CORSO DI LAUREA IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I, II, RECUPERO) 8 OTTOBRE 2014

Svolgere i seguenti esercizi, giustificando **pienamente** tutte le risposte. Sui fogli consegnati vanno indicati: nome, cognome, matricola e gruppo di appartenenza. Non è necessario consegnare la traccia.

Esercizio 1. Dare la definizione di divisore e di multiplo in \mathbb{Z} di un numero intero a.

Posto, per ogni $a \in \mathbb{Z}$, $D(a) = \{n \in \mathbb{Z} \mid n | a\} \in M(a) = \{n \in \mathbb{Z} \mid a | n\}$,

- (i) descrivere $D(11^{273})$;
- (ii) esiste in \mathbb{Z} un elemento a tale che D(a) sia infinito?
- (iii) Descrivere $\bigcap_{a \in \mathbb{Z}} D(a)$ e $\bigcup_{a \in \mathbb{Z}} D(a)$.

Definita la relazione binaria ρ in \mathbb{Z} , ponendo, per ogni $a, b \in \mathbb{Z}$, $a \rho b \iff M(a) = M(b)$,

- (iv) si spieghi perché ρ è una relazione di equivalenza;
- (v) si descriva (in modo esplicito) la classe $[15]_{\rho}$.

Esercizio 2. Sia Σ la relazione binaria in \mathbb{N}^+ definita ponendo, per ogni $x, y \in \mathbb{N}^+$,

$$x \Sigma y \iff (\exists n \in \mathbb{N})(y = x2^n).$$

- (i) Verificare che Σ è una relazione d'ordine.
- (ii) Determinare, se esistono, gli elementi minimali, massimali, minimo, massimo in (\mathbb{N}^+, Σ) .
- (iii) Verificare che, se $x, y \in \mathbb{N}^+$, avendo posto $x = k_x 2^{\alpha_x}$ e $y = k_y 2^{\alpha_y}$, dove $\alpha_x, \alpha_y \in \mathbb{N}$ mentre k_x e k_y sono interi positivi dispari, x e y sono confrontabili se e solo se $k_x = k_y$.
- (iv) Verificare che, per ogni $x, y \in \mathbb{N}^+$, l'insieme $\{x, y\}$ ha maggioranti o minoranti se e solo se x e y sono confrontabili.
- (v) Verificare che, per ogni $X \subseteq \mathbb{N}^+$, (X, Σ) è un reticolo se e solo se è totalmente ordinato.

Esercizio 3. Si definiscano in $S:=\mathbb{Z}\times\mathbb{Z}\times\mathbb{Z}$ le operazioni binarie * e \oplus ponendo, per ogni $a,b,c,d,e,f\in\mathbb{Z}$,

$$(a, b, c) * (e, f, q) = (ae, af + bq, cq);$$
 $(a, b, c) \oplus (e, f, q) = (a + e, b + f, c + q).$

Dando per noto che * è associativa,

- (i) il semigruppo (S, *) è un monoide? È commutativo?
- (ii) Verificare che $(S, \oplus, *)$ è un anello. Di che tipo di anello si tratta?
- (iii) (1, -2, 0) è un divisore (destro?, sinistro?) dello zero in $(S, \oplus, *)$?
- (iv) (1,0,2) è invertibile in $(S,\oplus,*)$?

Esercizio 4. Determinare se esiste, o spiegare perché non esiste:

- (i) un polinomio irriducibile di grado 3 in $\mathbb{Q}[x]$ che ammetta una radice in \mathbb{Q} ;
- (ii) un polinomio in $\mathbb{Q}[x]$ non irriducibile, che non ammetta radici in \mathbb{Q} ;
- (iii) un polinomio irriducibile di grado 3225 in $\mathbb{Q}[x]$;
- (iv) un polinomio in $\mathbb{Q}[x]$, di grado 3225, che sia irriducibile sia in $\mathbb{Q}[x]$ che in $\mathbb{R}[x]$.