CORSO DI LAUREA TRIENNALE IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I E II) 12 NOVEMBRE 2018

Svolgere i seguenti esercizi,

giustificando pienamente tutte le risposte.	
---	--

Sui fogli consegnati vanno indicati: **nome**, **cognome**, **matricola** e **gruppo** di **appartenenza**. **Non** è necessario consegnare la traccia.

Esercizio 1. Dare la definizione di *gruppo* e dimostrare in dettaglio che, per ogni insieme S, $(\mathcal{P}(S), \triangle)$ è un gruppo.

(i) Verificare che la relazione binaria \mathcal{R} definita in $\mathcal{P}(\mathbb{Z})$ ponendo, per ogni $A, B \in \mathcal{P}(\mathbb{Z})$,

$$A \Re B \iff (\exists X \in \mathcal{P}(\{1,2\}))(A = B \triangle X)$$

è una relazione di equivalenza.

- (ii) Elencare gli elementi di $[\mathbb{N}]_{\mathcal{R}}$. Quanto vale $|[\mathbb{N}]_{\mathcal{R}}|$?
- (iii) Qual è la massima cardinalità possibile per $[A]_{\mathcal{R}}$, al variare di A in $\mathcal{P}(\mathbb{Z})$?

Esercizio 2. Risolvere l'equazione congruenziale $30x \equiv_{104} 8$, descrivendo l'insieme di tutte le sue soluzioni intere.

Esercizio 3. Vero o falso? Per ogni insieme ordinato (S, \leq) ...

- (i) ... se (S, \leq) è un reticolo, in (S, \leq) esistono inf S e sup S;
- (ii) ... se in (S, \leq) esiste inf S, allora inf $S = \min S$;
- (iii) ... se in (S, \leq) esiste min S, allora min $S = \inf S$;
- (iv) ... se $X \subseteq S$ e, in (S, \leq) , esiste inf X, allora inf $X = \min X$;
- (v) ... se $X \subseteq S$ e, in (S, \leq) , esiste min X, allora min $X = \inf X$;
- (vi) ... se (S, <) è totalmente ordinato, allora è un reticolo;
- (vii) ... se (S, \leq) è un reticolo limitato, $0 = \min S$ e $1 = \max S$, allora (S, \leq) è complementato se e solo se per ogni $a, b \in S$ si ha $a \land b = 0$ e $a \lor b = 1$.

Inoltre:

- (viii) Esistono reticoli non totalmente ordinati? Nel caso, fornire un esempio.
 - (ix) Dare le definizione di minorante di una parte X in un insieme ordinato (S, \leq) .

Esercizio 4. Sia * l'operazione binaria definita in $\mathbb{Z} \times \mathbb{Z}$ ponendo, per ogni $a, b, c, d \in \mathbb{Z}$,

$$(a,b)*(c,d) = (a,b+d+3).$$

- (i) Come applicazione da $(\mathbb{Z} \times \mathbb{Z}) \times (\mathbb{Z} \times \mathbb{Z})$ a $\mathbb{Z} \times \mathbb{Z}$, * è iniettiva? È suriettiva?
- (ii) * è commutativa? È associativa? Ammette elementi neutri a destra, a sinistra, neutri? Che tipo di struttura algebrica è $(\mathbb{Z} \times \mathbb{Z}, *)$?
- (iii) Descrivere gli elementi di $X = \{-1\} \times \mathbb{Z}$. X è una parte chiusa di $(\mathbb{Z} \times \mathbb{Z}, *)$? Se lo è, stabilire che tipo di struttura algebrica è (X, *).

Esercizio 5. Sia $f = (x^4 - (x + \bar{1})^2)(x^3 - x + \bar{2})^{100} \in \mathbb{Z}_3[x]$. Senza eseguire moltiplicazioni,

- (i) scrivere f come prodotto di polinomi monici irriducibili in $\mathbb{Z}_3[x]$;
- (ii) dopo averlo fatto, determinare le radici di f in \mathbb{Z}_3 .