CORSO DI LAUREA TRIENNALE IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I, II E III) 17 GIUGNO 2022

Svolgere i seguenti esercizi,

Sui fogli consegnati vanno indicati: nome, cognome, matricola, gruppo di appartenenza.

Non è necessario consegnare la traccia.

NB: I simboli ' \leftrightarrow ' e ' \rightarrow ' sono anche usati per indicare i connettivi bicondizionale (' \iff ') e condizionale (' \Rightarrow ') rispettivamente.

Esercizio 1.

- (i) Stabilire se le forme proposizionali $(p \to (p \leftrightarrow p))$ e $((p \to p) \leftrightarrow p)$ sono logicamente equivalenti. Sia ora φ la frase (del linguaggio ordinario): "x è la capitale della Francia".
 - (ii) Negare, formalmente e con una frase del linguaggio ordinario, la formula $(\exists!x)(\varphi(x))$.
 - (iii) Detta θ la formula $(\forall x)(\varphi(x))$, e assumendo l'interpretazione ordinaria per le parole che appaiono nella formula φ , decidere se le formule $\theta \to (\theta \leftrightarrow \theta)$ e $(\theta \to \theta) \leftrightarrow \theta$ sono logicamente equivalenti.

Esercizio 2. Quando, per definizione, dati tre interi a, b e m, si ha $a \equiv_m b$? Inoltre:

- (i) per quali interi c si ha $3 \equiv_c -2$?
- (ii) Per quali interi d si ha $5 \equiv_d 2$?
- (iii) Esiste un intero negativo e tale che 2 sia nella stessa classe di equivalenza di 3 modulo e?

Esercizio 3. Si consideri l'operazione binaria * definita in $\mathcal{P}(\mathbb{Z})$ ponendo, per ogni $a,b\in\mathcal{P}(\mathbb{Z})$, $a*b=(a\bigtriangleup\mathbb{N})\bigtriangleup b.$

Si decida se * è commutativa, se è associativa, se in $(\mathcal{P}(\mathbb{Z}),*)$ esistono elementi neutri a destra o a sinistra, se $(\mathcal{P}(\mathbb{Z}),*)$ è un gruppo. Nel caso la domanda abbia senso, determinare il simmetrico di \mathbb{Z} rispetto ad *.

Esercizio 4. Poniamo, per ogni $n \in \mathbb{Z}, \bar{n} = [n]_5$.

- (i) Descrivere $A := \{ f \in \mathbb{Z}_5[x] \mid f(\overline{1}) = f(\overline{2}) = \overline{0} \land f \text{ ha grado } 3 \}$ e calcolare |A|.
- (ii) Posto $B = \{ f \in \mathbb{Z}_5[x] \mid f(\overline{3}) = \overline{0} \}$, descrivere $A \cap B$ e calcolare $|A \cap B|$.
- (iii) Descrivere esplicitamente $\overline{A} = \{ f \in A \mid f \text{ è irriducibile} \}$ e $\overline{B} = \{ f \in B \mid f \text{ è irriducibile} \}$; calcolare $|\overline{A}|$ e $|\overline{B}|$.
- (iv) Elencare gli elementi di $C := \{a^2 \mid a \in \mathbb{Z}_5\}$; utilizzando questo elenco costruire un polinomio irriducibile di grado 2 in $\mathbb{Z}_5[x]$.

Esercizio 5. Sia S l'insieme delle parti finite e non vuote di \mathbb{Z} . Sia poi f l'applicazione $X \in S \mapsto \max X - \min X \in \mathbb{N}$.

- (i) f è iniettiva? f è suriettiva?
- (ii) Descrivere $\overline{f}(\{0\})$.
- (iii) Detto σ il nucleo di equivalenza di f, descrivere $[\{4\}]_{\sigma}$ e decidere se l'insieme quoziente S/σ è finito o infinito.

Sia ρ la relazione d'ordine in S definita ponendo, per ogni $X, Y \in S$,

$$X \rho Y \iff (X = Y \vee f(X) \text{ è un divisore proprio di } f(Y)).$$

- (iv) Determinare gli eventuali elementi minimali, massimali, minimo, massimo in (S, ρ) .
- (v) Decidere se (S, ρ) è un reticolo.
- (vi) Disegnare il diagramma di Hasse di (T, ρ) , dove $T = \{A, B, C, D, E, F, G, H, I\}$, e $A = \{0, 1\}$, $B = \{1, -1\}$, $C = \{0, 1, 2, 3\}$, $D = \{0, 2, 4, 6\}$, $E = \{0, 100!\}$, $F = \{2, 10, 20\}$, $G = \{-2, 2\}$, $H = \{1, 5, 25\}$, $I = \{1, 10\}$ decidendo poi se (T, ρ) è un reticolo e, nel caso, se è distributivo, complementato, booleano.