# Spectra and Equivalence of Boolean Functions 

Nurdagül Anbar<br>(joint work with Wilfried Meidl and Alexander Pott)

RICAM, LINZ, AUSTRIA
4-10 June 2017, Fq13

## OutLine

(1) Introduction
(2) Spectra of Boolean Functions
(3) Equivalence of Boolean Functions

Recall: For a Boolean function $f: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2}$ the unitary transform $\mathcal{V}_{f}^{c}: \mathbb{F}_{2^{n}} \rightarrow \mathbb{C}$ is defined by

$$
\mathcal{V}_{f}^{c}(u)=\sum_{x \in \mathbb{F}_{2^{n}}}(-1)^{f(x)+\sigma(c, x)} i^{\operatorname{Tr}(c x)}(-1)^{\operatorname{Tr}(u x)}
$$

where $i=\sqrt{-1}$, the function $\operatorname{Tr}(z)$ denotes the absolute trace of $z \in \mathbb{F}_{2^{n}}$ and $\sigma(c, x)$ is defined by

$$
\sigma(c, x)=\sum_{0 \leq i<j \leq n-1}(c x)^{2^{i}}(c x)^{2^{j}} .
$$

Recall: For a Boolean function $f: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2}$ the unitary transform $\mathcal{V}_{f}^{c}: \mathbb{F}_{2^{n}} \rightarrow \mathbb{C}$ is defined by

$$
\mathcal{V}_{f}^{c}(u)=\sum_{x \in \mathbb{F}_{2^{n}}}(-1)^{f(x)+\sigma(c, x)} i^{\operatorname{Tr}(c x)}(-1)^{\operatorname{Tr}(u x)}
$$

where $i=\sqrt{-1}$, the function $\operatorname{Tr}(z)$ denotes the absolute trace of $z \in \mathbb{F}_{2^{n}}$ and $\sigma(c, x)$ is defined by

$$
\sigma(c, x)=\sum_{0 \leq i<j \leq n-1}(c x)^{2^{i}}(c x)^{2^{j}} .
$$

## DEFINITION:

$f$ is called $c$-bent ${ }_{4}$ if $\left|\mathcal{V}_{f}^{c}(u)\right|=2^{n / 2}$ for all $u \in \mathbb{F}_{2^{n}}$.

For $c=0, \mathcal{V}_{f}^{c}(u)$ is the conventional Walsh transform $\mathcal{W}_{f}(u)$.

## Remarks:

- $\mathcal{V}_{f}^{c}(u)$ is defined to describe the component functions of a modified planar functions $F: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$, i.e. functions for which $F(x+a)+F(x)+a x$ is permutation of $\mathbb{F}_{2^{n}}$ for all $a \in \mathbb{F}_{2^{n}}^{*}$. (Zhou, 2013)
- (Sarkar, 2012) $f: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2}$ is a negabent function if $f(x+a)+f(x)+\operatorname{Tr}(a x)$ is balanced for any $a \in \mathbb{F}_{2^{n}}^{*}$. This is equivalent $c$-bent ${ }_{4}$ function for $c=1$.

Fact: (A., Meidl, 2016) A function $f$ is $c$-bent ${ }_{4} \Longleftrightarrow$ $f(x+a)+f(x)+\operatorname{Tr}\left(c^{2} a x\right)$ is balanced $\forall a \in \mathbb{F}_{2^{n}}^{*}$

## Remarks:

- $\mathcal{V}_{f}^{c}(u)$ is defined to describe the component functions of a modified planar functions $F: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$, i.e. functions for which $F(x+a)+F(x)+a x$ is permutation of $\mathbb{F}_{2^{n}}$ for all $a \in \mathbb{F}_{2^{n}}^{*}$. (Zhou, 2013)
- (Sarkar, 2012) $f: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2}$ is a negabent function if $f(x+a)+f(x)+\operatorname{Tr}(a x)$ is balanced for any $a \in \mathbb{F}_{2^{n}}^{*}$. This is equivalent $c$-bent ${ }_{4}$ function for $c=1$.

Fact: (A., Meidl, 2016) A function $f$ is $c$-bent ${ }_{4} \Longleftrightarrow$ $f(x+a)+f(x)+\operatorname{Tr}\left(c^{2} a x\right)$ is balanced $\forall a \in \mathbb{F}_{2^{n}}^{*}$

- Let $G_{c}:=\left(\mathbb{F}_{2^{n}} \times \mathbb{F}_{2}, *\right)$ be the group, where " $*$ " is defined by

$$
\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}, y_{1}+y_{2}+\operatorname{Tr}\left(c^{2} x_{1} x_{2}\right)\right)
$$

for any $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in G_{c}$. Note that $G_{c} \cong \mathbb{Z}_{2}^{n-1} \times \mathbb{Z}_{4}$ for $c \neq 0$.
Define $\mathcal{G}_{f}:=\left\{(x, f(x)): x \in \mathbb{F}_{2^{n}}\right\} \subset G_{c}$.
Fact: $f$ is $c$-bent ${ }_{4} \Longleftrightarrow \mathcal{G}_{f}$ is a $\left(2^{n}, 2,2^{n}, 2^{n-1}\right)$ RDS in $G_{c}$.
Recall: $f$ is bent $\Longleftrightarrow \mathcal{G}_{f}$ is a $\left(2^{n}, 2,2^{n}, 2^{n-1}\right) \operatorname{RDS}$ in $\mathbb{Z}_{2}^{n+1}$.

Definition: Let $D_{a}(f):=f(x+a)+f(x)$. A function $f$ is called partially bent if $D_{a}(f)$ is either balanced or constant.

Fact: $\Omega(f)=\left\{a \in \mathbb{F}_{2^{n}} \mid D_{a}(f)\right.$ is constant $\}$ : the linear space of $f$ $f$ is partially bent $\Longrightarrow \mathcal{W}_{f}(u) \in\left\{0, \pm 2^{(n+s) / 2}\right\}, s:=\operatorname{dim}(\Omega(f))$

- Let $G_{C}:=\left(\mathbb{F}_{2^{n}} \times \mathbb{F}_{2}, *\right)$ be the group, where " $*$ " is defined by

$$
\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}, y_{1}+y_{2}+\operatorname{Tr}\left(c^{2} x_{1} x_{2}\right)\right)
$$

for any $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in G_{c}$. Note that $G_{c} \cong \mathbb{Z}_{2}^{n-1} \times \mathbb{Z}_{4}$ for $c \neq 0$.
Define $\mathcal{G}_{f}:=\left\{(x, f(x)): x \in \mathbb{F}_{2^{n}}\right\} \subset G_{c}$.
Fact: $f$ is $c$-bent ${ }_{4} \Longleftrightarrow \mathcal{G}_{f}$ is a $\left(2^{n}, 2,2^{n}, 2^{n-1}\right)$ RDS in $G_{c}$.
Recall: $f$ is bent $\Longleftrightarrow \mathcal{G}_{f}$ is a $\left(2^{n}, 2,2^{n}, 2^{n-1}\right)$ RDS in $\mathbb{Z}_{2}^{n+1}$.

Definition: Let $D_{a}(f):=f(x+a)+f(x)$. A function $f$ is called partially bent if $D_{a}(f)$ is either balanced or constant.

Fact: $\Omega(f)=\left\{a \in \mathbb{F}_{2^{n}} \mid D_{a}(f)\right.$ is constant $\}$ : the linear space of $f$ $f$ is partially bent $\Longrightarrow \mathcal{W}_{f}(u) \in\left\{0, \pm 2^{(n+s) / 2}\right\}, s:=\operatorname{dim}(\Omega(f))$

- Let $G_{c}:=\left(\mathbb{F}_{2^{n}} \times \mathbb{F}_{2}, *\right)$ be the group, where "*" is defined by

$$
\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}, y_{1}+y_{2}+\operatorname{Tr}\left(c^{2} x_{1} x_{2}\right)\right)
$$

for any $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in G_{c}$. Note that $G_{c} \cong \mathbb{Z}_{2}^{n-1} \times \mathbb{Z}_{4}$ for $c \neq 0$.
Define $\mathcal{G}_{f}:=\left\{(x, f(x)): x \in \mathbb{F}_{2^{n}}\right\} \subset G_{c}$.
Fact: $f$ is $c$-bent ${ }_{4} \Longleftrightarrow \mathcal{G}_{f}$ is a $\left(2^{n}, 2,2^{n}, 2^{n-1}\right) \operatorname{RDS}$ in $G_{c}$.
Recall: $f$ is bent $\Longleftrightarrow \mathcal{G}_{f}$ is a $\left(2^{n}, 2,2^{n}, 2^{n-1}\right)$ RDS in $\mathbb{Z}_{2}^{n+1}$.

Definition: Let $D_{a}(f):=f(x+a)+f(x)$. A function $f$ is called partially bent if $D_{a}(f)$ is either balanced or constant.
Fact: $\Omega(f)=\left\{a \in \mathbb{F}_{2^{n}} \mid D_{a}(f)\right.$ is constant $\}$ : the linear space of $f$ $f$ is partially bent $\Longrightarrow \mathcal{W}_{f}(u) \in\left\{0, \pm 2^{(n+s) / 2}\right\}, s:=\operatorname{dim}(\Omega(f))$

- Let $G_{c}:=\left(\mathbb{F}_{2^{n}} \times \mathbb{F}_{2}, *\right)$ be the group, where "*" is defined by

$$
\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}, y_{1}+y_{2}+\operatorname{Tr}\left(c^{2} x_{1} x_{2}\right)\right)
$$

for any $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in G_{c}$. Note that $G_{c} \cong \mathbb{Z}_{2}^{n-1} \times \mathbb{Z}_{4}$ for $c \neq 0$.
Define $\mathcal{G}_{f}:=\left\{(x, f(x)): x \in \mathbb{F}_{2^{n}}\right\} \subset G_{c}$.
Fact: $f$ is $c$-bent ${ }_{4} \Longleftrightarrow \mathcal{G}_{f}$ is a $\left(2^{n}, 2,2^{n}, 2^{n-1}\right) \operatorname{RDS}$ in $G_{c}$.
Recall: $f$ is bent $\Longleftrightarrow \mathcal{G}_{f}$ is a $\left(2^{n}, 2,2^{n}, 2^{n-1}\right)$ RDS in $\mathbb{Z}_{2}^{n+1}$.

Definition: Let $D_{a}(f):=f(x+a)+f(x)$. A function $f$ is called partially bent if $D_{a}(f)$ is either balanced or constant.

Fact: $\Omega(f)=\left\{a \in \mathbb{F}_{2^{n}} \mid D_{a}(f)\right.$ is constant $\}$ : the linear space of $f$ $f$ is partially bent $\Longrightarrow \mathcal{W}_{f}(u) \in\left\{0, \pm 2^{(n+s) / 2}\right\}, s:=\operatorname{dim}(\Omega(f))$

## LEMMA:

$\Omega_{c}(f)=\left\{a \in \mathbb{F}_{2^{n}} \mid D_{a}(f)+\operatorname{Tr}\left(c^{2} a x\right)\right.$ is constant $\}$ is a subspace of $\mathbb{F}_{2^{n}}$.

Definition: $f$ is called c-partially bent if $D_{a}(f)+\operatorname{Tr}\left(c^{2} a x\right)$ is constant or balanced for all $a \in \mathbb{F}_{2^{n}}$.

## Proposttion:

If $f$ is a $c$-partially bent then $\mathcal{V}_{f}^{c}(u) \in\left\{0, \pm 2^{\left(n+s_{c}\right) / 2}\right\}$, where $s_{c}=\operatorname{dim}\left(\Omega_{c}(f)\right)$.

Definition/Fact: A quadratic function $f: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2}$ is represented by $f(x)=\operatorname{Tr}\left(\sum_{i=0}^{\lfloor n / 2\rfloor} b_{i} x^{2^{i}+1}\right)$.

## Corollary:

$f$ is quadratic $\Longrightarrow \mathcal{V}_{f}^{c}(u) \in\left\{0, \pm 2^{\left(n+s_{c}\right) / 2}\right\}$ for some $s_{c} \geq 0$.

## LEMMA:

$\Omega_{c}(f)=\left\{a \in \mathbb{F}_{2^{n}} \mid D_{a}(f)+\operatorname{Tr}\left(c^{2} a x\right)\right.$ is constant $\}$ is a subspace of $\mathbb{F}_{2^{n}}$.

Definition: $f$ is called c-partially bent if $D_{a}(f)+\operatorname{Tr}\left(c^{2} a x\right)$ is constant or balanced for all $a \in \mathbb{F}_{2^{n}}$.

## Proposition:

If $f$ is a c-partially bent then $\mathcal{V}_{f}^{c}(u) \in\left\{0, \pm 2^{\left(n+s_{c}\right) / 2}\right\}$, where $s_{c}=\operatorname{dim}\left(\Omega_{c}(f)\right)$.

Definition/Fact: A quadratic function $f: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2}$ is represented by $f(x)=\operatorname{Tr}\left(\sum_{i=0}^{\lfloor n / 2\rfloor} b_{i} x^{2^{i}+1}\right)$.

## Corollary:

$f$ is quadratic $\Longrightarrow \mathcal{V}_{f}^{c}(u) \in\left\{0, \pm 2^{\left(n+s_{c}\right) / 2}\right\}$ for some $s_{c} \geq 0$.

## LEMMA:

$\Omega_{c}(f)=\left\{a \in \mathbb{F}_{2^{n}} \mid D_{a}(f)+\operatorname{Tr}\left(c^{2} a x\right)\right.$ is constant $\}$ is a subspace of $\mathbb{F}_{2^{n}}$.

Definition: $f$ is called c-partially bent if $D_{a}(f)+\operatorname{Tr}\left(c^{2} a x\right)$ is constant or balanced for all $a \in \mathbb{F}_{2^{n}}$.

## Proposition:

If $f$ is a $c$-partially bent then $\mathcal{V}_{f}^{c}(u) \in\left\{0, \pm 2^{\left(n+s_{c}\right) / 2}\right\}$, where $s_{c}=\operatorname{dim}\left(\Omega_{c}(f)\right)$.

Definition/Fact: A quadratic function $f: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2}$ is represented by $f(x)=\operatorname{Tr}\left(\sum_{i=0}^{\lfloor n / 2\rfloor} b_{i} x^{2^{i}+1}\right)$.

## Corollary:

$f$ is quadratic $\longrightarrow \mathcal{V}_{f}^{c}(u) \in\left\{0, \pm 2^{\left(n+s_{c}\right) / 2}\right\}$ for some $s_{c} \geq 0$.

## LEMMA:

$\Omega_{c}(f)=\left\{a \in \mathbb{F}_{2^{n}} \mid D_{a}(f)+\operatorname{Tr}\left(c^{2} a x\right)\right.$ is constant $\}$ is a subspace of $\mathbb{F}_{2^{n}}$.

Definition: $f$ is called c-partially bent if $D_{a}(f)+\operatorname{Tr}\left(c^{2} a x\right)$ is constant or balanced for all $a \in \mathbb{F}_{2^{n}}$.

## Proposition:

If $f$ is a $c$-partially bent then $\mathcal{V}_{f}^{c}(u) \in\left\{0, \pm 2^{\left(n+s_{c}\right) / 2}\right\}$, where $s_{c}=\operatorname{dim}\left(\Omega_{c}(f)\right)$.

Definition/Fact: A quadratic function $f: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2}$ is represented by $f(x)=\operatorname{Tr}\left(\sum_{i=0}^{\lfloor n / 2\rfloor} b_{i} x^{2^{i}+1}\right)$.

## Corollary:

$f$ is quadratic $\longrightarrow \mathcal{V}_{f}^{c}(u) \in\left\{0, \pm 2^{\left(n+s_{c}\right) / 2}\right\}$ for some $s_{c} \geq 0$.

## LEMMA:

$\Omega_{c}(f)=\left\{a \in \mathbb{F}_{2^{n}} \mid D_{a}(f)+\operatorname{Tr}\left(c^{2} a x\right)\right.$ is constant $\}$ is a subspace of $\mathbb{F}_{2^{n}}$.

Definition: $f$ is called c-partially bent if $D_{a}(f)+\operatorname{Tr}\left(c^{2} a x\right)$ is constant or balanced for all $a \in \mathbb{F}_{2^{n}}$.

## Proposition:

If $f$ is a $c$-partially bent then $\mathcal{V}_{f}^{c}(u) \in\left\{0, \pm 2^{\left(n+s_{c}\right) / 2}\right\}$, where $s_{c}=\operatorname{dim}\left(\Omega_{c}(f)\right)$.

Definition/Fact: A quadratic function $f: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2}$ is represented by $f(x)=\operatorname{Tr}\left(\sum_{i=0}^{\lfloor n / 2\rfloor} b_{i} x^{2^{i}+1}\right)$.

## Corollary:

$f$ is quadratic $\Longrightarrow \mathcal{V}_{f}^{c}(u) \in\left\{0, \pm 2^{\left(n+s_{c}\right) / 2}\right\}$ for some $s_{c} \geq 0$.

Question: What is the spectra of a quadratic function $f$ with respect to $\mathcal{V}_{f}^{c}$ while $c$ varies?

$$
\begin{aligned}
& \text { For } f(x)=\operatorname{Tr}\left(\sum_{i=0}^{\lfloor n / 2\rfloor} b_{i} x^{2^{i}+1}\right) \text {, set } \\
& \begin{aligned}
& h(T):=\sum_{i=0}^{\lfloor n / 2\rfloor} b_{i} T^{2^{i}}+b_{i}^{2^{n-i}} T^{2^{n-i}} \\
& a \in \Omega_{c}(f) \Longleftrightarrow f(x+a)+f(x)+\operatorname{Tr}\left(c^{2} a x\right)=0 \\
& \Longleftrightarrow a \in \operatorname{Ker}\left(h(T)+c^{2} T\right)=: K_{c}
\end{aligned}
\end{aligned}
$$

## LEMMA:

$\mathbb{F}_{2^{n}}=U_{c \in \mathbb{F}_{2^{n}}} K_{c}$ with $K_{c_{1}} \cap K_{c_{2}}=\{0\}$ for $c_{1} \neq c_{2}$.
Optimal: $\mathcal{V}_{f}^{c}(u) \in\left\{0, \pm 2^{(n+1) / 2}\right\}$, i.e. $\operatorname{dim}\left(K_{c}\right)=1$, for all $c \in \mathbb{F}_{2^{n}}$ but one!

This holds $\Longleftrightarrow h(T) / T$ is a permutation.

## Proposition:

$h(T) / T$ is not a permutation.

Question: What is the spectra of a quadratic function $f$ with respect to $\mathcal{V}_{f}^{c}$ while $c$ varies?

For $f(x)=\operatorname{Tr}\left(\sum_{i=0}^{\lfloor n / 2\rfloor} b_{i} x^{2^{i}+1}\right)$, set $h(T):=\sum_{i=0}^{\lfloor n / 2\rfloor} b_{i} T^{2^{i}}+b_{i}^{2^{n-i}} T^{2^{n-i}}$

$$
\begin{aligned}
a \in \Omega_{c}(f) & \Longleftrightarrow f(x+a)+f(x)+\operatorname{Tr}\left(c^{2} a x\right)=0 \\
& \Longleftrightarrow a \in \operatorname{Ker}\left(h(T)+c^{2} T\right)=: K_{c}
\end{aligned}
$$

## Lemma:

$\mathbb{F}_{2^{n}}=U_{c \in \mathbb{T}_{2 n}} K_{c}$ with $K_{c_{1}} \cap K_{c_{2}}=\{0\}$ for $c_{1} \neq c_{2}$.
Optimal: $\mathcal{V}_{f}^{c}(u) \in\left\{0, \pm 2^{(n+1) / 2}\right\}$, i.e. $\operatorname{dim}\left(K_{c}\right)=1$, for all $c \in \mathbb{F}_{2^{n}}$ but one!

This holds $\Longleftrightarrow h(T) / T$ is a permutation.

## Proposition:

$h(T) / T$ is not a permutation.

Question: What is the spectra of a quadratic function $f$ with respect to $\mathcal{V}_{f}^{c}$ while $c$ varies?

For $f(x)=\operatorname{Tr}\left(\sum_{i=0}^{\lfloor n / 2\rfloor} b_{i} x^{2^{i}+1}\right)$, set $h(T):=\sum_{i=0}^{\lfloor n / 2\rfloor} b_{i} T^{2^{i}}+b_{i}^{2^{n-i}} T^{2^{n-i}}$

$$
\begin{aligned}
a \in \Omega_{c}(f) & \Longleftrightarrow f(x+a)+f(x)+\operatorname{Tr}\left(c^{2} a x\right)=0 \\
& \Longleftrightarrow a \in \operatorname{Ker}\left(h(T)+c^{2} T\right)=: K_{c}
\end{aligned}
$$

Lemma:
$\mathbb{F}_{2^{n}}=\cup_{c \in \mathbb{F}_{2^{n}}} K_{c}$ with $K_{c_{1}} \cap K_{c_{2}}=\{0\}$ for $c_{1} \neq c_{2}$.
Optimal: $\mathcal{V}_{f}^{c}(u) \in\left\{0, \pm 2^{(n+1) / 2}\right\}$, i.e. $\operatorname{dim}\left(K_{c}\right)=1$, for all $c \in \mathbb{F}_{2^{n}}$ but one!

This holds $\Longleftrightarrow h(T) / T$ is a permutation.

## Proposition:

$h(T) / T$ is not a permutation.

Question: What is the spectra of a quadratic function $f$ with respect to $\mathcal{V}_{f}^{c}$ while $c$ varies?

For $f(x)=\operatorname{Tr}\left(\sum_{i=0}^{\lfloor n / 2\rfloor} b_{i} x^{2^{i}+1}\right)$, set $h(T):=\sum_{i=0}^{\lfloor n / 2\rfloor} b_{i} T^{2^{i}}+b_{i}^{2^{n-i}} T^{2^{n-i}}$

$$
\begin{aligned}
a \in \Omega_{c}(f) & \Longleftrightarrow f(x+a)+f(x)+\operatorname{Tr}\left(c^{2} a x\right)=0 \\
& \Longleftrightarrow a \in \operatorname{Ker}\left(h(T)+c^{2} T\right)=: K_{c}
\end{aligned}
$$

LEMMA:
$\mathbb{F}_{2^{n}}=\cup_{c \in \mathbb{F}_{2^{n}}} K_{c}$ with $K_{c_{1}} \cap K_{c_{2}}=\{0\}$ for $c_{1} \neq c_{2}$.
Optimal: $\mathcal{V}_{f}^{c}(u) \in\left\{0, \pm 2^{(n+1) / 2}\right\}$, i.e. $\operatorname{dim}\left(K_{c}\right)=1$, for all $c \in \mathbb{F}_{2^{n}}$ but one!

This holds $\Longleftrightarrow h(T) / T$ is a permutation.

## Proposition:

$h(T) / T$ is not a permutation.

Question: What is the spectra of a quadratic function $f$ with respect to $\mathcal{V}_{f}^{c}$ while $c$ varies?

For $f(x)=\operatorname{Tr}\left(\sum_{i=0}^{\lfloor n / 2\rfloor} b_{i} x^{2^{i}+1}\right)$, set $h(T):=\sum_{i=0}^{\lfloor n / 2\rfloor} b_{i} T^{2^{i}}+b_{i}^{2^{n-i}} T^{2^{n-i}}$

$$
\begin{aligned}
a \in \Omega_{c}(f) & \Longleftrightarrow f(x+a)+f(x)+\operatorname{Tr}\left(c^{2} a x\right)=0 \\
& \Longleftrightarrow a \in \operatorname{Ker}\left(h(T)+c^{2} T\right)=: K_{c}
\end{aligned}
$$

LEMMA:
$\mathbb{F}_{2^{n}}=\cup_{c \in \mathbb{F}_{2^{n}}} K_{c}$ with $K_{c_{1}} \cap K_{c_{2}}=\{0\}$ for $c_{1} \neq c_{2}$.
Optimal: $\mathcal{V}_{f}^{c}(u) \in\left\{0, \pm 2^{(n+1) / 2}\right\}$, i.e. $\operatorname{dim}\left(K_{c}\right)=1$, for all $c \in \mathbb{F}_{2^{n}}$ but one!

This holds $\Longleftrightarrow h(T) / T$ is a permutation.

## Proposition:

$h(T) / T$ is not a permutation.

Question: What is the spectra of a quadratic function $f$ with respect to $\mathcal{V}_{f}^{c}$ while $c$ varies?

For $f(x)=\operatorname{Tr}\left(\sum_{i=0}^{\lfloor n / 2\rfloor} b_{i} x^{2^{i}+1}\right)$, set $h(T):=\sum_{i=0}^{\lfloor n / 2\rfloor} b_{i} T^{2^{i}}+b_{i}^{2^{n-i}} T^{2^{n-i}}$

$$
\begin{aligned}
a \in \Omega_{c}(f) & \Longleftrightarrow f(x+a)+f(x)+\operatorname{Tr}\left(c^{2} a x\right)=0 \\
& \Longleftrightarrow a \in \operatorname{Ker}\left(h(T)+c^{2} T\right)=: K_{c}
\end{aligned}
$$

## LEMMA:

$\mathbb{F}_{2^{n}}=\cup_{c \in \mathbb{F}_{2^{n}}} K_{c}$ with $K_{c_{1}} \cap K_{c_{2}}=\{0\}$ for $c_{1} \neq c_{2}$.
Optimal: $\mathcal{V}_{f}^{c}(u) \in\left\{0, \pm 2^{(n+1) / 2}\right\}$, i.e. $\operatorname{dim}\left(K_{c}\right)=1$, for all $c \in \mathbb{F}_{2^{n}}$ but one!

This holds $\Longleftrightarrow h(T) / T$ is a permutation.

## Proposition:

$h(T) / T$ is not a permutation.

## Corollary:

A quadratic function $f: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2}$ is $c$-bent ${ }_{4}$ for at least three distinct $c \in \mathbb{F}_{2^{n}}$.

## LEMMA:

Let $f: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2}$ with $n$ even.

- A function $f$ is $c$-bent ${ }_{4}$ if and only if $f+\sigma(c, x)$ is bent.
- A function $f$ is $c$-bent ${ }_{4}$ if and only if $f(d x)$ is $c d$-bent ${ }_{4}$.


## Theorem (A., Meidl, 2017):

For $n$ even, any quadratic function $f: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2}$ is essentially bent-negabent. (Sarkar 2012)

## Corollary:

A quadratic function $f: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2}$ is $c$-bent ${ }_{4}$ for at least three distinct $c \in \mathbb{F}_{2^{n}}$.

## LEMMA:

Let $f: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2}$ with $n$ even.

- A function $f$ is $c$-bent ${ }_{4}$ if and only if $f+\sigma(c, x)$ is bent.
- A function $f$ is $c$-bent ${ }_{4}$ if and only if $f(d x)$ is $c d$-bent ${ }_{4}$.


## Theorem (A., Meidl, 2017):

For $n$ even, any quadratic function $f: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2}$ is essentially bent-negabent. (Sarkar 2012)

## Corollary:

A quadratic function $f: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2}$ is $c$-bent ${ }_{4}$ for at least three distinct $c \in \mathbb{F}_{2^{n}}$.

## LEMMA:

Let $f: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2}$ with $n$ even.

- A function $f$ is $c$-bent ${ }_{4}$ if and only if $f+\sigma(c, x)$ is bent.
- A function $f$ is $c$-bent ${ }_{4}$ if and only if $f(d x)$ is $c d$-bent ${ }_{4}$.


## Theorem (A., Meidl, 2017):

For $n$ even, any quadratic function $f: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2}$ is essentially bent-negabent. (Sarkar 2012)

## Theorem (A., Meidl, 2017):

(1) Let $f(x)=\operatorname{Tr}\left(\alpha x^{3}\right)$ for some $\alpha \in \mathbb{F}_{2^{n}}$.

- If $n$ be odd, then $f$ is $c$-bent ${ }_{4}$ for $\left(2^{n}+1\right) / 3$ different $c \in \mathbb{F}_{2^{n}}, 1$ partially $c$-bent ${ }_{4}$ for $2^{n-1}$ different $c \in \mathbb{F}_{2^{n}}$ and 2 partially $c$-bent ${ }_{4}$ for $\left(2^{n-1}-1\right) / 3$ different $c \in \mathbb{F}_{2^{n}}$.
- For $n$ is even, let $\zeta$ be the primitive root of unity and $N_{i}$ be the number of trace zero elements in $Q_{i}:=\zeta^{i}\left(\mathbb{F}_{2^{n}}^{*}\right)^{3}$ for $i=1,2,3$. If $\alpha \in Q_{i}$, then $f$ is $c$-bent $_{4}$ for $2 N_{i}+1$ different $c \in \mathbb{F}_{2^{n}}, 1$ partially $c$-bent ${ }_{4}$ for $2^{n}--3 N_{i}$ different $c \in \mathbb{F}_{2^{n}}$ and 2 partially $c$-bent 4 for $N_{i}$ different $c \in \mathbb{F}_{2^{n}}$.
(2) Let $n=2 k$ and $f(x)=\operatorname{Tr}\left(\alpha x^{2^{k}}\right)$ for some $\alpha \in \mathbb{F}_{2^{n}}$.
- If $\alpha \notin \mathbb{F}_{2^{k}}$, then $f c$-bent ${ }_{4}$ for $2^{n}-2^{k}-1$ different $c \in \mathbb{F}_{2^{n}}$ and $k$ partially $c$-bent ${ }_{4}$ for $2^{k}+1$ different $c \in \mathbb{F}_{2^{n}}$.
- If $\alpha \in \mathbb{F}_{2^{k}}$, then $f=0$, and hence $c$-bent ${ }_{4}$ for all $c \in \mathbb{F}_{2^{n}}$.


## Theorem (A., Meidl, 2017):

Let $n=2 k, k>1$ odd, and let $f(x)=\operatorname{Tr}\left(x^{2^{k}+3}\right)$. Then $f$ is negabent and not $c$-bent ${ }_{4}$ for any $c \neq 1$.

Remark: (2016) Zhou and Qu show that $n=2 k, k>1$ odd, $f(x)=\operatorname{Tr}\left(x^{2^{k}+3}\right)$ is negabent. Moreover, by MAGMA, for $n \leq 14$ the monomial $f(x)=\operatorname{Tr}\left(\gamma x^{2^{k}+3}\right)$ is negabent only for $\gamma=1$.

## Corollary:

For $n=2 k$ and $k>1$ odd, $f(x)=\operatorname{Tr}\left(\gamma x^{2^{k}+3}\right)$ is negabent only for $\gamma=1$.

Recall: A function $f$ is $c$-bent ${ }_{4}$ if and only if $f(d x)$ is $c d$-bent ${ }_{4}$.

## Theorem (A., Meidl, 2017):

Let $n=2 k, k>1$ odd, and let $f(x)=\operatorname{Tr}\left(x^{2^{k}+3}\right)$. Then $f$ is negabent and not $c$-bent ${ }_{4}$ for any $c \neq 1$.

Remark: (2016) Zhou and Qu show that $n=2 k, k>1$ odd, $f(x)=\operatorname{Tr}\left(x^{2^{k}+3}\right)$ is negabent. Moreover, by MAGMA, for $n \leq 14$ the monomial $f(x)=\operatorname{Tr}\left(\gamma x^{2^{k}+3}\right)$ is negabent only for $\gamma=1$.

## Corollary:

For $n=2 k$ and $k>1$ odd, $f(x)=\operatorname{Tr}\left(\gamma x^{2^{k}+3}\right)$ is negabent only for $\gamma=1$.

Recall: A function $f$ is $c$-bent $4_{4}$ if and only if $f(d x)$ is $c d$-bent ${ }_{4}$.

## Theorem (A., Meidl, 2017):

Let $n=2 k, k>1$ odd, and let $f(x)=\operatorname{Tr}\left(x^{2^{k}+3}\right)$. Then $f$ is negabent and not $c$-bent ${ }_{4}$ for any $c \neq 1$.

Remark: (2016) Zhou and Qu show that $n=2 k, k>1$ odd, $f(x)=\operatorname{Tr}\left(x^{2^{k}+3}\right)$ is negabent. Moreover, by MAGMA, for $n \leq 14$ the monomial $f(x)=\operatorname{Tr}\left(\gamma x^{2^{k}+3}\right)$ is negabent only for $\gamma=1$.

## Corollary:

For $n=2 k$ and $k>1$ odd, $f(x)=\operatorname{Tr}\left(\gamma x^{2^{k}+3}\right)$ is negabent only for $\gamma=1$.

Recall: A function $f$ is $c$-bent ${ }_{4}$ if and only if $f(d x)$ is $c d$-bent ${ }_{4}$.

Fact: Let $f: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2}$.

- For $n$ even, $f$ is $c$-bent ${ }_{4} \Longleftrightarrow g:=f+\sigma(c, x)$ is bent.
- For $n$ odd, $f$ is $c$-bent $4 \Longleftrightarrow g:=f+\sigma(c, x)$ is semibent, i.e. $\mathcal{W}_{g}(u) \in\left\{0, \pm 2^{(n+1) / 2}\right\}$, and $\mathcal{W}_{g}(u) \mathcal{W}_{g}(u+c)=0$ for all $u \in \mathbb{F}_{2^{n}}$.
Recall: For $c \neq 0, f$ is $c$-bent ${ }_{4} \Longleftrightarrow \mathcal{G}_{f}$ is a $\left(2^{n}, 2,2^{n}, 2^{n-1}\right)$ $\operatorname{RDS}$ in $G_{c} \equiv \mathbb{Z}_{2}^{n-1} \times \mathbb{Z}_{4}$.

We consider $c=1$ and set $\sigma(x):=\sigma(1, x)$.
$G:=\left(\mathbb{F}_{2^{n}} \times \mathbb{F}_{2}, *\right)$ such that for any $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in G$,
$\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}, y_{1}+y_{2}+\operatorname{Tr}\left(x_{1} x_{2}\right)\right)$.
Definition: Let $f_{1}$ and $f_{2}$ be negabent (1-bent ${ }_{4}$ ) functions.

- $f_{1}$ and $f_{2}$ are shifted-equivalent if $f_{1}+\sigma$ and $f_{2}+\sigma$ are EA-equivalent, i.e.
$\left(f_{2}+\sigma\right)(x)=\left(f_{1}+\sigma\right)(\mathcal{L}(x)+\alpha)+\operatorname{Tr}(\beta x)+c$ for some $\alpha, \beta \in \mathbb{F}_{2^{n}}, c \in \mathbb{F}_{2}$ and a linearized permutation $\mathcal{L}$ of $\mathbb{F}_{2^{n}}$.
- $f_{1}$ and $f_{2}$ are difference set equivalent if $\mathcal{G}_{f_{1}}$ and $\mathcal{G}_{f_{2}}$ are equivalent as an RDS, i.e. $\mathcal{G}_{f_{2}}=\psi\left(\mathcal{G}_{f_{1}}\right) * b$ for some $\psi \in \operatorname{Aut}(G)$ and $b \in G$.

Fact: Let $f: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2}$.

- For $n$ even, $f$ is $c$-bent ${ }_{4} \Longleftrightarrow g:=f+\sigma(c, x)$ is bent.
- For $n$ odd, $f$ is $c$-bent ${ }_{4} \Longleftrightarrow g:=f+\sigma(c, x)$ is semibent, i.e. $\mathcal{W}_{g}(u) \in\left\{0, \pm 2^{(n+1) / 2}\right\}$, and $\mathcal{W}_{g}(u) \mathcal{W}_{g}(u+c)=0$ for all $u \in \mathbb{F}_{2^{n}}$.
Recall: For $c \neq 0, f$ is $c$-bent $_{4} \Longleftrightarrow \mathcal{G}_{f}$ is a $\left(2^{n}, 2,2^{n}, 2^{n-1}\right)$
$\operatorname{RDS}$ in $G_{c} \equiv \mathbb{Z}_{2}^{n-1} \times \mathbb{Z}_{4}$.
We consider $c=1$ and set $\sigma(x):=\sigma(1, x)$.
$G:=\left(\mathbb{F}_{2^{n}} \times \mathbb{F}_{2}, *\right)$ such that for any $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in G$,
$\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}, y_{1}+y_{2}+\operatorname{Tr}\left(x_{1} x_{2}\right)\right)$.
Definition: Let $f_{1}$ and $f_{2}$ be negabent (1-bent 4 ) functions.
- $f_{1}$ and $f_{2}$ are shifted-equivalent if $f_{1}+\sigma$ and $f_{2}+\sigma$ are EA-equivalent, i.e.
$\left(f_{2}+\sigma\right)(x)=\left(f_{1}+\sigma\right)(\mathcal{L}(x)+\alpha)+\operatorname{Tr}(\beta x)+c$ for some $\alpha, \beta \in \mathbb{F}_{2^{n}}, c \in \mathbb{F}_{2}$ and a linearized permutation $\mathcal{L}$ of $\mathbb{F}_{2^{n}}$.
- $f_{1}$ and $f_{2}$ are difference set equivalent if $\mathcal{G}_{f_{1}}$ and $\mathcal{G}_{f_{2}}$ are equivalent as an RDS, i.e. $\mathcal{G}_{f_{2}}=\psi\left(\mathcal{G}_{f_{1}}\right) * b$ for some $\psi \in \operatorname{Aut}(G)$ and $b \in G$.

Fact: Let $f: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2}$.

- For $n$ even, $f$ is $c$-bent ${ }_{4} \Longleftrightarrow g:=f+\sigma(c, x)$ is bent.
- For $n$ odd, $f$ is $c$-bent ${ }_{4} \Longleftrightarrow g:=f+\sigma(c, x)$ is semibent, i.e. $\mathcal{W}_{g}(u) \in\left\{0, \pm 2^{(n+1) / 2}\right\}$, and $\mathcal{W}_{g}(u) \mathcal{W}_{g}(u+c)=0$ for all $u \in \mathbb{F}_{2^{n}}$.
Recall: For $c \neq 0, f$ is $c$-bent $_{4} \Longleftrightarrow \mathcal{G}_{f}$ is a $\left(2^{n}, 2,2^{n}, 2^{n-1}\right)$
$\operatorname{RDS}$ in $G_{c} \equiv \mathbb{Z}_{2}^{n-1} \times \mathbb{Z}_{4}$.
We consider $c=1$ and set $\sigma(x):=\sigma(1, x)$.
$G:=\left(\mathbb{F}_{2^{n}} \times \mathbb{F}_{2}, *\right)$ such that for any $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in G$, $\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}, y_{1}+y_{2}+\operatorname{Tr}\left(x_{1} x_{2}\right)\right)$.
Definition: Let $f_{1}$ and $f_{2}$ be negabent (1-bent ${ }_{4}$ ) functions.
- $f_{1}$ and $f_{2}$ are shifted-equivalent if $f_{1}+\sigma$ and $f_{2}+\sigma$ are EA-equivalent, i.e. $\left(f_{2}+\sigma\right)(x)=\left(f_{1}+\sigma\right)(\mathcal{L}(x)+\alpha)+\operatorname{Tr}(\beta x)+c$ for some $\alpha, \beta \in \mathbb{F}_{2^{n}}, c \in \mathbb{F}_{2}$ and a linearized permutation $\mathcal{L}$ of $\mathbb{F}_{2^{n}}$.
- $f_{1}$ and $f_{2}$ are difference set equivalent if $\mathcal{G}_{f_{1}}$ and $\mathcal{G}_{f_{2}}$ are equivalent as an RDS, i.e. $\mathcal{G}_{f_{2}}=\psi\left(\mathcal{G}_{f_{1}}\right) * b$ for some $\psi \in \operatorname{Aut}(G)$ and $b \in G$.

Fact: Let $f: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2}$.

- For $n$ even, $f$ is $c$-bent ${ }_{4} \Longleftrightarrow g:=f+\sigma(c, x)$ is bent.
- For $n$ odd, $f$ is $c$-bent $4 \Longleftrightarrow g:=f+\sigma(c, x)$ is semibent, i.e. $\mathcal{W}_{g}(u) \in\left\{0, \pm 2^{(n+1) / 2}\right\}$, and $\mathcal{W}_{g}(u) \mathcal{W}_{g}(u+c)=0$ for all $u \in \mathbb{F}_{2^{n}}$.
Recall: For $c \neq 0, f$ is $c$-bent $_{4} \Longleftrightarrow \mathcal{G}_{f}$ is a $\left(2^{n}, 2,2^{n}, 2^{n-1}\right)$
$\operatorname{RDS}$ in $G_{c} \equiv \mathbb{Z}_{2}^{n-1} \times \mathbb{Z}_{4}$.
We consider $c=1$ and set $\sigma(x):=\sigma(1, x)$.
$G:=\left(\mathbb{F}_{2^{n}} \times \mathbb{F}_{2}, *\right)$ such that for any $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in G$, $\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}, y_{1}+y_{2}+\operatorname{Tr}\left(x_{1} x_{2}\right)\right)$.
Definition: Let $f_{1}$ and $f_{2}$ be negabent (1-bent ${ }_{4}$ ) functions.
- $f_{1}$ and $f_{2}$ are shifted-equivalent if $f_{1}+\sigma$ and $f_{2}+\sigma$ are EA-equivalent, i.e. $\left(f_{2}+\sigma\right)(x)=\left(f_{1}+\sigma\right)(\mathcal{L}(x)+\alpha)+\operatorname{Tr}(\beta x)+c$ for some $\alpha, \beta \in \mathbb{F}_{2^{n}}, c \in \mathbb{F}_{2}$ and a linearized permutation $\mathcal{L}$ of $\mathbb{F}_{2^{n}}$.
- $f_{1}$ and $f_{2}$ are difference set equivalent if $\mathcal{G}_{f_{1}}$ and $\mathcal{G}_{f_{2}}$ are equivalent as an RDS, i.e. $\mathcal{G}_{f_{2}}=\psi\left(\mathcal{G}_{f_{1}}\right) * b$ for some $\psi \in \operatorname{Aut}(G)$ and $b \in G$.

Definition: $\Omega$ : the set of linearized permutations $\mathcal{L}$ of $\mathbb{F}_{2^{n}}$ such that $\operatorname{Tr}(x)=\operatorname{Tr}(\mathcal{L}(x))$ for all $x \in \mathbb{F}_{2^{n}}$.

## Proposition (A., Meidl, Pott, 2017):

Let $\psi_{\mathcal{L}, \beta}: \mathbb{F}_{2^{n}} \times \mathbb{F}_{2} \rightarrow \mathbb{F}_{2^{n}} \times \mathbb{F}_{2}$ defined by

$$
\psi_{\mathcal{L}, \beta}(x, y)=(\mathcal{L}(x), y+\sigma(x)+\sigma(\mathcal{L}(x))+\operatorname{Tr}(\beta x)) .
$$

Then

$$
\operatorname{Aut}(G)=\left\{\psi_{\mathcal{L}, \beta} \mid \mathcal{L} \in \Omega, \beta \in \mathbb{F}_{2^{n}}\right\}
$$

Recall: $\sigma(x)=\sum_{0 \leq i<j \leq n-1} x^{2^{i}} x^{2^{j}}$

## Theorem (A., Mbidl, Pott, 2017):

Negabent functions $f_{1}$ and $f_{2}$ are difference set equivalent if and only if

$$
f_{2}(x)=f_{1}(x)+\sigma(x)+\sigma(\mathcal{L}(x))+\operatorname{Tr}(\beta x)+c
$$

Definition: $\Omega$ : the set of linearized permutations $\mathcal{L}$ of $\mathbb{F}_{2^{n}}$ such that $\operatorname{Tr}(x)=\operatorname{Tr}(\mathcal{L}(x))$ for all $x \in \mathbb{F}_{2^{n}}$.

## Proposition (A., Meidl, Pott, 2017):

Let $\psi_{\mathcal{L}, \beta}: \mathbb{F}_{2^{n}} \times \mathbb{F}_{2} \rightarrow \mathbb{F}_{2^{n}} \times \mathbb{F}_{2}$ defined by

$$
\psi_{\mathcal{L}, \beta}(x, y)=(\mathcal{L}(x), y+\sigma(x)+\sigma(\mathcal{L}(x))+\operatorname{Tr}(\beta x))
$$

Then

$$
\operatorname{Aut}(G)=\left\{\psi_{\mathcal{L}, \beta} \mid \mathcal{L} \in \Omega, \beta \in \mathbb{F}_{2^{n}}\right\}
$$

Recall: $\sigma(x)=\sum_{0 \leq i<j \leq n-1} x^{2^{i}} x^{2^{j}}$

## Theorem (A., Meidl, Pott, 2017):

Negabent functions $f_{1}$ and $f_{2}$ are difference set equivalent if and only if

$$
f_{2}(x)=f_{1}(x)+\sigma(x)+\sigma(\mathcal{L}(x))+\operatorname{Tr}(\beta x)+c
$$

for some $\alpha, \beta \in \mathbb{F}_{2^{n}}, c \in \mathbb{F}_{2}$ and $\mathcal{L}(x) \in \Omega$.

$$
\begin{gathered}
f_{1}(x) \xrightarrow{\text { shifting to bent }} g_{1}(x)=f_{1}(x)+\sigma(x) \\
f_{2}(x)=g_{2}(x)+\sigma(x) \underset{\text { shifting to negabent }}{\stackrel{g_{2}}{ }(x)=g_{1}(\mathcal{L}(x)+a)+\operatorname{Tr}_{n}(b x)+d} \text { EA-equivalence }
\end{gathered}
$$

Observation:
Difference set equivalence $\Longrightarrow$ shifted equivalence
Question: Is the converse true?
Theorem (A., Meidl, Pott, 2017):
Two EA-equivalent functions can induce inequivalent different sets in $G$.

$$
\begin{gathered}
f_{1}(x) \xrightarrow{\text { shifting to bent }} g_{1}(x)=f_{1}(x)+\sigma(x) \\
f_{2}(x)=g_{2}(x)+\sigma(x) \underset{\text { shifting to negabent }}{\stackrel{g_{2}}{ }(x)}=g_{1}(\mathcal{L}(x)+a)+\operatorname{Tr}_{n}(b x)+d
\end{gathered}
$$

## Observation:

Difference set equivalence $\Longrightarrow$ shifted equivalence
Question: Is the converse true?
Theorem (A., Meidl, Pott, 2017):
Two EA-equivalent functions can induce inequivalent different sets in $G$.

$$
\begin{gathered}
f_{1}(x) \xrightarrow{\text { shifting to bent }} g_{1}(x)=f_{1}(x)+\sigma(x) \\
f_{2}(x)=g_{2}(x)+\sigma(x) \underset{\text { shifting to negabent }}{\stackrel{g_{2}}{ }(x)=g_{1}(\mathcal{L}(x)+a)+\operatorname{Tr}_{n}(b x)+d} \text { EA-equivalence }
\end{gathered}
$$

Observation:
Difference set equivalence $\Longrightarrow$ shifted equivalence
Question: Is the converse true?

## Theorem (A., Meidl, Pott, 2017):

Two EA-equivalent functions can induce inequivalent different sets in $G$.

$$
\begin{aligned}
& f_{1}(x) \xrightarrow{\text { shifting to bent }} g_{1}(x)=f_{1}(x)+\sigma(x) \\
& \text { EA-equivalence }
\end{aligned}
$$

Observation:
Difference set equivalence $\Longrightarrow$ shifted equivalence
Question: Is the converse true?

## Theorem (A., Meidl, Pott, 2017):

Two EA-equivalent functions can induce inequivalent different sets in $G$.

Grazie per l'attenzione!

