Improved Decoding of Quick Response Codes

Todd Mateer

Quiclk Response Code Versions

Version 1 Code

Version 40 Code

Level \quad Error-correction capability
L (low) 7 percent of codewords can be restored
M (medium) 15 percent of codewords can be restored
Q (quarter) H (high) 25 percent of codewords can be restored 30 percent of codewords can be restored

Quick Response Code Anatomy

\square

Alignment and Timing Bits

Version 1 QR Code Pattern
\square " Q

Masking Bits
Pattern \square uses mask

\square
$(15,5)$ BCH Code Bits
Data is Error Correction Level Bits
and Masking Bits
Generator polynomial is
$x^{10}+x^{8}+x^{5}+x^{4}+x^{2}+x+1$

$\square \square$
Error Correction Bits

Dirty Section

Missing Section

Advertising

Error correction implemented through Reed-Solomon codes

All elements of the Reed-Solomon code used in QR codes are elements of $\operatorname{GF}(256)$ with generating polynomial $x^{8}+x^{4}+x^{3}+x^{2}+1$

Quiclk Response Code Anatomy

Level Q code in this example based on $(26,13)$ Reed-Solomon code
Code can correct up to 6 of the 26 blocks in this code which is about the advertised 25\%

Quicle Response Code Anatonyy

More than 6 blocks are wrong here, so current QR decoders cannot handle this case.
Can we take advantage of the fact that we know that certain blocks are known to be wrong to improve our decoding?

How can a decoder decide whether or not a block is wrong without actually decoding?

A mask is applied to all of the original data before producing the actual $Q R$ code.

An algorithm evaluates 8 different masks on the original data and determines which of them makes the bits in the final result appear the most "random".

If truly random, each block in QR code would be modeled by 8 Bernoulli trials of $p=0.50$ (coin flip)

Distribution of light and dark squares within a block would be governed by the following distribution:

Use Neymann-Pearson Lemma from Statistics to construct a two tail rejection region with probability 90\%
If we observe $0,1,7,8$ squares of the same color in a block, we declare it unlikely to have come from the masking process and mark it as a mistake

Quiclk Resjoonse Code Anatonyy

So in this case, we can mark Dl-D9, D11-D12 as mistakes.
Now what can we do about them?

These "known mistakes" are called "erasures" and can be corrected at "half the cost" of an error where the location is unknown.

In the example of the $(26,13)$ Level Q QR code, the underlying Reed-Solomon code can correct 6 errors where the location is unknown or up to 13 erasures or any combination that satisfies

$$
2 t+e \leq 13 \quad \text { (} t=\text { \#errors, e=\#erasures) }
$$

Python Code for Reed-Solomon decoding with erasures can be found at:
https://en.wikiversity.org/wiki/Reed\�\�\�So lomon_codes_for_coders/Additional_information

Quiclr Response Code Anatomy

Here, we'll mark D1-D9, Dll-D12 as erasures and correct up to one additional error in an unknown location

Based on results presented at the 2011 Canadian Workshop on Information Theory

Main idea from 2011 is that the BerlekampMassey algorithm used to solve the "Key Equation" in traditional Reed-Solomon decoding algorithms is equivalent to the Expended Euclidean Algorithm for finding the greatest common divisor of two polynomials over finite fields

Can also integrate ideas from Eastman (1988) who observed that this step can be computed without the need for any finite field inverses.

Key Equation Solver

Algorithm 4 : Efficient implementation of Key Equation solver

Input: The (possibly modified) syndrome polynomial $S^{*}(x) \in \mathbb{F}[x]$ for finite field F ;
Initialization polynomial $P(x)$ and optional second initialization polynomial $\Upsilon(x)$;
Starting step value K, stopping criteria Q, and integers $t, \mathrm{e} \geq 0$; Inverse flag (INV) equal to 0 or 1
Output: The polynomial $v(x)$ such that $r(x)=u(x) \cdot x^{2 t+e}+v(x) \cdot S^{*}(x)$
for some polynomials $u(x)$ and $r(x)$ where $\operatorname{deg}(r)<t$. [Optional: and polynomial $\Omega(x)$]
0. Allocate two arrays A and B each of size $2 t+e$ and initialized to all 0 .
[Optional: Allocate two arrays Y and Z each of size $2 t+\mathrm{e}$ and initialized to all 0 .]
Set L be the degree of $P(x)$; Set $L_{T}=L$
Copy $A[i]=P_{i}$ (the degree i coefficient of P) and $B[i]=P_{i}$ for each i in $0 \leq i \leq L$.
[Opt: Copy $Y[i]=\Upsilon_{i}$ and $Z[i]=\Upsilon_{i}$ for each i in $0 \leq i<2 t+$ e.]
Set pointer V to the starting address of A and T to the starting address of B
[Opt: Set pointer Ω to the starting address of Y and Φ to the starting address of Z]
Assign $\psi:=1$ and $\gamma:=1$
If ($K-L \geq Q$) then go to step 12

1. Assign $K:=K+1$.
2. Assign $D:=\sum_{j=0}^{L} V[j] \cdot S^{*}[2 t+e+L-K-j]$.

NOTE: $S^{*}[i]$ is the degree i coefficient of $S^{*}(x)$ for all $i \geq 0$
3. If $D=0$, then go to step 11 .
4. Set $C:=\psi \cdot D$.

If $2 L<K$ then
Assign $T[j]:=C \cdot T[j]$ for each j in $0 \leq j \leq L_{T}$
[Opt: Assign $\Phi[j]:=C \cdot \Phi[j]$ for each j in $0 \leq j<2 t+e$]
Then assign $T[j+K-2 L]:=T[j+K+2 L]-\gamma \cdot V[j]$ for each j in $0 \leq j \leq L$.
[Opt: and assign $\Phi[j+K-2 L]:=\Phi[j+K+2 L]-\gamma \cdot \Omega[j]$ for each j in $0 \leq j<2 t+\mathrm{e}+2 L-K$.
6. Swap pointers T and V. [Opt: Swap pointers Φ and Ω]. Assign $L_{T}=\bar{L}$

If INV $=0$, assign $\gamma:=D$; If INV $=1$, assign $\psi:=D^{-1}$.
Assign $L:=K-L$.
else
If INV $=0$: Assign $V[j]:=\gamma \cdot V[j]$ for each j in $0 \leq j \leq L$
If INV=0: [Opt: Assign $\Omega[j]:=\gamma \cdot \Omega[j]$ for each j in $0 \leq j \leq 2 t+\mathrm{e}$]
Assign $V[j+2 L-K]:=V[j+2 L-K]-C \cdot T[j]$ for each j in $0 \leq j \leq L_{T}$
[Opt: and $\Omega[j+2 L-K]:=\Omega[j+2 L-K]-C \cdot \Phi[j]$ for each j in $0 \leq j<2 t+\mathrm{e}-2 L+K]$
10. end if
11. If $(K-L<Q)$ then go to step I
12. Return $v(x)=\{V[0], V[1], \ldots, V[L]\}$ [opt: and $\Omega(x)=\{\Omega[0], \Omega[1], \cdots, \Omega[2 t+\mathrm{e}]\}$.]

New Erasure Decoding Algorithun

Algorithm 5 : New algorithm for decoding systematic Reed-Solomon code with erasures
Input: The polynomial $r(x) \in \mathbb{F}[x]$ of degree less than n which represents the received vector of a (n, k, d) Reed-Solomon codeword
transmitted through a noisy environment where $d=n-k+1$;
the set $\left\{\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{\mathrm{e}}\right\}$ of erasure positions in the received vector;
An integer b. Here, \mathbb{F} is a finite field of characteristic 2.
Output: Either (1) a message polynomial $m(x) \in \mathbb{F}[x]$ of degree less than k which can be encoded with the Reed-Solomon codeword $c(x) \in \mathbb{F}[x]$ where $c(x)$ and $r(x)$ differ in no more than $t+\mathrm{e}$ positions,
(t is the error capacity, e is the number of erasures and $2 t+\mathrm{e} \leq n-k$)
or (2) "Decoding Failure".
0 . Set $t=\lfloor(n-k-\mathrm{e}) / 2\rfloor$.

1. Compute the syndrome
$S(x) \quad n_{n-k-1} \cdot x^{n-k-1}+\cdots+S_{1} \cdot x+S_{0}$ where $\left.S_{i}=1^{k+i}\right)$.
NOTE: If $\mathrm{e}=0$, then $-1(\mathrm{~m}) \cdot-1$
2. Compute $H(x)=\left(S(x) \cdot \Lambda_{2}(x)\right) \bmod x^{2 t+e}$ (ignore coefficients of degree $2 t+\mathrm{e}$ and higher)
3. Set $S^{*}(x)=H(x), P(x)=1$, (opt: $\left.\Psi(x)=H(x)\right), K:=0$ and $\mathrm{Q}:=t$

4. Assi $\Lambda_{1}(x):=V[L] \cdot x^{L}+V[L-1] \cdot x^{L-1}+\cdots+V[1] \cdot x+V[0]$.

for each $1 \leq j \leq \tau$. If $\tau \neq L$, then return "Decoding Failure";
5. If (τ is equal to L) then
6. Compute $\Lambda_{1}^{\prime}(x)$ and $\Lambda_{2}^{\prime}(x)$, the formal derivatives of $\Lambda_{1}(x)$ and $\Lambda_{2}(x)$ respectively.
7. Compute $\Omega(x)=\Lambda_{1}(x) \cdot H(x) \bmod x^{2 t+\mathrm{e}}$ (or add optional code of Algorithm 4)
8. Let $c(x)=r(x)$. For each $1 \leq j$ $c_{i_{j}}=r_{i_{j}}+\Omega\left(\alpha^{-i_{j}}\right) /\left(\left(\alpha^{-i_{j}}\right)^{1}\right.$
For each $1 \leq j \leq \mathrm{e}$, change

9. End if
10. Extract $m(x)$ from the coefficients of $c(x)$ of degree $n-k$ and higher.
11. Return $m(x)$.

> This "Key
> Equation" solver can be inserted into a new Errors and Erasures Decoding Algorithm

Error locator polynomial and Erasure polynomial computed separately

Algorithm 6: Blahut algorithm for Reed-Solomon decoding (modified to use syndrome $\widehat{S}(x)$)
Input: The polynomial $r(x) \in \mathrm{F}[x]$ of degree less than n which represents
the received vector of a (n, k, d) Reed-Solomon codeword
transmitted through a noisy environment where $d=n-k+1$;
the set $\left\{\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{\mathrm{e}}\right\}$ of erasure positions in the received vector; An integer b.
Here, \mathbb{F} is a finite field of characteristic 2.
Output: Either (1) a message polynomial $m(x) \in \mathrm{F}[x]$ of degree less than k which can be encoded with the Reed-Solomon codeword $c(x) \in \mathrm{F}[x]$ where $c(x)$ and $r(x)$ differ in no more than $t+\mathrm{e}$ positions
(t is the error capacity, e is the number of erasures and $2 t+\mathrm{e} \leq n-k$),
or (2) "Decoding Failure".
Set $t=\lfloor(n-k-\mathrm{e}) / 2\rfloor$.

1. Compute the syndrome
$\widehat{S}(x)=\widehat{S}_{n-k-1} \cdot x^{n-k-1}+\cdots+\widehat{S}_{1} \cdot x+\widehat{S}_{0}$ where $\widehat{S}_{j}=r\left(\alpha^{n-k-j+b-1}\right)$.
2. Compute $W_{2}(x):=\left(x-\alpha^{\epsilon_{1}}\right) \cdot\left(x-\alpha^{\epsilon_{2}}\right) \cdots \cdots\left(x-\alpha^{\varepsilon_{0}}\right)$

NOTE: If $\mathrm{e}=0$, then $W_{2}(x):=1$.
3. Set S^{*} to point to the degree e coefficient of $\widehat{S}(x)$.

So $S^{*}[i]$ will be the degree $i+e$ coefficient of $\widehat{S}(x)$ for all $i \geq 0$.
4. Set $P:=W_{2}(x)$

Set $K:=2 e$ and $\mathrm{Q}:=t+\mathrm{e}$
6. Call Algorithm A

A Am $\Lambda(x):=V[0] \cdot x^{L}+V[1] \cdot x^{L-1}+\cdots+V[L-1] \cdot x+V[L]$.

for each $1 \leq j \leq \tau$. NOTE: The roots q N(x) include both errors and erasures.
If $\tau+e \neq \bar{L}$, then return "Decoding Failure
If ($\tau+\mathrm{e}$ is equal to L) then
Compute $\Lambda^{\prime}(x)$, the formal derivative of $\Lambda(x)$.
Compute $S(x)=\widehat{S}_{0} \cdot x^{n-k-1}+\widehat{S}_{1} \cdot x^{n-k-2}+\cdots+\widehat{S}_{n-k-2} \cdot x+\widehat{S}_{n-k-1}$.
Compute $\Omega(x)=\Lambda(x) \cdot S(x) \bmod x^{n-k}$
Let $c(x)=r(x)$. For each $1 \leq j \leq \tau$, change $c_{i_{j}}=r_{i_{j}}+\Omega(\alpha$
For each $1 \leq j \leq e$, change $c_{\epsilon_{j}}=r_{\epsilon_{j}}+\Omega\left(\alpha^{-\epsilon_{j}}\right) /\left(\left(\alpha^{-\epsilon_{j}}\right)^{1}\right.$ End if
16. Extract $m(x)$ from the coefficients of $c(x)$ of degree $n-k$ and higher
17. Return $m(x)$.

Need to
 "reverse" all of the polynomials from Algorithm 5 to correspond.

Error locator polynomial and Erasure polynomial computed together

Algorithm 7 : Truong-Jeng-Chang algorithm for decoding systematic Reed-Solomon code with erasures Input: The polynomial $r(x) \in \mathrm{F}(x)$ of degree less than n which represents
the received vector of a (n, k, d) Reed-Solomon codeword transmitted through a noisy environment where $d=n-k+1$;
the set $\left\{\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{\mathrm{e}}\right\}$ of erasure positions in the received vector;
An integer b. Here, F is a finite field of characteristic 2.
Output: Either (1) a message polynomial $m(x) \in \mathbb{F}[x]$ of degree less than k which can be encoded with the Reed-Solomon codeword $c(x) \in \mathrm{F}[x]$ where $c(x)$ and $r(x)$ differ in no more than $t+\mathrm{e}$ positions,
(t is the error capacity, e is the number of erasures and $2 t+\mathrm{e} \leq n-k$)
or (2) "Decoding Failure".
Set $t=[(n-k-\mathrm{e}) / 2]$.
Compute the syndrome
$S(x)=\bar{S}_{n-k-1} \cdot x^{n-k-1}+\cdots+\bar{S}_{1} \cdot x+\bar{S}_{0}$ where $\bar{S}_{i}=r\left(\alpha^{b+i}\right)$.
Compute $\Lambda_{2}(x):=\left(\alpha^{\epsilon_{1}} \cdot x-1\right) \cdot\left(\alpha^{\epsilon_{2}} \cdot x-1\right) \cdots \cdots\left(\alpha^{\epsilon_{\mathrm{e}}} \cdot x-1\right)$.
NOTE: If $\mathrm{e}=0$, then $\Lambda_{2}(x):=1$.
Compute $H(x)=\left(S(x) \cdot \Lambda_{2}(x)\right) \bmod x^{2 t+e}$ (ignore coefficients of degree $2 t+\mathrm{e}$ and higher)
Set S^{*} to point to the degree e coefficient of $\widehat{S}(x)$.
So $S^{*}[i]$ will be the degree $i+e$ coefficient of $\widehat{S}(x)$ for all $i \geq 0$.
Set $P(x)=1$, (opt: $\Upsilon(x)=H(x)$), $K:=2 \mathrm{e}$ and $\mathrm{Q}:=t+\mathrm{e}$
Call Aloonnir 4 to solve Key Equation with solution $\{V[0], V \mid 1],-\quad V[L]\}$.
Asson $\Lambda(x):=V[0] \cdot x^{L}+V[1] \cdot x^{L-1}+\cdots+V[L-1] \cdot x+V[L]$.
Determine une
for each $1 \leq j \leq \tau$. NOTE: Root of $\mathrm{A}(x)$ include both errors and erasures.
If $\tau \neq L$, then return "Decoding Failure";
If $(\tau+\mathrm{e}$ is equal to $L)$ then
Compute $\Lambda^{\prime}(x)$, the formal derivative of $\Lambda(x)$.
Compute $\Omega(x)=\Lambda(x) \cdot S(x) \bmod x^{n-k}$ (or use optional code of Algorithm Let $c(x)=r(x)$. For each $1 \leq j \leq \tau$, change $c_{i j}=r_{i_{j}}+\Omega\left(\alpha^{-i}\right) /\left(-e_{j}\right)$ For each $1 \leq j \leq \mathrm{e}$, change $c_{\varepsilon_{j}}=r_{\varepsilon_{j}}+\Omega\left(\alpha^{-\epsilon_{j}}\right) /\left(\left(\alpha^{-\epsilon_{j}}\right)\right.$ End if
Extract $m(x)$ from the coefficients of $c(x)$ of degree $n-k$ and higher.
17. Return $m(x)$.

Intermediate results of this algorithm should generally correspond to Algorithm 5

> Error locator polynomial and Erasure polynomial computed together

	Algorithm 5	Algorithm 6	Algorithm 7
8 errors, 0 erasures	70.07 microseconds	68.49 microseconds	70.13 microseconds
4 errors, 8 erasures	59.73 microseconds	82.45 microseconds	83.42 microseconds
1 error, 14 erasures	54.98 microseconds	92.87 microseconds	93.15 microseconds
0 errors, 16 erasures	54.14 microseconds	53.47 microseconds	53.71 microseconds

All three algorithms perform about the same in the errors-only case and the erasures-only case
New Algorithm (\#5) performs better than the other two algorithms in the case where there is a mixture of errors and erasures.

Concluaing Renarles

Introduced new Reed-Solomon decoding algorithm advantageous in cases involving both errors and erasures

Decoding of QR Codes with erasure locations that can be determined using statistics provides one application of this algorithm

