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Error correction implemented through 

Reed-Solomon codes

All elements of the Reed-Solomon code 

used in QR codes are elements

of GF(256) with generating polynomial

x8 + x4 + x3 + x2 + 1



 Level Q code in this example based on (26, 13) Reed-Solomon code

 Code can correct up to 6 of the 26 blocks in this code which is about the 
advertised 25%



 More than 6 blocks are wrong here, so current QR decoders cannot handle this case.

 Can we take advantage of the fact that we know that certain blocks are known to be 
wrong to improve our decoding?

 How can a decoder decide whether or not a block is wrong without actually decoding?



 A mask is applied to all of the 
original data before producing the 
actual QR code.

 An algorithm evaluates 8 different 
masks on the original data and 
determines which of them makes 
the bits in the final result appear 
the most “random”.



 If truly random, each block in QR code would be 
modeled by 8 Bernoulli trials of p=0.50 (coin flip)

 Distribution of light and dark squares within a 
block would be governed by the following 
distribution:
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 Use Neymann-Pearson Lemma from Statistics to 
construct a two tail rejection region with probability 
90%

 If we observe 0, 1, 7, 8 squares of the same color in a 
block, we declare it unlikely to have come from the 
masking process and mark it as a mistake
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So in this case, we can mark D1-D9, D11-D12 
as mistakes.

Now what can we do about them?



 These “known mistakes” are called “erasures” and 
can be corrected at “half the cost” of an error where 
the location is unknown.

 In the example of the (26,13) Level Q QR code, the 
underlying Reed-Solomon code can correct 6 errors 
where the location is unknown or up to 13 erasures or 
any combination that satisfies 

2t + e ≤ 13     (t = #errors, e=#erasures)

 Python Code for Reed-Solomon decoding with 
erasures can be found at:

 https://en.wikiversity.org/wiki/Reed%E2%80%93So
lomon_codes_for_coders/Additional_information



Here, we’ll mark D1-D9, D11-D12 as 
erasures and correct up to one additional 
error in an unknown location



 Based on results presented at the 2011 Canadian 
Workshop on Information Theory

 Main idea from 2011 is that the Berlekamp-
Massey algorithm used to solve the 
“Key Equation” in traditional Reed-Solomon 
decoding algorithms is equivalent to the 
Expended Euclidean Algorithm for finding the 
greatest common divisor of two polynomials over 
finite fields

 Can also integrate ideas from Eastman (1988) 
who observed that this step can be computed 
without the need for any finite field inverses.





 This “Key 
Equation” solver 
can be inserted 
into a new 
Errors and 
Erasures 
Decoding 
Algorithm

 Error locator 
polynomial and 
Erasure 
polynomial 
computed 
separately



 Need to 
“reverse” all 
of the 
polynomials 
from 
Algorithm 5 to 
correspond.

 Error locator 
polynomial 
and Erasure 
polynomial 
computed 
together



 Intermediate 
results of this 
algorithm 
should 
generally 
correspond to  
Algorithm 5 

 Error locator 
polynomial 
and Erasure 
polynomial 
computed 
together



All three algorithms perform about the 

same in the errors-only case and the 

erasures-only case

New Algorithm (#5) performs better than 

the other two algorithms in the case where 

there is a mixture of errors and erasures.



 Introduced new Reed-Solomon decoding algorithm 
advantageous in cases involving both errors and erasures

 Decoding of QR Codes with erasure locations that can be 
determined using statistics provides one application of this 
algorithm


