

Version 1 Code Version 40 Code

Error-correction capability

L (low) 7 percent of codewords can be restored

M (medium) | 15 percent of codewords can be restored
Q (quarter) | 25 percent of codewords can be restored
H (high) 30 percent of codewords can be restored

_|m

Alignment and Timing Bits

Error Correction Level Bits
Version 1 QR Code Pattern [l “Q”

Masking Bits
Pattern Bl B uses mask

e
(15,5) BCH Code Bits

Data is Error Correction Level Bits
and Masking Bits

Generator polynomial is

X0+ x84 xS+ x4+ x2+x+ 1

Data Bits

Error Correction Bits

Dirty Section

Error correction implemented through
Reed-Solomon codes

All elements of the Reed-Solomon code
used in QR codes are elements

of GF(256) with generating polynomial
x tx x|

mC]

Alignment and Timing Bits

Error Correction Level Bits
Version 1 QR Code Pattern [l “Q” uses
shortened (26,13) Reed-Solomon code
over GF(256) with generating polynomial
XB+xt+x3+x2+1

Masking Bits
Pattern Il MM uses mask

(15,5) BCH Code Bits
Data is Error Correction Level Bits
and Masking Bits

Generator polynomial is

X0+ xB+ xS+ x4+ x2+x+1

Data Bits

Error Correction Bits

Level Q code in this example based on (26, 13) Reed-Solomon code

Code can correct up to 6 of the 26 blocks in this code which is about the
advertised 25%

|

Alignment and Timing Bits

Error Correction Level Bits
Version 1 QR Code Pattern [l “Q” uses
shortened (26,13) Reed-Solomon code
over GF(256) with generating polynomial
XE+xd+x3+x2+1

Masking Bits
Pattern [M uses mask

-
(15,5) BCH Code Bits

Data is Error Correction Level Bits
and Masking Bits

Generator polynomial is

X0+ x84+ x5+ x4 +x2+x+1

Data Bits

Error Correction Bits

More than 6 blocks are wrong here, so current QR decoders cannot handle this case.

Can we take advantage of the fact that we know that certain blocks are known to be
wrong to improve our decoding?

How can a decoder decide whether or not a block is wrong without actually decoding?

Alignment and Timing Bits

Error Correction Level Bits
Version 1 QR Code Pattern ' il “Q” uses
shortened (26,13) Reed-Solomon code
over GF(256) with generating polynomial
XEaxt 3+ x24 1

Masklng Bnts

Data Bits

Error Correction Bits

A mask is applied to all of the
original data before producing the
actual QR code.

An algorithm evaluates 8 different
masks on the original data and
determines which of them makes
the bits in the final result appear
the most “random”.

Masking Bits
Pattern B8 M uses mask

Mask Patterns

+)%2=0

E:

[]

+1)%=0

If truly random, each block in QR code would be
modeled by 8 Bernoulli trials of p=0.50 (coin flip)

Distribution of light and dark squares within a
block would be governed by the following
distribution:

0.30

0.20

0.10

0.00 1

Use Neymann-Pearson Lemma from Statistics to
construct a two tail rejection region with probability
90%

If we observe 0, 1, 7, 8 squares of the same color in a
block, we declare it unlikely to have come from the
masking process and mark it as a mistake

0.30

0.20

0.10

0.00

|

Alignment and Timing Bits

Error Correction Level Bits
Version 1 QR Code Pattern [l “Q” uses
shortened (26,13) Reed-Solomon code
over GF(256) with generating polynomial
XB+xt+x3+x2+1

Masking Bits
Pattern [M uses mask

-
(15,5) BCH Code Bits

Data is Error Correction Level Bits
and Masking Bits

Generator polynomial is

X0+ x84+ x5+ x4 +x2+x+1

Data Bits

Error Correction Bits

So in this case, we can mark D1-D9,D11-D12

as mistakes.
Now what can we do about them?

These “known mistakes’ are called “erasures” and
can be corrected at ‘‘half the cost’”’ of an error where
the location is unknown.

In the example of the (26,13) Level Q OR code, the
underlying Reed-Solomon code can correct 6 errors
where the location is unknown or up to 13 erasures or
any combination that satisfies

2t+e =13 (t= #errors, e=#erasures)

Python Code for Reed-Solomon decoding with
erasures can be found at:

https://en.wikiversity.org/wiki/Reed%E2%80%93S0
lomon codes for coders/Additional information

|

Alignment and Timing Bits

Error Correction Level Bits
Version 1 QR Code Pattern [l “Q” uses
shortened (26,13) Reed-Solomon code
over GF(256) with generating polynomial
XB+xt+x3+x2+1

Masking Bits
Pattern [M uses mask

-
(15,5) BCH Code Bits

Data is Error Correction Level Bits
and Masking Bits

Generator polynomial is

X0+ x84+ x5+ x4 +x2+x+1

Data Bits

Error Correction Bits

Here, we’ll mark D1-D9,D11-D12 as
erasures and correct up to one additional
error in an unknown location

Based on results presented at the 2011 Canadian
Workshop on Information Theory

Main idea from 2011 is that the Berlekamp-
Massey algorithm used to solve the

“Key Equation” in traditional Reed-Solomon
decoding algorithms is equivalent to the
Expended Euclidean Algorithm for finding the
greatest common divisor of two polynomials over
finite fields

Can also integrate ideas from Eastman (1988)
who observed that this step can be computed
without the need for any finite field inverses.

Algorithm 4 : .
Input: The (possibly moedified) syndrome polynomial S*(z) € Flz| for finite field F;
Initialization polynomial F(x) and optional second initialization polynomial Y(x);
Starting step value K, stopping criteria @, and integers £, e > (); Inverse flag (INV) equal to 0 or 1
Output: The polynomial v(z) such that r(z) = u(z) - 2*7° + v(z) - §*(z)
for some polynomials u(z) and r{z) where deg(r) < ¢. [Optional: and polynomial Q(z) |
Allocate two arrays A and B each of size 2¢ + e and initialized to all 0.
[Optional: Allocate two arrays Y and Z each of size 2¢ + e and initialized to all 0.]
Set L be the degree of P{z): Set Ly = L
Copy Ali] = P; (the degree i coefficient of P) and Bfi| = P; foreach i in 0 <i < L.
[Opt: Copy Y[i] = T; and Z[i] = T; foreach i in 0 < i < 2t +¢.]
Set pointer V' to the starting address of A and T to the starting address of B
[Opt: Set pointer €2 to the starting address of ¥ and @ 1o the starting address of Z |
Assign ¢ :=1and v:=1
If (K —L = Q) then go to step 12
Assign K = K + 1.
Assign D = ZJI.':(, Vil -S*[2t + e+ L — K - j].
NOTE: 5*[¢] is the degree i coefficient of $*(z) for all i > 0
If D=0, then go to step 11.
Set C' »- D,
If 2L < K then
Assign T'[j] :==C - T[j] foreach jin 0 < j < Ly
[Opt: Assign ®[j] := C' - ®[j] foreach jin0 < j <2t +e]
Then assign T[j + K —2L] :=T[j + K + 2L] — - V[j] foreach jin 0 < j < L.
[Opt: and assign ®[j+ K —2L] := ®[j+ K +2L]—~-0j] foreach jin 0 < j < 2t+e+2L—K.
Swap pointers T" and V. [Opt: Swap pointers ¢ and €]. Assign Ly = L
If INV=0, assign v := D; If INV=I, assign ¢ := D~
Assign L= K — L.
else

If INV=0: Assign V[j] ==~ - foreachjin0<j<L

If INV=0: [Opt: Assign y-Q[j] foreach jin0<j<2t+e]

Assign Vi +2L - K):=V[j+2L - K| -C:T[j] foreach jin0<j < Lp

[Opt: and Q7 +2L — K] == Q[j +2L— K|~ C-®[j] foreach j in0 < j < 2t +e— 2L+ K |
10. end if
11. If (K — L < Q) then go to step |
12. Return v(z) = {V[0}, V[1],...,V[L]} [opt: and Q(z) = {Q[0],Q[1},--- ,Q[2¢ + e]}.]

Algorithm 5 : New algorithm for decoding systematic Reed-Solomon code with erasures

Input: The polynomial r(x) € Flz| of degree less than n which represents
the received vector of a (n, k., d) Reed-Solomon codeword
transmitted through a noisy environment where d = n — &k + 1;
the set {€;,€z,..., €6} of erasure positions in the received vector;

An integer b. Here, IF is a finite field of characteristic 2.

Output: Either (1) a message polynomial m(z) € Flz| of degree less than k
which can be encoded with the Reed-Selomon codeword ¢(z) € Flz|
where ¢(z) and r{z) differ in no more than £ + e positions,

(t 1s the error capacity, e is the number of erasures and 2t +e < n — k)
or (2) “Decoding Failure™.

Sett=|(n -k —e)/2].

Compute the eyndromc,

Compute H(z) = (S’{z) ;{r. -)’ mod z*** (ignore coefficients of degree 2¢+4-e and higher)
Set S*(z) = H{.l Prl) =1, (opt: ¥(z) = H(z)), K := 0 and Q:=t

for each 1 <j<T: IfT 96 L, then return * Decodmg I“aulurc
If (7 is equal to L) then
Compute A} (z) and A5(x), the formal derivatives of Ay (z) and As(x) respectively.
Compute Q(z) = '\1(3') H{z) mod x*** (or add optional code of Algorithm 4)
Let ¢(z) =r(x). Foreach 1 < j <
Ciy =Ty + Qa~%)/((a™%)H
For each 1 < j < e, change
ce; =T, + =)/ ((a=)!
. End if
. Extract m{z) from the coefficients of ¢(x) of degree n — k& and higher.
. Return m(z).

This “Key
Equation” solver
can be inserted
into a new
Errors and
Erasures
Decoding
Algorithm

Error locator
polynomial and
Erasure
polynomial
computed
separately

Algorithm 6 : Blahut algorithm for Reed-Solomon decoding (modified to use syndrome S{x))
Input: The polynomial r{x} € ¥|x| of degree less than n which represents

the received vector of a (n, k,d) Reed-Solomon codeword

transmitted through a noisy environment where d = n — k + 1;

the set {¢;, €2, €.} of erasure positions in the received vector; An integer b.
Here, F is a finite field of characteristic 2.

Output: Either (1) a message polynomial m{x) € F{z| of degree less than k

which can be encoded with the Reed-Solomon codeword ¢(x) € F[z|
where c(x} and r(z) differ in no more than # + e positions
(2 1s the error capacity, e is the number of erasures and 2(+e < n — k),
or (2) “Decoding Failure”.
Sett=|(n—k—e)/2].
Compute the syndrome
S(2) = Sppr - 271 4. 4+ 8 -2+ 8y where §; = r(an—k-i+s-1),
Compute Wa(z) := (z — a®') - (z — a®)
NOTE: If e = 0, then W(x) := 1.
Set S* to point to the degree e coefficient of S(z).
So §*[i] will be the degree i + ¢ coefficient of S(x) for all i > 0.
Set P = Ws(x)
Set K :=2eand Q =t +e
Call Aleoruhss e g — - .
Az):=V[0] - 2% +V[l] .25+ ...+ V[L -1
Determine e ——— — x
foreach 1 < j < 7. NOTE: The roots ofA(z) include both errors and erasures.
If 7+ e # L, then return “Decoding Failure™
If (7 + e is equal to L) then
Compute A'(x), the formal derivative of A(x). 5
Compute S(z) = §._. Lkl g .§] cgh—h=24 ... 4 §n_k-2 -+ Sp—k—1-

Compute Q(z) = A(z) - S(z) mod z"~*

Lete{x) = r(z). Foreach 1 < j < 7, change ¢;, = ry,+92(a ™ .
X For each 1 < j < e, change ¢, = 1., + Q(a“-f)‘,’((a“-i)“

. End il ‘

. Extract m{x) from the coefficients of ¢{x) of degree n — & and higher.

. Return m(z).

Need to
“reverse’” all
of the
polynomials
from
Algorithm 5 to
correspond.

Error locator
polynomial
and Erasure
polynomial
computed
together

Input: The polyno ial r(z) € Flx] of degree less than n which represents Interme dia‘te
the received vector of a (n, &, d) Reed-Solomon codeword
transmitted through a noisy environment where d = n — k + 1 lt f th =
the set {¢1,¢2,...,¢ ¢q} of erasure positions in the received vector; re Su S o]-S
An integer b. Here, F is a finite field of characteristic 2. x

Output: Either (1) a message polynomial m(z) € Flz] of degree less than & a_],gorlthm
which can be encoded with the Reed-Solomon codeword ¢(x) € Flz]
where ¢(2) and r{z) differ in no more than £ + e positions, Should
(1 is the error capacity, ¢ is the number of erasures and 2 +e < n — k)

or(2)* Decodmg Fallprc generally

Sett=|(n—k—e)/2].

Compute the syndrome
: S(:l"i -“—‘Ls't-.—k-x' nek=l g +5 T+ 8 \-.here S; = r(a*h). Correspond to
Compute Az(z) :=(a® -2 —1) (e -2—-1)-----{a* -z —1). .
OTE: 1 = 0, then Ao(2) =) Algorithm 5

Compute H{ (S(z) - Ao(z)) mod g2te (ignore coefficients of degree 2¢ + e and higher)
Set 5* to point to the degree e coefficient of S((z).
So S*[i] will be the degree i + ¢ coc!humt of S{x) for all i > 0.

S R TS AT | Error locator

ey Equation with sollmon

ML e . : polynomial
If » ,;é L, then return “Decodmg Faxlure a.nd Erasure

If (7 + e is equal to L) then

Compute A'(z), the formal derivative of A{x). pO]_YIIO mil a_]_
Compute Q(x) = A(z) - §(z) mod 2"~* (or use optional code of Algori ¢
computed

3. Let ¢z} = r(z). For each 1 < j < 7, change ¢;; =1y, + € eimmieing

: For ecach 1 < j < e, change ¢, =1, + Q(a™%)/((a™)! w
5. End if h

. Extract m(x) from the coefficients of ¢(x) of degree n — k and higher. toget er

. Return m(x).

Algorithm 5 Algorithm 6 Algorithm 7
8 errors, O erasures | 70.07 microseconds | 68.49 microseconds 0.13 microseconds
5 8

- ; . 7 .
4 errors, 8 erasures 9.73 microseconds 2.45 microseconds | 83.42 microseconds
| error, 14 erasures | 54.98 microseconds | 92.87 microseconds | 93.15 microseconds

0 errors, 16 erasures | 54.14 microseconds | 53.47 microseconds | 53.71 microseconds

All three algorithms perform about the
same 1in the errors-only case and the
erasures-only case

New Algorithm (#5) performs better than
the other two algorithms in the case where
there 1s a mixture of errors and erasures.

Introduced new Reed-Solomon decoding algorithm
advantageous 1n cases involving both errors and erasures

Decoding of QR Codes with erasure locations that can be
determined using statistics provides one application of this

algorithm

Alignment and Timing Bits

Error Correction Level Bits
Version 1 QR Code Pattern = [l “Q” uses
shortened (26,13) Reed-Solomon code
over GF(256) with generating polynomial
XEext 3+ x2+1

Masking Bits
Pattern M MM uses mask

(15,5) BCH Code Bits
Data is Error Correction Level Bits
and Masking Bits

Generator polynomial is

X0+ x84+ x5+ x4 x24+x+1

Data Bits

Error Correction Bits

