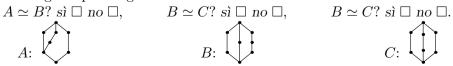
CdS ir Esercitazione scritta di ALG I	n Informatica — a.a. 2 E BRA (Proff. Cutolo e			17 ottobre 2008
NOME E COGNOME	<u> </u>	·		MATRICOLA
GRUPPO $\Box I$ (Rao) \Box rec. (Cutolo)		ESAME:	lunedì 20	ottobre, ore 11, aula C, DMA
1 Vero o falso? Oppure i dati non sono s • Esistono interi dispari multipli di 162. • Esistono infiniti interi positivi m tali che • È assegnato un intero n . Il prodotto $(n-$ • Scelti comunque gli insiemi A, B, C, D si • Esistono tre trasposizioni, $\alpha, \beta, \gamma \in \operatorname{Sym}$	vero \square falso \square dan $[34577]_m$ sia invertibile $3)(n-2)(n-1)n(n+1)$ ha $(A \cap B) \cup (C \cap D) \subseteq \emptyset$	ti insufficite in \mathbb{Z}_m . È multiple $(A \cup D) \cap (A \cup D)$	$\begin{array}{c} enti \ \Box \\ vero \ \Box \\ o \ di \ 5. \ vero \ B \cup C). \end{array}$	falso \square dati insufficienti lero \square falso \square dati insuff. \square vero \square falso \square dati insuff. \square
2 Per definizione, un'applicazione $f: U$ –	$\rightarrow V$ si dice <i>iniettiva</i> se	e solo se		
L'applicazione $n \in \mathbb{N} \mapsto \begin{cases} n, & \text{so} \\ n+3, & \text{so} \end{cases}$	e $n > 10$ e $n \le 10 \in \mathbb{Z}$ è iniettiv	va? sì □ n	o 🗆	
3 Per ogni intero i compreso tra 2 e 14 s $ ((p_1 \lor p_2 \lor \ldots \lor p_i \\ \Phi_2 \` e \Box una tautologia, \Box una contraddiz \\ (1) \Phi_i sia una tautologia. [Risposta:$	$(p_{i+1} \wedge p_{i+2} \wedge \dots)$ sione, \square contingente. \square	$\langle p_{15} \rangle = 0$	$\Rightarrow (p_4 \Rightarrow$ no gli int	eri i tali che $1 < i < 15$ e
4 Si consideri la relazione binaria ρ defin	nita in \mathbb{N} ponendo, $\forall a$,	$b \in \mathbb{N}$,		
	$a \rho b : \iff a \mid 2b.$			
ρ è riflessiva? $si \square no \square$, antiriflessiva? si sitiva? $si \square no \square$. Indicando ancora con ρ le relazion $\{1,2,3,5,12,15,28,140,420\}$, si decida: dinato? $si \square no \square$. Se possibile, si sce e B in modo che (S,ρ) sia un insieme di esso si disegni a lato il diagramma o mande seguenti: (S,ρ) è un reticolo? $si \square no \square$, complementato? $si \square no$ pre in (S,ρ) , sup $\{15,28\} = \ldots$, oppur Esiste $x \in S$ tale che $S \setminus \{x\}$, munito de un reticolo booleano? \square no , oppure: \square $si \square no \square$ esistono \square esattamente uno, oppure \square pi	i indotte da ρ su A (A, ρ) è un insieme celga e si chiami S un ordinato (dunque, S eli Hasse e si risponda \square \square \square \square \square \square nel caso, de \square , booleano? \square \square \square no \square re: \square sup $\{15, 28\}$ non ll'ordinamento indotte \square	$:= \{1, 3,\}$ ordinato? to tra A $=)$, alle do- distributi- \Box . Sem- esiste. o da ρ sia	4, 5, 12, 1	$5,28,140,420$ } e su $B :=$
E Ci decide queli dei tre crefi qui discorre	ati gana igamanê ter 1.	wa.		

Si decida quali dei tre grafi qui disegnati sono isomorfi tra loro:



Si scelga uno qualsiasi dei tre grafi (indicando quale) e lo si chiami G (dunque $G = \ldots$). G ha cammini euleriani? sì \square no \square ;, ha circuiti euleriani? sì \square no \square . G ha qualche sottoalbero massimale (o albero di supporto)? sì \square no \square . Nel caso ne abbia, ne ha \square uno solo o \square più di uno?, e quanti lati deve avere un sottoalbero massimale di G?..., oppure: \square impossibile stabilirlo. Quanti lati è necessario aggiungere a G per trasformarlo in un grafo completo?

6 Assegnato $k \in \mathbb{N}$ si consideri l'operazione binaria * definita in \mathbb{N} ponendo, per ogni $a, b \in \mathbb{N}$, $a*b = a+k+b$. * è commutativa? \square sì, \square no, \square dipende da k . * è associativa? \square sì, \square no, \square dipende da k . Descrivere l'insieme S dei numeri naturali k tali che (\mathbb{N} , *) ammetta elemento neutro:
$S = \dots $
7 Sia $S=\{a\in\mathbb{N}^{\#}\mid a<10\}$, dunque $ S =\ldots$. Quante sono le relazioni di equivalenza \sim in S tali che $(\forall a,b\in S)(a,b\le 6\Rightarrow a\sim b),\ 7\not\sim 9$ e $ [8]_{\sim} =1?\ldots$. Fissata, se possibile, una tale relazione di equivalenza \sim , si descriva esplicitamente l'insieme S/\sim , elencando gli elementi di ciascuna classe di equivalenza: $S/\sim = \big\{\ldots\ldots\ldots\ldots\big\}.$ Esiste una relazione di equivalenza \sim con le proprietà richieste e tale che $ [7]_{\sim} \in \{3,4,5\}$? $sì$ \square no \square .
8 Calcolare $(166^{9876} + 67^{5432} + 463^{1357})$ mod $561 = \dots$ Si trovi l'insieme (risp. S_1 , S_2 , S_3 , S_4) di tutte le soluzioni intere di ciascuna delle seguenti equazioni congruenziali:
$465x \equiv_{561} 1$ $S_1 = \dots ;$ $463x \equiv_{561} 1$ $S_2 = \dots ;$
$465x \equiv_{561} 1$ $S_1 = \dots$; $463x \equiv_{561} 1$ $S_2 = \dots$; $67x \equiv_{561} 463$ $S_3 = \dots$; $166x \equiv_{561} 67$ $S_4 = \dots$;
9 Si calcoli il massimo comun divisore monico d in $\mathbb{Q}[x]$ tra
$f = x^6 + 3x^5 + x^4 + 11x^3 + 24x^2 + 8x + 24$ e $g = x^5 + x^4 + x^3 + 8x^2 + 8x + 8$,
e si scrivano poi f e g come prodotti di polinomi monici irriducibili in $\mathbb{Q}[x]$. $d = \ldots \ldots$
$f = \dots \dots g = \dots g = \dots \dots$
Quante: e quali: sono le radici comuni a f e g in \mathbb{Q} ? Siano f_3 e g_3 i polinomi f e g riguardati come polinomi a coefficienti in \mathbb{Z}_3 . Si scrivano f_3 e g_3 come prodotti di polinomi monici irriducibili in $\mathbb{Z}_3[x]$ e si calcolino, sempre in $\mathbb{Z}_3[x]$, il massimo comun divisore monico d_3 ed un minimo comune multiplo non monico m_3 tra f_3 e g_3 :
$f_3 = \ldots \qquad g_3 = \ldots \qquad g_3 = \ldots$
$d_3 = \dots \qquad m_3 = \dots \qquad m_3 = \dots$ Esistono $h, k \in \mathbb{Z}_3[x]$ tali che $hf_3 + kg_3 = (x-1)^4$? sì \square no \square .