuzoğLu, Winterhof, 2016):

Let f be a PP over \mathbb{F}_{q} of $\operatorname{Crk}(f)=n$ with $\mathcal{L}(f)<(q+5) / 2$. If $q>2 n+1$, then f is not a CMP.

Idea of the proof: For $a, b, x \in \mathbb{F}_{q}$,
$(a x+b)^{q-2}= \begin{cases}1 /(a x+b) & \text { if } a x+b \neq 0, \\ 0 & \text { otherwise } .\end{cases}$
$\Longrightarrow f(x)=P_{n}(x)=\frac{a x+b}{c x+d}=R(x)$ for all $x \in \mathbb{F}_{q} \backslash \mathcal{O}$, where \mathcal{O} is
the set of poles.
$\Longrightarrow f(x)+x=R(x)+x$ for all $x \in \mathbb{F}_{q} \backslash \mathcal{O}$.
If there exist $x_{1}, x_{2} \in \mathbb{F}_{q}$ with $x_{1} \neq x_{2}$ and

$$
\begin{equation*}
R\left(x_{1}\right)+x_{1}=R\left(x_{2}\right)+x_{2}=e, \tag{*}
\end{equation*}
$$

then x_{1} or $x_{2} \in \mathcal{O}$.
$(*)$ holds $\longleftrightarrow p_{e}(x):=c x^{2}+(a+d+c e) x+d e$ has roots in \mathbb{F}_{q}.

Idea of the proof: For $a, b, x \in \mathbb{F}_{q}$,
$(a x+b)^{q-2}= \begin{cases}1 /(a x+b) & \text { if } a x+b \neq 0, \\ 0 & \text { otherwise } .\end{cases}$
$\Longrightarrow f(x)=P_{n}(x)=\frac{a x+b}{c x+d}=R(x)$ for all $x \in \mathbb{F}_{q} \backslash \mathcal{O}$, where \mathcal{O} is the set of poles.
$\Longrightarrow f(x)+x=R(x)+x$ for all $x \in \mathbb{F}_{q} \backslash \mathcal{O}$.
If there exist $x_{1}, x_{2} \in \mathbb{F}_{q}$ with $x_{1} \neq x_{2}$ and

$$
\begin{equation*}
R\left(x_{1}\right)+x_{1}=R\left(x_{2}\right)+x_{2}=e, \tag{*}
\end{equation*}
$$

then x_{1} or $x_{2} \in \mathcal{O}$.
$(*)$ holds $\Longleftrightarrow p_{e}(x):=c x^{2}+(a+d+c e) x+d e$ has roots in \mathbb{F}_{q}.

Idea of the proof: For $a, b, x \in \mathbb{F}_{q}$,
$(a x+b)^{q-2}= \begin{cases}1 /(a x+b) & \text { if } a x+b \neq 0, \\ 0 & \text { otherwise } .\end{cases}$
$\Longrightarrow f(x)=P_{n}(x)=\frac{a x+b}{c x+d}=R(x)$ for all $x \in \mathbb{F}_{q} \backslash \mathcal{O}$, where \mathcal{O} is the set of poles.
$\Longrightarrow f(x)+x=R(x)+x$ for all $x \in \mathbb{F}_{q} \backslash \mathcal{O}$.
If there exist $x_{1}, x_{2} \in \mathbb{F}_{q}$ with $x_{1} \neq x_{2}$ and

$$
\begin{equation*}
R\left(x_{1}\right)+x_{1}=R\left(x_{2}\right)+x_{2}=e \tag{*}
\end{equation*}
$$

then x_{1} or $x_{2} \in \mathcal{O}$.
$(*)$ holds $\Longleftrightarrow p_{e}(x):=c x^{2}+(a+d+c e) x+d e$ has roots in \mathbb{F}_{q}.

Idea of the proof: For $a, b, x \in \mathbb{F}_{q}$,
$(a x+b)^{q-2}= \begin{cases}1 /(a x+b) & \text { if } a x+b \neq 0, \\ 0 & \text { otherwise } .\end{cases}$
$\Longrightarrow f(x)=P_{n}(x)=\frac{a x+b}{c x+d}=R(x)$ for all $x \in \mathbb{F}_{q} \backslash \mathcal{O}$, where \mathcal{O} is the set of poles.
$\Longrightarrow f(x)+x=R(x)+x$ for all $x \in \mathbb{F}_{q} \backslash \mathcal{O}$.
If there exist $x_{1}, x_{2} \in \mathbb{F}_{q}$ with $x_{1} \neq x_{2}$ and

$$
\begin{equation*}
R\left(x_{1}\right)+x_{1}=R\left(x_{2}\right)+x_{2}=e, \tag{*}
\end{equation*}
$$

then x_{1} or $x_{2} \in \mathcal{O}$.
$(*)$ holds $\Longleftrightarrow p_{e}(x):=c x^{2}+(a+d+c e) x+d e$ has roots in \mathbb{F}_{q}.

Idea of the proof: For $a, b, x \in \mathbb{F}_{q}$,
$(a x+b)^{q-2}= \begin{cases}1 /(a x+b) & \text { if } a x+b \neq 0, \\ 0 & \text { otherwise } .\end{cases}$
$\Longrightarrow f(x)=P_{n}(x)=\frac{a x+b}{c x+d}=R(x)$ for all $x \in \mathbb{F}_{q} \backslash \mathcal{O}$, where \mathcal{O} is the set of poles.
$\Longrightarrow f(x)+x=R(x)+x$ for all $x \in \mathbb{F}_{q} \backslash \mathcal{O}$.
If there exist $x_{1}, x_{2} \in \mathbb{F}_{q}$ with $x_{1} \neq x_{2}$ and

$$
\begin{equation*}
R\left(x_{1}\right)+x_{1}=R\left(x_{2}\right)+x_{2}=e, \tag{*}
\end{equation*}
$$

then x_{1} or $x_{2} \in \mathcal{O}$.
$(*)$ holds $\Longleftrightarrow p_{e}(x):=c x^{2}+(a+d+c e) x+d e$ has roots in \mathbb{F}_{q}.

Theorem (AOPQST, 2017):

Let f and $f+g$ be PPs over \mathbb{F}_{q} such that $\operatorname{Crk}(f)=n$, $\operatorname{deg}(g)=k$ with $1 \leq k<q-1$ and $\mathcal{L}(f)<(q+5) / 2$. Then

$$
n k+k(k-1) \sqrt{q} \geq q-n-\mu
$$

where $\mu=\operatorname{gcd}(k, q-1)$.

Remark: This result is similar to the one given by Cohen, Mullen and Shiue in 1995.

Recall(Cohen, Mullen, Shiue, 1995): Let $p>\left(d^{2}-3 d+4\right)^{2}$ and $d \geq 2$. If f and h are PPs of degree d, then $\operatorname{deg}(f-h) \geq \frac{3 d}{5}$.

Corollary:

$k=1 \Longrightarrow$ the non-existence result given by Işık, Topuzoğlu,
Winterhof in 2016

Theorem (AOPQST, 2017):

Let f and $f+g$ be PPs over \mathbb{F}_{q} such that $\operatorname{Crk}(f)=n$, $\operatorname{deg}(g)=k$ with $1 \leq k<q-1$ and $\mathcal{L}(f)<(q+5) / 2$. Then

$$
n k+k(k-1) \sqrt{q} \geq q-n-\mu,
$$

where $\mu=\operatorname{gcd}(k, q-1)$.

Remark: This result is similar to the one given by Cohen, Mullen and Shiue in 1995.

Recall(Cohen, Mullen, Shiue, 1995): Let $p>\left(d^{2}-3 d+4\right)^{2}$ and $d \geq 2$. If f and h are PPs of degree d, then $\operatorname{deg}(f-h) \geq \frac{3 d}{5}$.

Corollary:

$k=1 \Longrightarrow$ the non-existence result given by Işık, Topuzoğlu, Winterhof in 2016

Theorem (AOPQST, 2017):

Let f and $f+g$ be PPs over \mathbb{F}_{q} such that $\operatorname{Crk}(f)=n$, $\operatorname{deg}(g)=k$ with $1 \leq k<q-1$ and $\mathcal{L}(f)<(q+5) / 2$. Then

$$
n k+k(k-1) \sqrt{q} \geq q-n-\mu
$$

where $\mu=\operatorname{gcd}(k, q-1)$.

Remark: This result is similar to the one given by Cohen, Mullen and Shiue in 1995.

Recall(Cohen, Mullen, Shiue, 1995): Let $p>\left(d^{2}-3 d+4\right)^{2}$ and $d \geq 2$. If f and h are PPs of degree d, then $\operatorname{deg}(f-h) \geq \frac{3 d}{5}$.

Corollary:

$k=1 \Longrightarrow$ the non-existence result given by Işık, Topuzoğlu, Winterhof in 2016

Idea of the proof: To relate rational points of a curve over \mathbb{F}_{q} to poles of f.
$f(x)=R(x)=\frac{a x+b}{c x+d}$ for all $x \in \mathbb{F}_{q} \backslash \mathcal{O}$.
$H(x):=R(x)+g(x) \Longrightarrow f(x)+g(x)=H(x)$ for all $x \in \mathbb{F}_{q} \backslash \mathcal{O}$.
If $H(x)=H(y)$ for some $x, y \in \mathbb{F}_{q}$ with $x \neq y$, then x or $y \in \mathcal{O}$.
Cohen $(1970) \Longrightarrow \frac{H(X)-H(Y)}{X-Y}$ has an absolutely irreducible factor $f(X, Y)$ over \mathbb{F}_{q}
\mathcal{X} : the projective curve over \mathbb{F}_{q} defined by f
For a rational point $[x: y: 1] \in \mathcal{X}$, we have $H(x)=H(y)$.
$\Longrightarrow \#$ of rational points $N(\mathcal{X})$ of \mathcal{X} gives a lower bound
on $\# \mathcal{O} \leq n$

Idea of the proof: To relate rational points of a curve over \mathbb{F}_{q} to poles of f.
$f(x)=R(x)=\frac{a x+b}{c x+d}$ for all $x \in \mathbb{F}_{q} \backslash \mathcal{O}$.
$H(x):=R(x)+g(x) \Longrightarrow f(x)+g(x)=H(x)$ for all $x \in \mathbb{F}_{q} \backslash \mathcal{O}$.
If $H(x)=H(y)$ for some $x, y \in \mathbb{F}_{q}$ with $x \neq y$, then x or $y \in \mathcal{O}$.
Cohen $(1970) \Longrightarrow \frac{H(X)-H(Y)}{X-Y}$ has an absolutely irreducible factor $f(X, Y)$ over \mathbb{F}_{q}
\mathcal{X} : the projective curve over \mathbb{F}_{q} defined by f
For a rational point $[x: y: 1] \in \mathcal{X}$, we have $H(x)=H(y)$.
$\Longrightarrow \#$ of rational points $N(\mathcal{X})$ of \mathcal{X} gives a lower bound
on $\# \mathcal{O} \leq n$

Idea of the proof: To relate rational points of a curve over \mathbb{F}_{q} to poles of f.
$f(x)=R(x)=\frac{a x+b}{c x+d}$ for all $x \in \mathbb{F}_{q} \backslash \mathcal{O}$.
$H(x):=R(x)+g(x) \Longrightarrow f(x)+g(x)=H(x)$ for all $x \in \mathbb{F}_{q} \backslash \mathcal{O}$.
If $H(x)=H(y)$ for some $x, y \in \mathbb{F}_{q}$ with $x \neq y$, then x or $y \in \mathcal{O}$.
Cohen $(1970) \Longrightarrow \frac{H(X)-H(Y)}{X-Y}$ has an absolutely irreducible factor $f(X, Y)$ over \mathbb{F}_{q}
\mathcal{X} : the projective curve over \mathbb{F}_{q} defined by f
For a rational point $[x: y: 1] \in \mathcal{X}$, we have $H(x)=H(y)$.
$\Longrightarrow \#$ of rational points $N(\mathcal{X})$ of $\mathcal{\chi}$ gives a lower bound
on $\# \mathcal{O} \leq n$

Idea of the proof: To relate rational points of a curve over \mathbb{F}_{q} to poles of f.
$f(x)=R(x)=\frac{a x+b}{c x+d}$ for all $x \in \mathbb{F}_{q} \backslash \mathcal{O}$.
$H(x):=R(x)+g(x) \Longrightarrow f(x)+g(x)=H(x)$ for all $x \in \mathbb{F}_{q} \backslash \mathcal{O}$.
If $H(x)=H(y)$ for some $x, y \in \mathbb{F}_{q}$ with $x \neq y$, then x or $y \in \mathcal{O}$.
Cohen $(1970) \Longrightarrow \frac{H(X)-H(Y)}{X-Y}$ has an absolutely irreducible factor $f(X, Y)$ over \mathbb{F}_{q}
\mathcal{X} : the projective curve over \mathbb{F}_{q} defined by f
For a rational point $[x: y: 1] \in \mathcal{X}$, we have $H(x)=H(y)$.
$\Longrightarrow \#$ of rational points $N(\mathcal{X})$ of $\mathcal{\chi}$ gives a lower bound on $\# \mathcal{O} \leq n$

Idea of the proof: To relate rational points of a curve over \mathbb{F}_{q} to poles of f.
$f(x)=R(x)=\frac{a x+b}{c x+d}$ for all $x \in \mathbb{F}_{q} \backslash \mathcal{O}$.
$H(x):=R(x)+g(x) \Longrightarrow f(x)+g(x)=H(x)$ for all $x \in \mathbb{F}_{q} \backslash \mathcal{O}$.
If $H(x)=H(y)$ for some $x, y \in \mathbb{F}_{q}$ with $x \neq y$, then x or $y \in \mathcal{O}$.
Cohen (1970) $\Longrightarrow \frac{H(X)-H(Y)}{X-Y}$ has an absolutely irreducible factor $f(X, Y)$ over \mathbb{F}_{q}
\mathcal{X} : the projective curve over \mathbb{F}_{q} defined by f
For a rational point $[x: y: 1] \in \mathcal{X}$, we have $H(x)=H(y)$.
$\Longrightarrow \#$ of rational points $N(\mathcal{X})$ of $\mathcal{\chi}$ gives a lower bound on $\# \mathcal{O} \leq n$

Idea of the proof: To relate rational points of a curve over \mathbb{F}_{q} to poles of f.
$f(x)=R(x)=\frac{a x+b}{c x+d}$ for all $x \in \mathbb{F}_{q} \backslash \mathcal{O}$.
$H(x):=R(x)+g(x) \Longrightarrow f(x)+g(x)=H(x)$ for all $x \in \mathbb{F}_{q} \backslash \mathcal{O}$.
If $H(x)=H(y)$ for some $x, y \in \mathbb{F}_{q}$ with $x \neq y$, then x or $y \in \mathcal{O}$.
Cohen (1970) $\Longrightarrow \frac{H(X)-H(Y)}{X-Y}$ has an absolutely irreducible factor $f(X, Y)$ over \mathbb{F}_{q}
\mathcal{X} : the projective curve over \mathbb{F}_{q} defined by f
For a rational point $[x: y: 1] \in \mathcal{X}$, we have $H(x)=H(y)$.
$\Longrightarrow \#$ of rational points $N(\mathcal{X})$ of \mathcal{X} gives a lower bound on $\# \mathcal{O} \leq n$

Idea of the proof: To relate rational points of a curve over \mathbb{F}_{q} to poles of f.
$f(x)=R(x)=\frac{a x+b}{c x+d}$ for all $x \in \mathbb{F}_{q} \backslash \mathcal{O}$.
$H(x):=R(x)+g(x) \Longrightarrow f(x)+g(x)=H(x)$ for all $x \in \mathbb{F}_{q} \backslash \mathcal{O}$.
If $H(x)=H(y)$ for some $x, y \in \mathbb{F}_{q}$ with $x \neq y$, then x or $y \in \mathcal{O}$.
Cohen (1970) $\Longrightarrow \frac{H(X)-H(Y)}{X-Y}$ has an absolutely irreducible factor $f(X, Y)$ over \mathbb{F}_{q}
\mathcal{X} : the projective curve over \mathbb{F}_{q} defined by f
For a rational point $[x: y: 1] \in \mathcal{X}$, we have $H(x)=H(y)$.
$\Longrightarrow \#$ of rational points $N(\mathcal{X})$ of \mathcal{X} gives a lower bound on $\# \mathcal{O} \leq n$

By the Hasse-Weil Bound,

$$
N(\mathcal{X}) \geq q+1-k(k-1) \sqrt{q}
$$

Bezout's Theorem $\Longrightarrow n k+k(k-1) \sqrt{q} \geq q-n-\mu$, where $\mu=\operatorname{gcd}(k, q-1)$

Theorem (AOPQST, 2017):

Let f and $f+c x^{k}$ be PPs over \mathbb{F}_{q} with $1 \leq k<q-1$ and $\operatorname{Crk}(f)=n$. If the last pole of f is zero, then

$$
k(n+3)-(m-1)(k-1) \sqrt{q} \geq q-n,
$$

where $m=\operatorname{gcd}(k+1, q-1)$. In particular, if $m=1$, then $k \geq(q-n)(n+3)$.

By the Hasse-Weil Bound,

$$
N(\mathcal{X}) \geq q+1-k(k-1) \sqrt{q}
$$

Bezout's Theorem $\Longrightarrow n k+k(k-1) \sqrt{q} \geq q-n-\mu$, where $\mu=\operatorname{gcd}(k, q-1)$

TheOrem (AOPQST, 2017):

Let f and $f+c x^{k}$ be PPs over \mathbb{F}_{q} with $1 \leq k<q-1$ and $\operatorname{Crk}(f)=n$. If the last pole of f is zero, then

$$
k(n+3)-(m-1)(k-1) \sqrt{q} \geq q-n,
$$

where $m=\operatorname{gcd}(k+1, q-1)$. In particular, if $m=1$, then $k \geq(q-n)(n+3)$.

By the Hasse-Weil Bound,

$$
N(\mathcal{X}) \geq q+1-k(k-1) \sqrt{q}
$$

Bezout's Theorem $\Longrightarrow n k+k(k-1) \sqrt{q} \geq q-n-\mu$, where $\mu=\operatorname{gcd}(k, q-1)$

Theorem (AOPQST, 2017):

Let f and $f+c x^{k}$ be PPs over \mathbb{F}_{q} with $1 \leq k<q-1$ and $\operatorname{Crk}(f)=n$. If the last pole of f is zero, then

$$
k(n+3)-(m-1)(k-1) \sqrt{q} \geq q-n,
$$

where $m=\operatorname{gcd}(k+1, q-1)$. In particular, if $m=1$, then $k \geq(q-n)(n+3)$.

Grazie per l'attenzione!

