Esercitazione scritta di ALGEBRA (Pro		•	colec	dì 14	lugl	io 2	.009		
NOME E COGNOME				MATI	RICOL	JA			
GRUPPO $\Box I (Rao) \Box rec. (Cutolo)$		ESAME: gi	ovedì	16 lug	glio, o	ore 9	, aula	a E, DN	ΜА
 1 Vero o falso? Oppure i dati non sono sufficienti per la assegnato un intero n > 100. Si ha n! ≡_{n-3} 300 Negli anelli booleani ogni elemento diverso dall'uni In un arbitrario anello, ogni elemento non invertili Nell'anello Z₃₁₅ gli elementi [197]₃₁₅ e [9]₃₁₅ sono Il numero dei divisori di 2³⁵3²¹5⁷ è minore del nume Nel gioco del lotto, il numero delle possibili sestini è è data una proposizione p. La proposizione '(p ⇒ 	00. vero □ fa ità è un divisore bile è non cance l'uno inverso d ero dei divisori d ue è maggiore d	also \Box da e dello zero ellabile. ve ell'altro. v di $7^711^{35}13$ i 2^{26} . vero	ti ins . ver ro \square rero \square ²¹ . v \square f	suffica ro false false fal vero also [ienti falso o □ lso □ □ fa □ da	o 🗆 dat I da Iso ati i	ti ins ati ii □ d insui	suff. □ nsuff. lati in ff. □	□ □ suff. □
2 Per definizione, dato un insieme A, σ è una part	izione di A , se	e solo se:							
La biezione canonica dall'insieme delle relazioni di $\alpha \in \operatorname{Eq}(A) \mapsto \dots$ Si elenchino le partizioni di $S:=\{1,3,7\}$:	∈ P	art(A).		_					
3 Con $A = \{a \in \mathbb{N} \mid a < 9\}$, sia \circ l'operazione bina \circ è commutativa semigruppo? sì \square no In (A, \circ) , l'elemento neutro esis 3 3 1 8 6 4 2 0 7 5	a? $si \square no \square$. So \square , è un monoicento neutro: \square ste, nella tabella	Sapendo con C sì \Box non esiste a che segue	$\begin{array}{c} \text{he } \circ \\ \bigcirc, \bigcirc, \\ \text{opp} \\ \text{e si i} \end{array}$	è as è un oure: ndich	socia grup □ ea ni co	ativ ppo' siste on u	ra, (.? ? sì [e, è: na c	$A, \circ)$ \square no \vdots \vdots \vdots	□.Seta se
4 4 1 7 4 1 7 4 1 7 5 5 1 6 2 7 3 8 4 0	non simme	trizzabile	0	1 2	3	4	5	6 7	8
6 6 1 5 0 4 8 3 7 2 7 7 1 4 7 1 4 7 1 4 8 8 1 3 5 7 0 2 4 6		periodo mmetrico							
Si indichi con U l'insieme degli elementi simmetri $v \in U$ tale che ogni $u \in U$ sia potenza di v ? Un tale In questo caso si consideri la corrispondenza α da v^n sono calcolate rispetto all'operazione \circ). α è un $(\mathbb{Z}_6, +)$ a (U, \circ) ? sì \square no \square ; un isomorfismo da $(\mathbb{Z}_6, +)$	$v: \square$ non esiste \mathbb{Z}_6 ad U di gran'applicazione:	e, oppure: afico $\{([n]_6 \ \mathbb{Z}_6 \to U?)\}$	$\square \ est$	iste, s	$ad es$ $\in \mathbb{Z}$ }	sem	pio: ove	v = le pot	enze
4 Con A e \circ come nell'esercizio nr. 3, si studi l'a va? $si \square no \square$, f è suriettiva? $si \square no \square$. Esistono oppure: $\square si$, un esempio è	o applicazioni g	$: A \to A \times$	A ta	ali ch	f_{ξ}	g =			
$g: \left(\begin{array}{cccc} 0 & 1 & 2 & 3\\ (\ ,\) & (\ ,\) & (\ ,\) & (\ ,\) \\ \text{Esistono applicazioni}\ h: A \to A \times A\ \text{tali\ che}\ hf = 3$									
Esistollo applicazioni $h: A \to A \times A$ tali che $hj = A$)			
Sia \sim_f il nucleo di equivalenza di (ovvero: l'equiv Descrivere, elencandone gli elementi, le classi:							$)/\sim_{j}$	$_{f} =$	

 $[(0,6)]_{\sim_f} = \{\ldots\ldots\}; [(0,5)]_{\sim_f} = \{\ldots\ldots\}$

5 Si descrivano esplicitamente gli insiemi, rispettivamente A , B , C , dei numeri naturali n tali che esista grafo (semplice) G con esattamente 8 vertici di cui uno, v , di grado n e tale che (a) G sia connesso, abbia esattamente 6 lati e, tra i vertici di G diversi da v , uno abbia grado 1 e abbiano grado 2; [$A = \dots$	${ m tr}\epsilon$	
(b) tra i vertici di G diversi da v , uno sia isolato, uno abbia grado 1 e ciascuno degli altri cinque ab	bia	
(c) tra i vertici di G diversi da v , uno abbia grado 2, due abbiano grado 3, uno abbia grado 8, e gli a	altri	
6 Si considerino le relazioni binarie α , β , γ definite in \mathbb{N} ponendo, per ogni $n, m \in \mathbb{N}$,	e 8 vertici di cui uno, v , di grado n e tale che tamente 6 lati e, tra i vertici di G diversi da v , uno abbia grado 1 e tre $[A = \dots $	
$n \alpha m : \iff ((n \bmod 7 < m \bmod 7) \land (n \bmod 10 < m \bmod 10))$		
$n \beta m : \iff ((n \bmod 7 \le m \bmod 7) \land (n \bmod 10 \le m \bmod 10))$		
$n \gamma m : \iff ((n \bmod 7 < m \bmod 7) \lor (n \bmod 10 < m \bmod 10))$		
Quali tra queste tre sono: e quali non sono:	Sia re-	
7 Con $n = 2910(61^{22} + 22^{61}) + 22^{291} + 61^{293} - 100$, calcolare: $n \mod 291 = \ldots$; $n^2 \mod 291 = \ldots$ Determinare gli insiemi (risp. S_1 , S_2 , S_3) di tutte le soluzioni intere di ognuna delle equazioni conguenzi		
$(22 \cdot 61)x \equiv_{291} 1$ $(172 \cdot 229)x \equiv_{291} 1$ $(22 \cdot 97)x \equiv_{291} 194$		
$S_1 = \dots ; S_2 = \dots ; S_3 = \dots ; S_3 = \dots $		
8 Trovare in $\mathbb{Z}_6[x]$, se possibile, due polinomi f e g di gradi rispettivamente 4 e 2 tali che fg abbia g do 2. \square Non esistono tali polinomi, oppure: \square ne esistono, ad esempio: $f = \ldots \ldots$ $g = \ldots \ldots$ Trovare in $\mathbb{Z}_{14}[x]$, se possibile, un polinomio h di grado 3 che abbia più di cine radici in \mathbb{Z}_{14} . \square Non esistono tali polinomi, oppure: \square ne esistono, ad esempio $h = \ldots \ldots$. e que	
9 Siano, in $\mathbb{Q}[x]$, $f = x^5 + 7x^4 + 26x^3 + 53x^2 + 63x + 30$ e $g = x^4 + 3x^3 + 4x^2 - 3x - 5$. Si determine massimo comun divisore monico d tra f e g in $\mathbb{Q}[x]$:	ni i	
f ha un divisore irriducibile in $\mathbb{Q}[x]$ di grado tre? \square no, perché		
oppure: \Box sì, ad esempio:		