CORSO DI LAUREA IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I, II, RECUPERO) 13 LUGLIO 2015

Svolgere i seguenti esercizi, giustificando pienamente tutte le risposte. Sui fogli consegnati vanno indicati: nome, cognome, matricola e gruppo di appartenenza. Non è necessario consegnare la traccia. Dopo aver letto queste righe alzare le braccia in segno di assenso.

Esercizio 1. (i) Dare la definizione di divisore di un numero n in \mathbb{Z} .

- (ii) L'insieme $\{[-8]_5, [8]_5, [19]_5, [55]_5, [76]_5, [103]_5\}$ coincide con \mathbb{Z}_5 ?
- (iii) Per quali interi n > 1 si ha $[15]_8 = [n]_8$?

Esercizio 2. Si consideri l'applicazione $f:(a,b)\in\mathbb{N}\times\mathbb{N}\mapsto a^2+b^2\in\mathbb{N}$.

- (i) f è iniettiva? f è suriettiva?
- (ii) Detto \mathcal{R} il nucleo di equivalenza di f, elencare gli elementi di $[(4,3)]_{\mathcal{R}}$ e calcolare $|[(4,3)]_{\mathcal{R}}|$.
- (iii) La relazione binaria τ definita in $\mathbb{N} \times \mathbb{N}$ da:

$$(\forall a, b, c, d \in \mathbb{N})((a, b) \tau (c, d) \iff f(a, b) \leq f(c, d))$$

non è d'ordine. Perché?

Sia invece σ la relazione d'ordine in $\mathbb{N} \times \mathbb{N}$ definita da:

$$(\forall a, b, c, d \in \mathbb{N}) ((a, b) \sigma (c, d) \iff ((a, b) = (c, d) \vee f(a, b) < f(c, d)))$$

- (iv) σ è totale?
- (v) È vero che, scelti comunque $a, b, c, d \in \mathbb{N}$, se $(a, b) \neq (c, d)$ allora (a, b) e (c, d) sono confrontabili rispetto a σ ?
- (vi) Determinare gli elementi minimali, massimali e gli eventuali minimo e massimo in $(\mathbb{N} \times \mathbb{N}, \sigma)$.
- (vii) Posto $A = \{(1,0), (0,1)\}$, determinare in $(\mathbb{N} \times \mathbb{N}, \sigma)$ l'insieme dei minoranti e quello dei maggioranti di A e, se esistono, inf A e sup A. Rispondere alla stessa domanda dopo aver sostituito A con $B = \{(1,4), (4,1)\}$.
- (viii) $(\mathbb{N} \times \mathbb{N}, \sigma)$ è un reticolo?

Sia
$$X = \{(0,4), (1,3), (1,4), (2,3), (3,1), (4,1), (4,2)\}.$$

- (ix) Disegnare il diagramma di Hasse di (X, σ) . (X, σ) è un reticolo?
- (x) Qual è il minimo numero di elementi da eliminare da X per ottenere (rispetto all'ordinamento indotto da σ):
 - (α) un reticolo;
 - (β) un reticolo distributivo;
 - (γ) un reticolo complementato.
- (xi) Esiste $x \in \mathbb{N} \times \mathbb{N}$ tale che $(X \cup \{x\}, \sigma)$ sia un reticolo? Se la risposta è sì, il reticolo così ottenuto è complementato? Quanti sono gli $x \in \mathbb{N} \times \mathbb{N}$ con la proprietà richiesta?

Esercizio 3. Si consideri in \mathbb{Z}_9 l'operazione binaria * definita ponendo, $a*b=a+b+\bar{6}ab$ per ogni $a,b\in\mathbb{Z}_9$.

- (i) Stabilire che tipo di struttura è ($\mathbb{Z}_9, *$): un semigruppo?, commutativo o no?, un monoide? un gruppo? un anello?
- (ii) Nel caso in cui la domanda abbia senso, $\bar{2}$ è simmetrizzabile in $(\mathbb{Z}_9, *)$? Se sì, calcolarne il simmetrico.
- (iii) Stabilire se $\{\bar{0},\bar{2}\}$ è una parte chiusa in $(\mathbb{Z}_9,*)$.

Esercizio 4. Per ogni $a \in \mathbb{Z}_5$, sia f_a il polinomio $x^3 - x + a \in \mathbb{Z}_5[x]$.

- (i) Per quali (e quanti) valori di $a \in \mathbb{Z}_5$ il polinomio f_a non è irriducibile?
- (ii) Scelto un tale a, che sia diverso da $\bar{0}$, si decomponga f_a in prodotto di polinomi monici irriducibili in $\mathbb{Z}_5[x]$.