Spectra and Equivalence of Boolean Functions

Nurdagül Anbar (joint work with Wilfried Meidl and Alexander Pott)

RICAM, LINZ, AUSTRIA

4-10 June 2017, Fq13

2 Spectra of Boolean Functions

3 Equivalence of Boolean Functions

Recall: For a Boolean function $f : \mathbb{F}_{2^n} \to \mathbb{F}_2$ the unitary transform $\mathcal{V}_f^c : \mathbb{F}_{2^n} \to \mathbb{C}$ is defined by

$$\mathcal{V}_f^c(u) = \sum_{x \in \mathbb{F}_{2^n}} (-1)^{f(x) + \sigma(c,x)} i^{\operatorname{Tr}(cx)} (-1)^{\operatorname{Tr}(ux)} ,$$

where $i = \sqrt{-1}$, the function Tr(z) denotes the absolute trace of $z \in \mathbb{F}_{2^n}$ and $\sigma(c, x)$ is defined by

$$\sigma(c,x) = \sum_{0 \le i < j \le n-1} (cx)^{2^i} (cx)^{2^j} .$$

Definition:

f is called c-bent₄ if $|\mathcal{V}_f^c(u)| = 2^{n/2}$ for all $u \in \mathbb{F}_{2^n}$.

For c = 0, $\mathcal{V}_f^c(u)$ is the conventional Walsh transform $\mathcal{W}_f(u)$.

Recall: For a Boolean function $f : \mathbb{F}_{2^n} \to \mathbb{F}_2$ the unitary transform $\mathcal{V}_f^c : \mathbb{F}_{2^n} \to \mathbb{C}$ is defined by

$$\mathcal{V}_f^c(u) = \sum_{x \in \mathbb{F}_{2^n}} (-1)^{f(x) + \sigma(c,x)} i^{\operatorname{Tr}(cx)} (-1)^{\operatorname{Tr}(ux)} ,$$

where $i = \sqrt{-1}$, the function Tr(z) denotes the absolute trace of $z \in \mathbb{F}_{2^n}$ and $\sigma(c, x)$ is defined by

$$\sigma(c,x) = \sum_{0 \le i < j \le n-1} (cx)^{2^i} (cx)^{2^j} .$$

DEFINITION:

$$f$$
 is called c -bent₄ if $|\mathcal{V}_f^c(u)| = 2^{n/2}$ for all $u \in \mathbb{F}_{2^n}$.

For c = 0, $\mathcal{V}_f^c(u)$ is the conventional Walsh transform $\mathcal{W}_f(u)$.

Remarks:

- $\mathcal{V}_{f}^{c}(u)$ is defined to describe the component functions of a modified planar functions $F : \mathbb{F}_{2^{n}} \to \mathbb{F}_{2^{n}}$, i.e. functions for which F(x+a) + F(x) + ax is permutation of $\mathbb{F}_{2^{n}}$ for all $a \in \mathbb{F}_{2^{n}}^{*}$. (Zhou, 2013)
- (Sarkar, 2012) $f : \mathbb{F}_{2^n} \to \mathbb{F}_2$ is a *negabent function* if $f(x+a) + f(x) + \operatorname{Tr}(ax)$ is balanced for any $a \in \mathbb{F}_{2^n}^*$. This is equivalent *c*-bent₄ function for c = 1.

Fact: (A., Meidl, 2016) A function f is c-bent₄ \iff $f(x+a) + f(x) + \operatorname{Tr}(c^2ax)$ is balanced $\forall a \in \mathbb{F}_{2^n}^*$

Remarks:

- $\mathcal{V}_{f}^{c}(u)$ is defined to describe the component functions of a modified planar functions $F : \mathbb{F}_{2^{n}} \to \mathbb{F}_{2^{n}}$, i.e. functions for which F(x+a) + F(x) + ax is permutation of $\mathbb{F}_{2^{n}}$ for all $a \in \mathbb{F}_{2^{n}}^{*}$. (Zhou, 2013)
- (Sarkar, 2012) $f : \mathbb{F}_{2^n} \to \mathbb{F}_2$ is a *negabent function* if $f(x+a) + f(x) + \operatorname{Tr}(ax)$ is balanced for any $a \in \mathbb{F}_{2^n}^*$. This is equivalent *c*-bent₄ function for c = 1.

Fact: (A., Meidl, 2016) A function f is c-bent₄ \iff $f(x+a) + f(x) + \operatorname{Tr}(c^2ax)$ is balanced $\forall a \in \mathbb{F}_{2^n}^*$

• Let $G_{\mathbf{c}} := (\mathbb{F}_{2^n} \times \mathbb{F}_2, *)$ be the group, where "*" is defined by

$$(x_1, y_1) * (x_2, y_2) = (x_1 + x_2, y_1 + y_2 + \operatorname{Tr}(c^2 x_1 x_2))$$

for any $(x_1, y_1), (x_2, y_2) \in G_c$. Note that $G_c \cong \mathbb{Z}_2^{n-1} \times \mathbb{Z}_4$ for $c \neq 0$. Define $\mathcal{G}_f := \{(x, f(x)) : x \in \mathbb{F}_{2^n}\} \subset G_c$.

Fact: f is c-bent₄ $\iff \mathcal{G}_f$ is a $(2^n, 2, 2^n, 2^{n-1})$ RDS in G_c . **Recall:** f is bent $\iff \mathcal{G}_f$ is a $(2^n, 2, 2^n, 2^{n-1})$ RDS in \mathbb{Z}_2^{n+1} .

Definition: Let $D_a(f) := f(x+a) + f(x)$. A function f is called *partially bent* if $D_a(f)$ is either balanced or constant. **Fact:** $\Omega(f) = \{a \in \mathbb{F}_{2^n} | D_a(f) \text{ is constant}\}$: the linear space of f

f is partially bent $\Longrightarrow \mathcal{W}_f(u) \in \{0, \pm 2^{(n+s)/2}\}, s := \dim(\Omega(f))$

• Let $G_{\mathbf{c}} := (\mathbb{F}_{2^n} \times \mathbb{F}_2, *)$ be the group, where "*" is defined by

$$(x_1, y_1) * (x_2, y_2) = (x_1 + x_2, y_1 + y_2 + \operatorname{Tr}(c^2 x_1 x_2))$$

for any $(x_1, y_1), (x_2, y_2) \in G_c$. Note that $G_c \cong \mathbb{Z}_2^{n-1} \times \mathbb{Z}_4$ for $c \neq 0$. Define $\mathcal{G}_f := \{(x, f(x)) : x \in \mathbb{F}_{2^n}\} \subset G_c$.

Fact: f is c-bent₄ $\iff \mathcal{G}_f$ is a $(2^n, 2, 2^n, 2^{n-1})$ RDS in G_c . **Recall:** f is bent $\iff \mathcal{G}_f$ is a $(2^n, 2, 2^n, 2^{n-1})$ RDS in \mathbb{Z}_2^{n+1} .

Definition: Let $D_a(f) := f(x+a) + f(x)$. A function f is called *partially bent* if $D_a(f)$ is either balanced or constant.

Fact: $\Omega(f) = \{a \in \mathbb{F}_{2^n} | D_a(f) \text{ is constant} \}$: the linear space of ff is partially bent $\Longrightarrow \mathcal{W}_f(u) \in \{0, \pm 2^{(n+s)/2}\}, s := \dim(\Omega(f))$ • Let $G_{\mathbf{c}} := (\mathbb{F}_{2^n} \times \mathbb{F}_2, *)$ be the group, where "*" is defined by

$$(x_1, y_1) * (x_2, y_2) = (x_1 + x_2, y_1 + y_2 + \operatorname{Tr}(c^2 x_1 x_2))$$

for any $(x_1, y_1), (x_2, y_2) \in G_c$. Note that $G_c \cong \mathbb{Z}_2^{n-1} \times \mathbb{Z}_4$ for $c \neq 0$. Define $\mathcal{G}_f := \{(x, f(x)) : x \in \mathbb{F}_{2^n}\} \subset G_c$. Fact: f is c-bent₄ $\iff \mathcal{G}_f$ is a $(2^n, 2, 2^n, 2^{n-1})$ RDS in G_c .

Fact: f is c-bent₄ $\iff \mathcal{G}_f$ is a $(2^n, 2, 2^n, 2^{n-1})$ RDS in \mathcal{G}_c . Recall: f is bent $\iff \mathcal{G}_f$ is a $(2^n, 2, 2^n, 2^{n-1})$ RDS in \mathbb{Z}_2^{n+1} .

Definition: Let $D_a(f) := f(x+a) + f(x)$. A function f is called *partially bent* if $D_a(f)$ is either balanced or constant.

Fact: $\Omega(f) = \{a \in \mathbb{F}_{2^n} | D_a(f) \text{ is constant} \}$: the linear space of ff is partially bent $\Longrightarrow \mathcal{W}_f(u) \in \{0, \pm 2^{(n+s)/2}\}, s := \dim(\Omega(f))$ • Let $G_{\mathbf{c}} := (\mathbb{F}_{2^n} \times \mathbb{F}_2, *)$ be the group, where "*" is defined by

$$(x_1, y_1) * (x_2, y_2) = (x_1 + x_2, y_1 + y_2 + \operatorname{Tr}(c^2 x_1 x_2))$$

for any $(x_1, y_1), (x_2, y_2) \in G_c$. Note that $G_c \cong \mathbb{Z}_2^{n-1} \times \mathbb{Z}_4$ for $c \neq 0$. Define $\mathcal{G}_f := \{(x, f(x)) : x \in \mathbb{F}_{2^n}\} \subset G_c$. Fact: f is c-bent₄ $\iff \mathcal{G}_f$ is a $(2^n, 2, 2^n, 2^{n-1})$ RDS in G_c .

Recall: f is bent $\iff \mathcal{G}_f$ is a $(2^n, 2, 2^n, 2^{n-1})$ RDS in \mathbb{Z}_2^{n+1} .

Definition: Let $D_a(f) := f(x+a) + f(x)$. A function f is called *partially bent* if $D_a(f)$ is either balanced or constant. **Fact:** $\Omega(f) = \{a \in \mathbb{F}_{2^n} | D_a(f) \text{ is constant} \}$: the linear space of f

f is partially bent $\Longrightarrow \mathcal{W}_f(u) \in \{0, \pm 2^{(n+s)/2}\}, s := \dim(\Omega(f))$

 $\Omega_c(f) = \{ a \in \mathbb{F}_{2^n} | D_a(f) + \operatorname{Tr}(c^2 a x) \text{ is constant} \} \text{ is a subspace}$ of \mathbb{F}_{2^n} .

Definition: f is called *c*-partially bent if $D_a(f) + \text{Tr}(c^2ax)$ is constant or balanced for all $a \in \mathbb{F}_{2^n}$.

PROPOSITION:

If f is a c-partially bent then $\mathcal{V}_{f}^{c}(u) \in \{0, \pm 2^{(n+s_{c})/2}\}$, where $s_{c} = \dim(\Omega_{c}(f))$.

Definition/Fact: A quadratic function $f : \mathbb{F}_{2^n} \to \mathbb{F}_2$ is represented by $f(x) = \operatorname{Tr}\left(\sum_{i=0}^{\lfloor n/2 \rfloor} b_i x^{2^i+1}\right)$.

COROLLARY:

 $\Omega_c(f) = \{ a \in \mathbb{F}_{2^n} | D_a(f) + \operatorname{Tr}(c^2 a x) \text{ is constant} \} \text{ is a subspace}$ of \mathbb{F}_{2^n} .

Definition: f is called *c*-partially bent if $D_a(f) + \text{Tr}(c^2ax)$ is constant or balanced for all $a \in \mathbb{F}_{2^n}$.

PROPOSITION:

If f is a c-partially bent then $\mathcal{V}_{f}^{c}(u) \in \{0, \pm 2^{(n+s_{c})/2}\}$, where $s_{c} = \dim(\Omega_{c}(f))$.

Definition/Fact: A quadratic function $f : \mathbb{F}_{2^n} \to \mathbb{F}_2$ is represented by $f(x) = \operatorname{Tr}\left(\sum_{i=0}^{\lfloor n/2 \rfloor} b_i x^{2^i+1}\right)$.

Corollary:

 $\Omega_c(f) = \{ a \in \mathbb{F}_{2^n} | D_a(f) + \operatorname{Tr}(c^2 a x) \text{ is constant} \} \text{ is a subspace}$ of \mathbb{F}_{2^n} .

Definition: f is called *c*-partially bent if $D_a(f) + \text{Tr}(c^2ax)$ is constant or balanced for all $a \in \mathbb{F}_{2^n}$.

PROPOSITION:

If f is a c-partially bent then $\mathcal{V}_{f}^{c}(u) \in \{0, \pm 2^{(n+s_{c})/2}\}$, where $s_{c} = \dim(\Omega_{c}(f))$.

Definition/Fact: A quadratic function $f : \mathbb{F}_{2^n} \to \mathbb{F}_2$ is represented by $f(x) = \operatorname{Tr}\left(\sum_{i=0}^{\lfloor n/2 \rfloor} b_i x^{2^i+1}\right)$.

Corollary:

 $\Omega_c(f) = \{ a \in \mathbb{F}_{2^n} | D_a(f) + \operatorname{Tr}(c^2 a x) \text{ is constant} \} \text{ is a subspace}$ of \mathbb{F}_{2^n} .

Definition: f is called *c*-partially bent if $D_a(f) + \text{Tr}(c^2ax)$ is constant or balanced for all $a \in \mathbb{F}_{2^n}$.

PROPOSITION:

If f is a c-partially bent then $\mathcal{V}_{f}^{c}(u) \in \{0, \pm 2^{(n+s_{c})/2}\}$, where $s_{c} = \dim(\Omega_{c}(f))$.

Definition/Fact: A quadratic function $f : \mathbb{F}_{2^n} \to \mathbb{F}_2$ is represented by $f(x) = \operatorname{Tr}\left(\sum_{i=0}^{\lfloor n/2 \rfloor} b_i x^{2^i+1}\right)$.

COROLLARY:

 $\Omega_c(f) = \{ a \in \mathbb{F}_{2^n} | D_a(f) + \operatorname{Tr}(c^2 a x) \text{ is constant} \} \text{ is a subspace}$ of \mathbb{F}_{2^n} .

Definition: f is called *c*-partially bent if $D_a(f) + \text{Tr}(c^2ax)$ is constant or balanced for all $a \in \mathbb{F}_{2^n}$.

PROPOSITION:

If f is a c-partially bent then $\mathcal{V}_{f}^{c}(u) \in \{0, \pm 2^{(n+s_{c})/2}\}$, where $s_{c} = \dim(\Omega_{c}(f))$.

Definition/Fact: A quadratic function $f : \mathbb{F}_{2^n} \to \mathbb{F}_2$ is represented by $f(x) = \operatorname{Tr}\left(\sum_{i=0}^{\lfloor n/2 \rfloor} b_i x^{2^i+1}\right)$.

COROLLARY:

For
$$f(x) = \operatorname{Tr}\left(\sum_{i=0}^{\lfloor n/2 \rfloor} b_i x^{2^i+1}\right)$$
, set
 $h(T) := \sum_{i=0}^{\lfloor n/2 \rfloor} b_i T^{2^i} + b_i^{2^{n-i}} T^{2^{n-i}}$
 $a \in \Omega_c(f) \iff f(x+a) + f(x) + \operatorname{Tr}(c^2 a x) = 0$
 $\iff a \in \operatorname{Ker}(h(T) + c^2 T) =: K_c$

LEMMA:

$$\mathbb{F}_{2^n} = \bigcup_{c \in \mathbb{F}_{2^n}} K_c \text{ with } K_{c_1} \cap K_{c_2} = \{0\} \text{ for } c_1 \neq c_2.$$

Optimal: $\mathcal{V}_f^c(u) \in \{0, \pm 2^{(n+1)/2}\}$, i.e. dim $(K_c) = 1$, for all $c \in \mathbb{F}_{2^n}$ but one!

This holds $\iff h(T)/T$ is a permutation.

PROPOSITION:

For
$$f(x) = \operatorname{Tr}\left(\sum_{i=0}^{\lfloor n/2 \rfloor} b_i x^{2^i+1}\right)$$
, set
 $h(T) := \sum_{i=0}^{\lfloor n/2 \rfloor} b_i T^{2^i} + b_i^{2^{n-i}} T^{2^{n-i}}$
 $a \in \Omega_c(f) \iff f(x+a) + f(x) + \operatorname{Tr}(c^2 a x) = 0$
 $\iff a \in \operatorname{Ker}(h(T) + c^2 T) =: K_c$

LEMMA:

$$\mathbb{F}_{2^n} = \bigcup_{c \in \mathbb{F}_{2^n}} K_c \text{ with } K_{c_1} \cap K_{c_2} = \{0\} \text{ for } c_1 \neq c_2.$$

Optimal: $\mathcal{V}_f^c(u) \in \{0, \pm 2^{(n+1)/2}\}$, i.e. dim $(K_c) = 1$, for all $c \in \mathbb{F}_{2^n}$ but one!

This holds $\iff h(T)/T$ is a permutation.

PROPOSITION:

For
$$f(x) = \operatorname{Tr}\left(\sum_{i=0}^{\lfloor n/2 \rfloor} b_i x^{2^i+1}\right)$$
, set
 $h(T) := \sum_{i=0}^{\lfloor n/2 \rfloor} b_i T^{2^i} + b_i^{2^{n-i}} T^{2^{n-i}}$
 $a \in \Omega_c(f) \iff f(x+a) + f(x) + \operatorname{Tr}(c^2 a x) = 0$
 $\iff a \in \operatorname{Ker}(h(T) + c^2 T) =: K_c$

LEMMA:

$$\mathbb{F}_{2^n} = \bigcup_{c \in \mathbb{F}_{2^n}} K_c$$
 with $K_{c_1} \cap K_{c_2} = \{0\}$ for $c_1 \neq c_2$.

Optimal: $\mathcal{V}_f^c(u) \in \{0, \pm 2^{(n+1)/2}\}$, i.e. dim $(K_c) = 1$, for all $c \in \mathbb{F}_{2^n}$ but one!

This holds $\iff h(T)/T$ is a permutation.

PROPOSITION:

For
$$f(x) = \operatorname{Tr}\left(\sum_{i=0}^{\lfloor n/2 \rfloor} b_i x^{2^i+1}\right)$$
, set
 $h(T) := \sum_{i=0}^{\lfloor n/2 \rfloor} b_i T^{2^i} + b_i^{2^{n-i}} T^{2^{n-i}}$
 $a \in \Omega_c(f) \iff f(x+a) + f(x) + \operatorname{Tr}(c^2 a x) = 0$
 $\iff a \in \operatorname{Ker}(h(T) + c^2 T) =: K_c$

LEMMA:

$$\mathbb{F}_{2^n} = \bigcup_{c \in \mathbb{F}_{2^n}} K_c \text{ with } K_{c_1} \cap K_{c_2} = \{0\} \text{ for } c_1 \neq c_2.$$

Optimal: $\mathcal{V}_f^c(u) \in \{0, \pm 2^{(n+1)/2}\}$, i.e. dim $(K_c) = 1$, for all $c \in \mathbb{F}_{2^n}$ but one!

This holds $\iff h(T)/T$ is a permutation.

PROPOSITION:

For
$$f(x) = \operatorname{Tr}\left(\sum_{i=0}^{\lfloor n/2 \rfloor} b_i x^{2^i+1}\right)$$
, set
 $h(T) := \sum_{i=0}^{\lfloor n/2 \rfloor} b_i T^{2^i} + b_i^{2^{n-i}} T^{2^{n-i}}$
 $a \in \Omega_c(f) \iff f(x+a) + f(x) + \operatorname{Tr}(c^2 a x) = 0$
 $\iff a \in \operatorname{Ker}(h(T) + c^2 T) =: K_c$

LEMMA:

$$\mathbb{F}_{2^n} = \bigcup_{c \in \mathbb{F}_{2^n}} K_c \text{ with } K_{c_1} \cap K_{c_2} = \{0\} \text{ for } c_1 \neq c_2.$$

Optimal: $\mathcal{V}_f^c(u) \in \{0, \pm 2^{(n+1)/2}\}$, i.e. dim $(K_c) = 1$, for all $c \in \mathbb{F}_{2^n}$ but one!

This holds $\iff h(T)/T$ is a permutation.

PROPOSITION:

For
$$f(x) = \operatorname{Tr}\left(\sum_{i=0}^{\lfloor n/2 \rfloor} b_i x^{2^i+1}\right)$$
, set
 $h(T) := \sum_{i=0}^{\lfloor n/2 \rfloor} b_i T^{2^i} + b_i^{2^{n-i}} T^{2^{n-i}}$
 $a \in \Omega_c(f) \iff f(x+a) + f(x) + \operatorname{Tr}(c^2 a x) = 0$
 $\iff a \in \operatorname{Ker}(h(T) + c^2 T) =: K_c$

LEMMA:

$$\mathbb{F}_{2^n} = \bigcup_{c \in \mathbb{F}_{2^n}} K_c \text{ with } K_{c_1} \cap K_{c_2} = \{0\} \text{ for } c_1 \neq c_2.$$

Optimal: $\mathcal{V}_f^c(u) \in \{0, \pm 2^{(n+1)/2}\}$, i.e. dim $(K_c) = 1$, for all $c \in \mathbb{F}_{2^n}$ but one!

This holds $\iff h(T)/T$ is a permutation.

PROPOSITION:

COROLLARY:

A quadratic function $f : \mathbb{F}_{2^n} \to \mathbb{F}_2$ is *c*-bent₄ for at least three distinct $c \in \mathbb{F}_{2^n}$.

LEMMA:

Let $f : \mathbb{F}_{2^n} \to \mathbb{F}_2$ with n even.

- A function f is c-bent₄ if and only if $f + \sigma(c, x)$ is bent.
- A function f is c-bent₄ if and only if f(dx) is cd-bent₄.

Theorem (A., Meidl, 2017):

For *n* even, any quadratic function $f : \mathbb{F}_{2^n} \to \mathbb{F}_2$ is essentially *bent-negabent*. (Sarkar 2012)

COROLLARY:

A quadratic function $f : \mathbb{F}_{2^n} \to \mathbb{F}_2$ is *c*-bent₄ for at least three distinct $c \in \mathbb{F}_{2^n}$.

LEMMA:

Let $f : \mathbb{F}_{2^n} \to \mathbb{F}_2$ with n even.

- A function f is c-bent₄ if and only if $f + \sigma(c, x)$ is bent.
- A function f is c-bent₄ if and only if f(dx) is cd-bent₄.

Theorem (A., Meidl, 2017):

For *n* even, any quadratic function $f : \mathbb{F}_{2^n} \to \mathbb{F}_2$ is essentially *bent-negabent*. (Sarkar 2012)

COROLLARY:

A quadratic function $f : \mathbb{F}_{2^n} \to \mathbb{F}_2$ is *c*-bent₄ for at least three distinct $c \in \mathbb{F}_{2^n}$.

LEMMA:

Let $f : \mathbb{F}_{2^n} \to \mathbb{F}_2$ with n even.

- A function f is c-bent₄ if and only if $f + \sigma(c, x)$ is bent.
- A function f is c-bent₄ if and only if f(dx) is cd-bent₄.

Theorem (A., Meidl, 2017):

For *n* even, any quadratic function $f : \mathbb{F}_{2^n} \to \mathbb{F}_2$ is essentially *bent-negabent*. (Sarkar 2012)

(1) Let $f(x) = \text{Tr}(\alpha x^3)$ for some $\alpha \in \mathbb{F}_{2^n}$.

- If n be odd, then f is c-bent₄ for $(2^n + 1)/3$ different $c \in \mathbb{F}_{2^n}$, 1 partially c-bent₄ for 2^{n-1} different $c \in \mathbb{F}_{2^n}$ and 2 partially c-bent₄ for $(2^{n-1} 1)/3$ different $c \in \mathbb{F}_{2^n}$.
- For *n* is even, let ζ be the primitive root of unity and N_i be the number of trace zero elements in $Q_i := \zeta^i (\mathbb{F}_{2^n}^*)^3$ for i = 1, 2, 3. If $\alpha \in Q_i$, then *f* is *c*-bent₄ for $2N_i + 1$ different $c \in \mathbb{F}_{2^n}$, 1 partially *c*-bent₄ for $2^n - -3N_i$ different $c \in \mathbb{F}_{2^n}$ and 2 partially *c*-bent₄ for N_i different $c \in \mathbb{F}_{2^n}$.

(2) Let n = 2k and $f(x) = \operatorname{Tr}(\alpha x^{2^k})$ for some $\alpha \in \mathbb{F}_{2^n}$.

- If $\alpha \notin \mathbb{F}_{2^k}$, then f c-bent₄ for $2^n 2^k 1$ different $c \in \mathbb{F}_{2^n}$ and k partially c-bent₄ for $2^k + 1$ different $c \in \mathbb{F}_{2^n}$.
- If $\alpha \in \mathbb{F}_{2^k}$, then f = 0, and hence *c*-bent₄ for all $c \in \mathbb{F}_{2^n}$.

Let n = 2k, k > 1 odd, and let $f(x) = \text{Tr}(x^{2^k+3})$. Then f is negabert and not c-bent₄ for any $c \neq 1$.

Remark: (2016) Zhou and Qu show that n = 2k, k > 1 odd, $f(x) = \text{Tr}(x^{2^{k}+3})$ is negabent. Moreover, by MAGMA, for $n \leq 14$ the monomial $f(x) = \text{Tr}(\gamma x^{2^{k}+3})$ is negabent only for $\gamma = 1$.

COROLLARY:

For n = 2k and k > 1 odd, $f(x) = \text{Tr}(\gamma x^{2^k+3})$ is negabent only for $\gamma = 1$.

Recall: A function f is c-bent₄ if and only if f(dx) is cd-bent₄.

Let n = 2k, k > 1 odd, and let $f(x) = \text{Tr}(x^{2^k+3})$. Then f is negabert and not c-bent₄ for any $c \neq 1$.

Remark: (2016) Zhou and Qu show that n = 2k, k > 1 odd, $f(x) = \text{Tr}(x^{2^{k}+3})$ is negabent. Moreover, by MAGMA, for $n \le 14$ the monomial $f(x) = \text{Tr}(\gamma x^{2^{k}+3})$ is negabent only for $\gamma = 1$.

COROLLARY:

For n = 2k and k > 1 odd, $f(x) = \text{Tr}(\gamma x^{2^k+3})$ is negabent only for $\gamma = 1$.

Recall: A function f is c-bent₄ if and only if f(dx) is cd-bent₄.

Let n = 2k, k > 1 odd, and let $f(x) = \text{Tr}(x^{2^k+3})$. Then f is negabert and not c-bent₄ for any $c \neq 1$.

Remark: (2016) Zhou and Qu show that n = 2k, k > 1 odd, $f(x) = \text{Tr}(x^{2^{k+3}})$ is negabent. Moreover, by MAGMA, for $n \le 14$ the monomial $f(x) = \text{Tr}(\gamma x^{2^{k+3}})$ is negabent only for $\gamma = 1$.

COROLLARY:

For n = 2k and k > 1 odd, $f(x) = \text{Tr}(\gamma x^{2^k+3})$ is negabent only for $\gamma = 1$.

Recall: A function f is c-bent₄ if and only if f(dx) is cd-bent₄.

- For *n* even, *f* is *c*-bent₄ \iff *g* := *f* + $\sigma(c, x)$ is bent.
- For *n* odd, *f* is *c*-bent₄ $\iff g := f + \sigma(c, x)$ is semibent, i.e. $\mathcal{W}_g(u) \in \{0, \pm 2^{(n+1)/2}\}$, and $\mathcal{W}_g(u)\mathcal{W}_g(u+c) = 0$ for all $u \in \mathbb{F}_{2^n}$.

Recall: For $c \neq 0$, f is c-bent₄ $\iff \mathcal{G}_f$ is a $(2^n, 2, 2^n, 2^{n-1})$ RDS in $G_c \equiv \mathbb{Z}_2^{n-1} \times \mathbb{Z}_4$.

We consider c = 1 and set $\sigma(x) := \sigma(1, x)$. $G := (\mathbb{F}_{2^n} \times \mathbb{F}_2, *)$ such that for any $(x_1, y_1), (x_2, y_2) \in G$, $(x_1, y_1) * (x_2, y_2) = (x_1 + x_2, y_1 + y_2 + \operatorname{Tr}(x_1 x_2))$. **Definition:** Let f_1 and f_2 be negabert (1-bent₄) functions

• f_1 and f_2 are *shifted-equivalent* if $f_1 + \sigma$ and $f_2 + \sigma$ are EA-equivalent, i.e.

 $(f_2 + \sigma)(x) = (f_1 + \sigma)(\mathcal{L}(x) + \alpha) + \operatorname{Tr}(\beta x) + c$ for some $\alpha, \beta \in \mathbb{F}_{2^n}, c \in \mathbb{F}_2$ and a linearized permutation \mathcal{L} of \mathbb{F}_{2^n} .

- For *n* even, *f* is *c*-bent₄ \iff $g := f + \sigma(c, x)$ is bent.
- For *n* odd, *f* is *c*-bent₄ \iff $g := f + \sigma(c, x)$ is semibent, i.e. $\mathcal{W}_g(u) \in \{0, \pm 2^{(n+1)/2}\}$, and $\mathcal{W}_g(u)\mathcal{W}_g(u+c) = 0$ for all $u \in \mathbb{F}_{2^n}$.

Recall: For $c \neq 0$, f is c-bent₄ $\iff \mathcal{G}_f$ is a $(2^n, 2, 2^n, 2^{n-1})$ RDS in $G_c \equiv \mathbb{Z}_2^{n-1} \times \mathbb{Z}_4$.

We consider c = 1 and set $\sigma(x) := \sigma(1, x)$. $G := (\mathbb{F}_{2^n} \times \mathbb{F}_2, *)$ such that for any $(x_1, y_1), (x_2, y_2) \in G$, $(x_1, y_1) * (x_2, y_2) = (x_1 + x_2, y_1 + y_2 + \operatorname{Tr}(x_1 x_2))$. **Definition:** Let f_1 and f_2 be negabert (1-bent₄) functions

• f_1 and f_2 are *shifted-equivalent* if $f_1 + \sigma$ and $f_2 + \sigma$ are EA-equivalent, i.e.

 $(f_2 + \sigma)(x) = (f_1 + \sigma)(\mathcal{L}(x) + \alpha) + \operatorname{Tr}(\beta x) + c$ for some $\alpha, \beta \in \mathbb{F}_{2^n}, c \in \mathbb{F}_2$ and a linearized permutation \mathcal{L} of \mathbb{F}_{2^n} .

- For *n* even, *f* is *c*-bent₄ \iff $g := f + \sigma(c, x)$ is bent.
- For n odd, f is c-bent₄ $\iff g := f + \sigma(c, x)$ is semibent, i.e. $\mathcal{W}_g(u) \in \{0, \pm 2^{(n+1)/2}\}$, and $\mathcal{W}_g(u)\mathcal{W}_g(u+c) = 0$ for all $u \in \mathbb{F}_{2^n}$.

Recall: For $c \neq 0$, f is c-bent₄ $\iff \mathcal{G}_f$ is a $(2^n, 2, 2^n, 2^{n-1})$ RDS in $G_c \equiv \mathbb{Z}_2^{n-1} \times \mathbb{Z}_4$.

We consider c = 1 and set $\sigma(x) := \sigma(1, x)$. $G := (\mathbb{F}_{2^n} \times \mathbb{F}_2, *)$ such that for any $(x_1, y_1), (x_2, y_2) \in G$, $(x_1, y_1) * (x_2, y_2) = (x_1 + x_2, y_1 + y_2 + \operatorname{Tr}(x_1 x_2))$. Definition: Let f_1 and f_2 be negative. (1-bent4) function

• f_1 and f_2 are *shifted-equivalent* if $f_1 + \sigma$ and $f_2 + \sigma$ are EA-equivalent, i.e.

 $(f_2 + \sigma)(x) = (f_1 + \sigma)(\mathcal{L}(x) + \alpha) + \operatorname{Tr}(\beta x) + c$ for some $\alpha, \beta \in \mathbb{F}_{2^n}, c \in \mathbb{F}_2$ and a linearized permutation \mathcal{L} of \mathbb{F}_{2^n} .

- For *n* even, *f* is *c*-bent₄ \iff $g := f + \sigma(c, x)$ is bent.
- For n odd, f is c-bent₄ $\iff g := f + \sigma(c, x)$ is semibent, i.e. $\mathcal{W}_g(u) \in \{0, \pm 2^{(n+1)/2}\}$, and $\mathcal{W}_g(u)\mathcal{W}_g(u+c) = 0$ for all $u \in \mathbb{F}_{2^n}$.

Recall: For $c \neq 0$, f is c-bent₄ $\iff \mathcal{G}_f$ is a $(2^n, 2, 2^n, 2^{n-1})$ RDS in $G_c \equiv \mathbb{Z}_2^{n-1} \times \mathbb{Z}_4$.

We consider c = 1 and set $\sigma(x) := \sigma(1, x)$. $G := (\mathbb{F}_{2^n} \times \mathbb{F}_2, *)$ such that for any $(x_1, y_1), (x_2, y_2) \in G$, $(x_1, y_1) * (x_2, y_2) = (x_1 + x_2, y_1 + y_2 + \operatorname{Tr}(x_1 x_2))$. **Definition:** Let f_1 and f_2 be negabert (1-bent₄) functions.

• f_1 and f_2 are *shifted-equivalent* if $f_1 + \sigma$ and $f_2 + \sigma$ are EA-equivalent, i.e.

$$(f_2 + \sigma)(x) = (f_1 + \sigma)(\mathcal{L}(x) + \alpha) + \operatorname{Tr}(\beta x) + c$$
 for some $\alpha, \beta \in \mathbb{F}_{2^n}, c \in \mathbb{F}_2$ and a linearized permutation \mathcal{L} of \mathbb{F}_{2^n} .

Definition: Ω : the set of linearized permutations \mathcal{L} of \mathbb{F}_{2^n} such that $\operatorname{Tr}(x) = \operatorname{Tr}(\mathcal{L}(x))$ for all $x \in \mathbb{F}_{2^n}$.

PROPOSITION (A., MEIDL, POTT, 2017):

Let $\psi_{\mathcal{L},\beta}: \mathbb{F}_{2^n} \times \mathbb{F}_2 \to \mathbb{F}_{2^n} \times \mathbb{F}_2$ defined by

$$\psi_{\mathcal{L},\beta}(x,y) = (\mathcal{L}(x), y + \sigma(x) + \sigma(\mathcal{L}(x)) + \operatorname{Tr}(\beta x))$$

Then

$$\operatorname{Aut}(G) = \{ \psi_{\mathcal{L},\beta} \, | \, \mathcal{L} \in \Omega, \, \beta \in \mathbb{F}_{2^n} \} \, .$$

Recall: $\sigma(x) = \sum_{0 \le i < j \le n-1} x^{2^i} x^{2^j}$

Theorem (A., Meidl, Pott, 2017):

Negabent functions f_1 and f_2 are difference set equivalent if and only if

$$f_2(x) = f_1(x) + \sigma(x) + \sigma(\mathcal{L}(x)) + \operatorname{Tr}(\beta x) + c$$

for some $\alpha, \beta \in \mathbb{F}_{2^n}$, $c \in \mathbb{F}_2$ and $\mathcal{L}(x) \in \Omega$.

Definition: Ω : the set of linearized permutations \mathcal{L} of \mathbb{F}_{2^n} such that $\operatorname{Tr}(x) = \operatorname{Tr}(\mathcal{L}(x))$ for all $x \in \mathbb{F}_{2^n}$.

PROPOSITION (A., MEIDL, POTT, 2017):

Let $\psi_{\mathcal{L},\beta}: \mathbb{F}_{2^n} \times \mathbb{F}_2 \to \mathbb{F}_{2^n} \times \mathbb{F}_2$ defined by

$$\psi_{\mathcal{L},\beta}(x,y) = (\mathcal{L}(x), y + \sigma(x) + \sigma(\mathcal{L}(x)) + \operatorname{Tr}(\beta x))$$

Then

$$\operatorname{Aut}(G) = \{ \psi_{\mathcal{L},\beta} \, | \, \mathcal{L} \in \Omega, \, \beta \in \mathbb{F}_{2^n} \} \, .$$

Recall: $\sigma(x) = \sum_{0 \le i < j \le n-1} x^{2^i} x^{2^j}$

Theorem (A., Meidl, Pott, 2017):

Negabent functions f_1 and f_2 are difference set equivalent if and only if

$$f_2(x) = f_1(x) + \sigma(x) + \sigma(\mathcal{L}(x)) + \operatorname{Tr}(\beta x) + c$$

for some $\alpha, \beta \in \mathbb{F}_{2^n}$, $c \in \mathbb{F}_2$ and $\mathcal{L}(x) \in \Omega$.

$$f_1(x) \xrightarrow{\text{shifting to bent}} g_1(x) = f_1(x) + \sigma(x)$$

$$\downarrow \text{EA-equivalence}$$

$$f_2(x) = g_2(x) + \sigma(x) \xleftarrow{\text{shifting to negativent}} g_2(x) = g_1(\mathcal{L}(x) + a) + \text{Tr}_n(bx) + d$$

Difference set equivalence \implies shifted equivalence

Question: Is the converse true?

Theorem (A., Meidl, Pott, 2017):

$$f_1(x) \xrightarrow{\text{shifting to bent}} g_1(x) = f_1(x) + \sigma(x)$$

$$\downarrow \text{EA-equivalence}$$

$$f_2(x) = g_2(x) + \sigma(x) \xleftarrow{\text{shifting to negativent}} g_2(x) = g_1(\mathcal{L}(x) + a) + \text{Tr}_n(bx) + d$$

Difference set equivalence \implies shifted equivalence

Question: Is the converse true?

Theorem (A., Meidl, Pott, 2017):

$$f_1(x) \xrightarrow{\text{shifting to bent}} g_1(x) = f_1(x) + \sigma(x)$$

$$\downarrow \text{EA-equivalence}$$

$$f_2(x) = g_2(x) + \sigma(x) \xleftarrow{\text{shifting to negativent}} g_2(x) = g_1(\mathcal{L}(x) + a) + \text{Tr}_n(bx) + d$$

Difference set equivalence \implies shifted equivalence

Question: Is the converse true?

Theorem (A., Meidl, Pott, 2017):

$$f_1(x) \xrightarrow{\text{shifting to bent}} g_1(x) = f_1(x) + \sigma(x)$$

$$\downarrow \text{EA-equivalence}$$

$$f_2(x) = g_2(x) + \sigma(x) \xleftarrow{\text{shifting to negativent}} g_2(x) = g_1(\mathcal{L}(x) + a) + \text{Tr}_n(bx) + d$$

Difference set equivalence \implies shifted equivalence

Question: Is the converse true?

THEOREM (A., MEIDL, POTT, 2017):

Grazie per l'attenzione!