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Error correction implemented through 

Reed-Solomon codes

All elements of the Reed-Solomon code 

used in QR codes are elements

of GF(256) with generating polynomial

x8 + x4 + x3 + x2 + 1



 Level Q code in this example based on (26, 13) Reed-Solomon code

 Code can correct up to 6 of the 26 blocks in this code which is about the 
advertised 25%



 More than 6 blocks are wrong here, so current QR decoders cannot handle this case.

 Can we take advantage of the fact that we know that certain blocks are known to be 
wrong to improve our decoding?

 How can a decoder decide whether or not a block is wrong without actually decoding?



 A mask is applied to all of the 
original data before producing the 
actual QR code.

 An algorithm evaluates 8 different 
masks on the original data and 
determines which of them makes 
the bits in the final result appear 
the most “random”.



 If truly random, each block in QR code would be 
modeled by 8 Bernoulli trials of p=0.50 (coin flip)

 Distribution of light and dark squares within a 
block would be governed by the following 
distribution:
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 Use Neymann-Pearson Lemma from Statistics to 
construct a two tail rejection region with probability 
90%

 If we observe 0, 1, 7, 8 squares of the same color in a 
block, we declare it unlikely to have come from the 
masking process and mark it as a mistake
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So in this case, we can mark D1-D9, D11-D12 
as mistakes.

Now what can we do about them?



 These “known mistakes” are called “erasures” and 
can be corrected at “half the cost” of an error where 
the location is unknown.

 In the example of the (26,13) Level Q QR code, the 
underlying Reed-Solomon code can correct 6 errors 
where the location is unknown or up to 13 erasures or 
any combination that satisfies 

2t + e ≤ 13     (t = #errors, e=#erasures)

 Python Code for Reed-Solomon decoding with 
erasures can be found at:

 https://en.wikiversity.org/wiki/Reed%E2%80%93So
lomon_codes_for_coders/Additional_information



Here, we’ll mark D1-D9, D11-D12 as 
erasures and correct up to one additional 
error in an unknown location



 Based on results presented at the 2011 Canadian 
Workshop on Information Theory

 Main idea from 2011 is that the Berlekamp-
Massey algorithm used to solve the 
“Key Equation” in traditional Reed-Solomon 
decoding algorithms is equivalent to the 
Expended Euclidean Algorithm for finding the 
greatest common divisor of two polynomials over 
finite fields

 Can also integrate ideas from Eastman (1988) 
who observed that this step can be computed 
without the need for any finite field inverses.





 This “Key 
Equation” solver 
can be inserted 
into a new 
Errors and 
Erasures 
Decoding 
Algorithm

 Error locator 
polynomial and 
Erasure 
polynomial 
computed 
separately



 Need to 
“reverse” all 
of the 
polynomials 
from 
Algorithm 5 to 
correspond.

 Error locator 
polynomial 
and Erasure 
polynomial 
computed 
together



 Intermediate 
results of this 
algorithm 
should 
generally 
correspond to  
Algorithm 5 

 Error locator 
polynomial 
and Erasure 
polynomial 
computed 
together



All three algorithms perform about the 

same in the errors-only case and the 

erasures-only case

New Algorithm (#5) performs better than 

the other two algorithms in the case where 

there is a mixture of errors and erasures.



 Introduced new Reed-Solomon decoding algorithm 
advantageous in cases involving both errors and erasures

 Decoding of QR Codes with erasure locations that can be 
determined using statistics provides one application of this 
algorithm


