CORSO DI LAUREA IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I, II, RECUPERO) 10 MARZO 2016

Svolgere i seguenti esercizi,

giustificando pienamente tutte le risposte.

Sui fogli consegnati vanno indicati: nome, cognome, matricola e gruppo di appartenenza. Non è necessario consegnare la traccia.

Esercizio 1. Dare le definizioni di grafo, di grafo connesso e di albero. In $V := \{-2, -1, 1, 2\}$, la relazione binaria τ definita da $x \tau y \iff xy < 0$ per ogni $x, y \in V$ definisce un grafo? In caso di risposta positiva, tale grafo è connesso? È un albero?

Esercizio 2. Sia X l'insieme delle applicazioni di $S := \{1, 2, 3\}$ in sé.

- (i) Calcolare |X|.
- (ii) Quante sono, tra le applicazioni in X, quelle iniettive? E quante le suriettive?

Definiamo ora la relazione binaria σ in X ponendo, per ogni $f, g \in X$,

$$f \sigma g \iff ((\forall i \in S)(f(i) \leq g(i))).$$

- (iii) Costruire un'applicazione non costante $h \in X$ tale che id $_S \sigma h$, dove id $_S$ è l'applicazione identica: $i \in S \mapsto i \in S$.
- (iv) σ è una relazione d'ordine? Se lo è rispondere alle domande che seguono.
- (v) σ è totale?
- (vi) Esistono in (X, σ) massimo e minimo?
- (vii) Per ogni $f \in g$, sia $\ell_{f,g} : i \in S \mapsto \min \{f(i), g(i)\} \in S$. Allora:
 - (a) $\ell_{f,g}$ è un minorante di $\{f,g\}$ in (X,σ) ?
 - (b) se lo è, è il massimo tra questi minoranti?
- (viii) (X, σ) è un reticolo?
- (ix) (X,σ) è un reticolo booleano?

Esercizio 3. Si consideri in $\mathcal{P}(\mathbb{Z}_{24})$, l'operazione binaria * definita ponendo, per ogni $A, B \in \mathcal{P}(\mathbb{Z}_{24})$,

$$A * B = \{ab \mid a \in A \land b \in B\}$$

- (i) *è commutativa? È associativa?
- (ii) Esiste in $(\mathcal{P}(Z_{24}), *)$ elemento neutro?
- (iii) Nel caso elemento neutro esista, caratterizzare in $(\mathcal{P}(\mathbb{Z}_{24}), *)$ gli elementi invertibili, descrivendone gli inversi.
- (iv) Vale per ogni $A, B \in \mathcal{P}(\mathbb{Z}_{24})$ l'equivalenza: $A * B = \{\bar{0}\} \iff (A = \{\bar{0}\} \vee B = \{\bar{0}\})$?
- (v) Determinare gli $A \in \mathcal{P}(\mathbb{Z}_{24})$ tali che $\{\bar{7}\} * A = \{\bar{7}, \bar{1}\}$ (utilizzare una opportuna equazione congruenziale).
- (vi) $\{\bar{7},\bar{1}\}$ è cancellabile in $(\mathcal{P}(\mathbb{Z}_{24}),*)$?

Esercizio 4. Sia α la relazione binaria in $\mathbb{Z}_7[x]$ definita da:

$$(\forall f, g \in \mathbb{Z}_7[x])(f \alpha g \iff x - \bar{1} \mid f - g).$$

- (i) α è una relazione di equivalenza?
- (ii) Verificare che, per ogni $f, g \in \mathbb{Z}_7[x]$, si ha: $f \alpha g \iff f(\bar{1}) = g(\bar{1})$.
- (iii) Se α è di equivalenza:
 - (a) descrivere le classi di equivalenza rispetto a α , scegliendo un rappresentante per ciascuna di esse e calcolando $|\mathbb{Z}_7[x]/\alpha|$;
 - (b) per ogni $n \in \mathbb{N}$ e per ogni $f \in \mathbb{Z}_7[x]$ costruire, se possibile, un rappresentante di $[f]_{\alpha}$ di grado n.