CORSO DI LAUREA TRIENNALE IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I E II) 13 NOVEMBRE 2017

Svolgere i seguenti esercizi,

giustificando pienamente tutte le risposte.

Sui fogli consegnati vanno indicati: **nome**, **cognome**, **matricola** e **gruppo di appartenenza**. **Non** è necessario consegnare la traccia.

Esercizio 1. Definire la nozione di classe di equivalenza.

Vero o falso? E perché? Per ogni insieme A ed ogni relazione di equivalenza \sim in A:

- $(i) \ (\forall a, b \in A)([a]_{\sim} \cap [b]_{\sim} \neq \varnothing \Rightarrow a \sim b).$
- $(ii) \ (\forall a, b \in A)(a \sim b \Rightarrow [a]_{\sim} = [b]_{\sim}).$
- (iii) Se A è finito, A/\sim è finito.
- (iv) Se A è infinito, A/\sim è infinito.

Siano $S = \{1, 2, 3\}$ e $T = \{n \in \mathbb{N} \mid n < 10\}$.

- (v) Quante sono le relazioni di equivalenza in S?
- (vi) Esiste una relazione di equivalenza σ in T tale che $T/\sigma = \{\{0,3,4\},\{1,8\},\{2,5,6,7\},\{9\}\}\}$? Sia ora α la relazione di equivalenza in $X = \{0,1,2,3,4,5\}$ definita da

$$(\forall x, y \in X) (x \alpha y \iff x^2 \equiv_3 (2y)^2).$$

(vii) Elencare gli elementi di ciascuna delle classi di equivalenza modulo α e descrivere X/α , indicando quanti elementi ha.

Esercizio 2. Sia f l'applicazione $(a,b) \in \mathbb{Q} \times \mathbb{Q} \mapsto a(a+2b) \in \mathbb{Q}$.

- (i) f è suriettiva? f è iniettiva?
- (ii) Determinare $[(0,0)]_{\rho}$, dove ρ è il nucleo di equivalenza di f.
- (iii) Determinare le coppie $(a,b) \in \mathbb{Z} \times \mathbb{Z}$ tali che f(a,b) = -1.
- (iv) Per ogni numero primo dispari p, determinare le coppie $(a,b) \in \mathbb{Z} \times \mathbb{Z}$ tali che f(a,b) = p.

Esercizio 3. Si consideri in \mathbb{Z} la relazione d'ordine σ definita da:

$$(\forall a, b \in \mathbb{Z})(a \sigma b \iff (a = b \vee \operatorname{rest}(a, 5) < \operatorname{rest}(b, 5))).$$

- (i) Determinare in (\mathbb{Z}, σ) gli insiemi degli elementi minimali e massimali, rappresentandoli se possibile come unioni di classi di resto. Determinare in (\mathbb{Z}, σ) gli eventuali minimo e massimo.
- (ii) Determinare in (\mathbb{Z}, σ) , per ciascuno di $X = \{6, -4\}$ e $Y = \{6, 2\}$:
 - (a) gli insiemi di minoranti e dei maggioranti, rappresentandoli se possibile come unioni di classi di resto;
 - (b) gli eventuali estremi inferiori e superiori.
- (iii) (\mathbb{Z}, σ) è un reticolo?
- (iv) Sia $S = \{0, 1, 2, 3, 4, 6, 13, 23\}$. (S, σ) è un reticolo? Quali condizioni (necessarie e sufficienti) deve verificare un $a \in \mathbb{Z}$ affinché $(S \cup \{a\}, \sigma)$ sia un reticolo?

Esercizio 4. Nell'anello $(M_2(\mathbb{Z}_{10}), +, \cdot)$ delle matrici 2×2 su \mathbb{Z}_{10} (dove $+ e \cdot$ indicano le consuete operazioni di addizione e di moltiplicazione righe per colonne tra matrici), si consideri la parte $T = \{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \mid a, b, c \in \mathbb{Z}_{10} \}.$

- (i) Si provi che T è chiusa rispetto a + e \cdot e, sfruttando le già note proprietà delle operazioni tra matrici, che $(T, +, \cdot)$ è un anello unitario non commutativo.
- (ii) Determinare gli elementi invertibili di T (rispetto a ·). Quanti sono?
- (iii) Facendo uso di un'opportuna equazione congruenziale, scrivere l'inverso di $\begin{pmatrix} \bar{3} & \bar{1} \\ \bar{0} & \bar{7} \end{pmatrix}$ in T.

Esercizio 5. Per ogni primo p si considerino i polinomi $f_p = \bar{2}x^2 + \bar{3}x + \bar{1}$ e $g_p = \bar{3}x^2 - \bar{4}x + \bar{2}$ in $\mathbb{Z}_p[x]$.

- (i) Per quali primi p il polinomio $f_p g_p$ è monico?
- (ii) Detto q il massimo tale primo, scrivere $f_q g_q$ come prodotto di polinomi irriducibili in $\mathbb{Z}_q[x]$.