CORSO DI LAUREA TRIENNALE IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I, II E III) 22 APRILE 2024

Svolgere i seguenti esercizi,

giustificando pienamente tutte le risposte.

Sui fogli consegnati vanno indicati: nome, cognome, matricola, gruppo di appartenenza. Non è necessario consegnare la traccia.

Esercizio 1. (i) Enunciare il teorema fondamentale sulle relazioni di equivalenza e le partizioni. Posto $T = \{13, 24, 202, 1104, 110211\},\$

- (ii) determinare il numero delle partizioni di T aventi ordine (cardinalità) 2.
- (iii) Se α è la relazione di equivalenza definita in T da: per ogni $a, b \in T$,

 $a \alpha b \longleftrightarrow$ la somma delle cifre di $a^{(\ddagger)}$ è uguale alla somma delle cifre di b. descrivere esplicitamente le classi di equivalenza di α e l'insieme quoziente T/α .

Esercizio 2. Si consideri l'applicazione $f:(a,b)\in\mathbb{N}\times\mathbb{N}^*\longmapsto a^b\in\mathbb{N}$.

- (i) Determinare $\overrightarrow{f}(\mathbb{N} \times \mathbb{N}^*)$, $\overrightarrow{f}(\varnothing)$, $\overleftarrow{f}(\varnothing)$ $\overleftarrow{f}(\{1\})$, $\overleftarrow{f}(\{5\})$.
- (ii) Verificare se f è iniettiva, suriettiva, biettiva.
- (iii) Dare le definizione di reticolo (come insieme ordinato).

Si consideri la relazione d'ordine τ definita in $\mathbb{N} \times \mathbb{N}^*$ da: $\forall a, c \in \mathbb{N} \ \forall b, d \in \mathbb{N}^*$

$$(a,b) \tau (c,d) \longleftrightarrow ((a,b) = (c,d) \lor f((a,b))$$
 è un divisore proprio di $f((c,d))$.

(iv) Determinare in $(\mathbb{N} \times \mathbb{N}^*, \tau)$ eventuali minimo, massimo, elementi minimali, elementi massimali e verificare se $(\mathbb{N} \times \mathbb{N}^*, \tau)$ è o meno un reticolo.

Sia $M = \{(4,1), (2,2), (2,3), (6,2), (4,2), (12,2)\}.$

- (v) Disegnare un diagramma di Hasse di (M, τ) .
- (vi) Stabilire se (M,τ) è un reticolo. Se lo è decidere se è distributivo, complementato, booleano. Se non lo è determinare una coppia $(a,b) \in M$ tale che $(M \setminus \{(a,b)\}, \tau)$ sia un reticolo e decidere se questo è distributivo, complementato, booleano.

Esercizio 3. Sia * l'operazione binaria definita in \mathbb{Z}_6 ponendo, per ogni $a, b \in \mathbb{Z}_6$, $a * b = \bar{3}a + \bar{4}b$.

- (i) Dopo aver dato la definizione di semigruppo, verificare che $(\mathbb{Z}_6,*)$ è un semigruppo.
- (ii) ($\mathbb{Z}_6, *$) è un monoide? È commutativo?
- (iii) Verificare che, in $(\mathbb{Z}_6, *)$, $\{\bar{0}, \bar{3}\}$ è una parte stabile (cioè chiusa).

Esercizio 4. Sia ρ la relazione binaria in \mathbb{Z} definita da: per ogni $a, b \in \mathbb{Z}$, $a \rho b \leftrightarrow a + b$ è dispari.

- (i) Verificare che (\mathbb{Z}, ρ) definisce un grafo.
- (ii) Determinare un sottoinsieme S di Z tale che |S| = 5 e (S, ρ) definisca un albero.

Esercizio 5. Vero o falso (e perché)?

- (i) In $\mathbb{Z}_{13}[x]$, un polinomio f ammette $\bar{3}$ e $\bar{5}$ come radici se e solo se f è multiplo di $x^2 \bar{8}x + \bar{2}$.
- (ii) Il polinomio $x^2 \bar{8}x + \bar{2} \in \mathbb{Z}_{13}[x]$ è irriducibile in $\mathbb{Z}_{13}[x]$.
- (iii) Il polinomio $x^2 \bar{8}x + \bar{2} \in \mathbb{Z}_3[x]$ è irriducibile in $\mathbb{Z}_3[x]$.
- (iv) Per ogni primo p, il polinomio $x^2 \bar{8}x + \bar{2} \in \mathbb{Z}_p[x]$ è irriducibile in $\mathbb{Z}_p[x]$. (v) Per ogni primo p, il polinomio $x^2 \bar{8}x + \bar{2} \in \mathbb{Z}_p[x]$ è riducibile in $\mathbb{Z}_p[x]$.
- (vi) I polinomi $g = \bar{3}x^2 \bar{1}\bar{1}x + \bar{6}$ e $\ell = \bar{7}x^2 + \bar{9}x \bar{1}\bar{2}$ sono associati in $\mathbb{Z}_{13}[x]$ (utilizzare un'opportuna equazione congruenziale per verificarlo).

Esercizio 6. Se φ , θ e δ sono variabili proposizionali, stabilire se una, entrambe o nessuna delle seguenti è una tautologia:

- $(i) (\varphi \wedge \neg (\neg \theta \vee \neg \delta)) \longleftrightarrow (\varphi \wedge \theta \wedge \delta);$
- (ii) $(\varphi \land \neg (\neg \theta \lor \neg \delta)) \longleftrightarrow (\varphi \land (\theta \lor \delta)).$

 $^{(\}ddagger)$ le cifre sono intese in base 10. In modo esplicito: la 'somma delle cifre' di $a \in \sum_{i=0}^h c_i$, dove $a = \sum_{i=0}^h c_i 10^i$ per un opportuno $h \in \mathbb{N}$ e numeri naturali c_0, c_1, \ldots, c_h minori di 10.