
Todd Mateer

Version 1 Code Version 40 Code

Dirty Section

Missing Section

Advertising

Error correction implemented through

Reed-Solomon codes

All elements of the Reed-Solomon code

used in QR codes are elements

of GF(256) with generating polynomial

x8 + x4 + x3 + x2 + 1

 Level Q code in this example based on (26, 13) Reed-Solomon code

 Code can correct up to 6 of the 26 blocks in this code which is about the
advertised 25%

 More than 6 blocks are wrong here, so current QR decoders cannot handle this case.

 Can we take advantage of the fact that we know that certain blocks are known to be
wrong to improve our decoding?

 How can a decoder decide whether or not a block is wrong without actually decoding?

 A mask is applied to all of the
original data before producing the
actual QR code.

 An algorithm evaluates 8 different
masks on the original data and
determines which of them makes
the bits in the final result appear
the most “random”.

 If truly random, each block in QR code would be
modeled by 8 Bernoulli trials of p=0.50 (coin flip)

 Distribution of light and dark squares within a
block would be governed by the following
distribution:

0.30

0.20

0.10

0.00

4 5 6 7 83210

 Use Neymann-Pearson Lemma from Statistics to
construct a two tail rejection region with probability
90%

 If we observe 0, 1, 7, 8 squares of the same color in a
block, we declare it unlikely to have come from the
masking process and mark it as a mistake

0.30

0.20

0.10

0.00

4 5 6 7 83210

So in this case, we can mark D1-D9, D11-D12
as mistakes.

Now what can we do about them?

 These “known mistakes” are called “erasures” and
can be corrected at “half the cost” of an error where
the location is unknown.

 In the example of the (26,13) Level Q QR code, the
underlying Reed-Solomon code can correct 6 errors
where the location is unknown or up to 13 erasures or
any combination that satisfies

2t + e ≤ 13 (t = #errors, e=#erasures)

 Python Code for Reed-Solomon decoding with
erasures can be found at:

 https://en.wikiversity.org/wiki/Reed%E2%80%93So
lomon_codes_for_coders/Additional_information

Here, we’ll mark D1-D9, D11-D12 as
erasures and correct up to one additional
error in an unknown location

 Based on results presented at the 2011 Canadian
Workshop on Information Theory

 Main idea from 2011 is that the Berlekamp-
Massey algorithm used to solve the
“Key Equation” in traditional Reed-Solomon
decoding algorithms is equivalent to the
Expended Euclidean Algorithm for finding the
greatest common divisor of two polynomials over
finite fields

 Can also integrate ideas from Eastman (1988)
who observed that this step can be computed
without the need for any finite field inverses.

 This “Key
Equation” solver
can be inserted
into a new
Errors and
Erasures
Decoding
Algorithm

 Error locator
polynomial and
Erasure
polynomial
computed
separately

 Need to
“reverse” all
of the
polynomials
from
Algorithm 5 to
correspond.

 Error locator
polynomial
and Erasure
polynomial
computed
together

 Intermediate
results of this
algorithm
should
generally
correspond to
Algorithm 5

 Error locator
polynomial
and Erasure
polynomial
computed
together

All three algorithms perform about the

same in the errors-only case and the

erasures-only case

New Algorithm (#5) performs better than

the other two algorithms in the case where

there is a mixture of errors and erasures.

 Introduced new Reed-Solomon decoding algorithm
advantageous in cases involving both errors and erasures

 Decoding of QR Codes with erasure locations that can be
determined using statistics provides one application of this
algorithm

