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Introduction Spectra of Boolean Functions Equivalence of Boolean Functions

Recall: For a Boolean function f : F2n → F2 the unitary
transform Vcf : F2n → C is defined by

Vcf (u) =
∑
x∈F2n

(−1)f(x)+σ(c,x)iTr(cx)(−1)Tr(ux) ,

where i =
√
−1, the function Tr(z) denotes the absolute trace of

z ∈ F2n and σ(c, x) is defined by

σ(c, x) =
∑

0≤i<j≤n−1
(cx)2

i
(cx)2

j
.

Definition:

f is called c-bent4 if |Vcf (u)| = 2n/2 for all u ∈ F2n .

For c = 0, Vcf (u) is the conventional Walsh transform Wf (u).
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Remarks:

Vcf (u) is defined to describe the component functions of a
modified planar functions F : F2n → F2n , i.e. functions for
which F (x+ a) + F (x) + ax is permutation of F2n for all
a ∈ F∗2n . (Zhou, 2013)

(Sarkar, 2012) f : F2n → F2 is a negabent function if
f(x+ a) + f(x) + Tr(ax) is balanced for any a ∈ F∗2n . This
is equivalent c-bent4 function for c = 1.

Fact: (A., Meidl, 2016) A function f is c-bent4 ⇐⇒
f(x+ a) + f(x) + Tr(c2ax) is balanced ∀a ∈ F∗2n
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Let Gc := (F2n × F2, ∗) be the group, where “∗” is defined
by

(x1, y1) ∗ (x2, y2) =
(
x1 + x2, y1 + y2 + Tr(c2x1x2)

)
for any (x1, y1), (x2, y2) ∈ Gc. Note that Gc ∼= Zn−12 × Z4

for c 6= 0.
Define Gf := {(x, f(x)) : x ∈ F2n} ⊂ Gc.

Fact: f is c-bent4 ⇐⇒ Gf is a (2n, 2, 2n, 2n−1) RDS in Gc.

Recall: f is bent ⇐⇒ Gf is a (2n, 2, 2n, 2n−1) RDS in
Zn+1
2 .

Definition: Let Da(f) := f(x+ a) + f(x). A function f is
called partially bent if Da(f) is either balanced or constant.

Fact: Ω(f) = {a ∈ F2n |Da(f) is constant}: the linear space of f

f is partially bent =⇒ Wf (u) ∈ {0,±2(n+s)/2}, s := dim(Ω(f))
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Lemma:

Ωc(f) = {a ∈ F2n |Da(f) + Tr(c2ax) is constant} is a subspace
of F2n .

Definition: f is called c-partially bent if Da(f) + Tr(c2ax) is
constant or balanced for all a ∈ F2n .

Proposition:

If f is a c-partially bent then Vcf (u) ∈ {0,±2(n+sc)/2}, where
sc = dim(Ωc(f)).

Definition/Fact: A quadratic function f : F2n → F2 is

represented by f(x) = Tr
(∑bn/2c

i=0 bix
2i+1

)
.

Corollary:

f is quadratic =⇒ Vcf (u) ∈ {0,±2(n+sc)/2} for some sc ≥ 0.
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Question: What is the spectra of a quadratic function fwith
respect to Vcf while c varies?

For f(x) = Tr
(∑bn/2c

i=0 bix
2i+1

)
, set

h(T ) :=
∑bn/2c

i=0 biT
2i + b2

n−i

i T 2n−i

a ∈ Ωc(f)⇐⇒ f(x+ a) + f(x) + Tr(c2ax) = 0

⇐⇒ a ∈ Ker(h(T ) + c2T ) =: Kc

Lemma:

F2n = ∪c∈F2n
Kc with Kc1 ∩Kc2 = {0} for c1 6= c2.

Optimal: Vcf (u) ∈ {0,±2(n+1)/2}, i.e. dim(Kc) = 1, for all
c ∈ F2n but one!

This holds ⇐⇒ h(T )/T is a permutation.

Proposition:

h(T )/T is not a permutation.
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Corollary:

A quadratic function f : F2n → F2 is c-bent4 for at least three
distinct c ∈ F2n .

Lemma:

Let f : F2n → F2 with n even.

A function f is c-bent4 if and only if f + σ(c, x) is bent.

A function f is c-bent4 if and only if f(dx) is cd-bent4.

Theorem (A., Meidl, 2017):

For n even, any quadratic function f : F2n → F2 is essentially
bent–negabent. (Sarkar 2012)
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Theorem (A., Meidl, 2017):

(1) Let f(x) = Tr(αx3) for some α ∈ F2n .

If n be odd, then f is c-bent4 for (2n + 1)/3 different
c ∈ F2n , 1 partially c-bent4 for 2n−1 different c ∈ F2n and 2
partially c-bent4 for (2n−1 − 1)/3 different c ∈ F2n .

For n is even, let ζ be the primitive root of unity and Ni be
the number of trace zero elements in Qi := ζi(F∗2n)3 for
i = 1, 2, 3. If α ∈ Qi, then f is c-bent4 for 2Ni + 1 different
c ∈ F2n , 1 partially c-bent4 for 2n −−3Ni different c ∈ F2n

and 2 partially c-bent4 for Ni different c ∈ F2n .

(2) Let n = 2k and f(x) = Tr(αx2
k
) for some α ∈ F2n .

If α 6∈ F2k , then f c-bent4 for 2n − 2k − 1 different c ∈ F2n

and k partially c-bent4 for 2k + 1 different c ∈ F2n .

If α ∈ F2k , then f = 0, and hence c-bent4 for all c ∈ F2n .
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Theorem (A., Meidl, 2017):

Let n = 2k, k > 1 odd, and let f(x) = Tr(x2
k+3). Then f is

negabent and not c-bent4 for any c 6= 1.

Remark: (2016) Zhou and Qu show that n = 2k, k > 1 odd,

f(x) = Tr(x2
k+3) is negabent. Moreover, by MAGMA, for

n ≤ 14 the monomial f(x) = Tr(γx2
k+3) is negabent only for

γ = 1.

Corollary:

For n = 2k and k > 1 odd, f(x) = Tr(γx2
k+3) is negabent only

for γ = 1.

Recall: A function f is c-bent4 if and only if f(dx) is cd-bent4.
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Fact: Let f : F2n → F2.

For n even, f is c-bent4 ⇐⇒ g := f + σ(c, x) is bent.
For n odd, f is c-bent4 ⇐⇒ g := f + σ(c, x) is semibent,
i.e. Wg(u) ∈ {0,±2(n+1)/2}, and Wg(u)Wg(u+ c) = 0 for
all u ∈ F2n .

Recall: For c 6= 0, f is c-bent4 ⇐⇒ Gf is a (2n, 2, 2n, 2n−1)
RDS in Gc ≡ Zn−12 × Z4.

We consider c = 1 and set σ(x) := σ(1, x).
G := (F2n × F2, ∗) such that for any (x1, y1), (x2, y2) ∈ G,
(x1, y1) ∗ (x2, y2) = (x1 + x2, y1 + y2 + Tr(x1x2)).
Definition: Let f1 and f2 be negabent (1-bent4) functions.

f1 and f2 are shifted-equivalent if f1 + σ and f2 + σ are
EA-equivalent, i.e.
(f2 + σ)(x) = (f1 + σ)(L(x) + α) + Tr(βx) + c for some
α, β ∈ F2n , c ∈ F2 and a linearized permutation L of F2n .
f1 and f2 are difference set equivalent if Gf1 and Gf2 are
equivalent as an RDS, i.e. Gf2 = ψ(Gf1) ∗ b for some
ψ ∈ Aut(G) and b ∈ G.
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ψ ∈ Aut(G) and b ∈ G.
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Definition: Ω: the set of linearized permutations L of F2n such
that Tr(x) = Tr(L(x)) for all x ∈ F2n .

Proposition (A., Meidl, Pott, 2017):

Let ψL,β : F2n × F2 → F2n × F2 defined by

ψL,β(x, y) = (L(x) , y + σ(x) + σ(L(x)) + Tr(βx) ) .

Then
Aut(G) = {ψL,β | L ∈ Ω, β ∈ F2n} .

Recall: σ(x) =
∑

0≤i<j≤n−1 x
2ix2

j

Theorem (A., Meidl, Pott, 2017):

Negabent functions f1 and f2 are difference set equivalent if and
only if

f2(x) = f1(x) + σ(x) + σ(L(x)) + Tr(βx) + c

for some α, β ∈ F2n , c ∈ F2 and L(x) ∈ Ω.
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f1(x)
shifting to bent // g1(x) = f1(x) + σ(x)

EA-equivalence

��
f2(x) = g2(x) + σ(x) g2(x) = g1(L(x) + a) + Trn(bx) + d

shifting to negabent
oo

Observation:
Difference set equivalence =⇒ shifted equivalence

Question: Is the converse true?

Theorem (A., Meidl, Pott, 2017):

Two EA-equivalent functions can induce inequivalent different
sets in G.
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Grazie per l’attenzione!
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