CdS in Informatica — a.a. 2009/2010 Esercitazione scritta di **ALGEBRA** (Proff. Cutolo e Rao) venerdì 19 marzo 2010 NOME E COGNOME MATRICOLA GRUPPO ESAME: $\Box I (Rao) \Box rec. (Cutolo)$ martedì 23 marzo, ore 15, studio 88, DMA 1 Vero o falso? Oppure i dati non sono sufficienti per fornire alcuna delle due risposte? • L'insieme dei numeri reali non negativi, con le consuete operazioni $+ e \cdot è$ un campo. vero \Box falso \Box dati insuff. \Box • Nessun polinomio f di grado 7 in $\mathbb{Z}_{33}[x]$ ha più di 7 radici in \mathbb{Z}_{33} . vero \square falso \square dati insufficienti \square • L'operazione \diamond in $\mathcal{P}(\mathbb{Z})$, data da $(\forall X, Y \in \mathcal{P}(\mathbb{Z}))(X \diamond Y = (X \cup Y) \setminus \mathbb{N})$, è associativa. vero \square falso \square dati insuff. \square • Esistono insiemi distinti A, B tali che $A \setminus B = A \cup B$. vero \square falso \square dati insufficienti \square • La forma proposizionale $(((p \Rightarrow q) \Rightarrow r) \Rightarrow (p \Rightarrow q)) \iff (p \Rightarrow q)$ è una tautologia. vero \square falso \square dati insuff. \square • 127548! $\equiv_{1290!}$ 87345!. vero \square falso \square dati insufficienti \square • $\{a \in \mathbb{R} \mid a^2 < 0 \Rightarrow a^2 > a^2 + 1\} = \mathbb{R}$. vero \square falso \square dati insufficienti \square, e $f, g \in A[x]$, allora..... 3 In \mathbb{S}_{10} si scriva $\alpha = (168)(273945)(124)(356810)(79)$ come prodotto di cicli a due a due disgiunti: $\alpha = \dots$, oppure: \square non esiste una tale fattorizzazione. Il periodo di α è ; α è di classe \square pari, \square dispari, \square nessuna delle due, \square entrambe. Esiste $\beta \in \mathbb{S}_{10}$ tale che $\alpha \beta^2 = (3287)$? sì \square no \square . 4 Siano $A = \{n \in \mathbb{N} \mid n \leq 10\}$ e $B = \{a, b, c, d, e, f, g\}$ tale che |B| = 7. Indicare $|\operatorname{InjMap}(A, B)| = \ldots$ $|\operatorname{InjMap}(B,A)| = \ldots, |\mathcal{P}(A \times B)| = \ldots$ Sia $\varphi: A \to B$ l'applicazione definita da φ è iniettiva? sì \square no \square , suriettiva? sì \square no \square , ha sezioni? sì \square no \square , ha retrazioni? sì \square no \square . Siano ρ e σ le relazioni binarie in B definite ponendo, per ogni $x, y \in B$, $x \rho t \iff (\forall n, m \in A) (((n^{\varphi} = x) \land (m^{\varphi} = y)) \Rightarrow n < m); \quad x \sigma t \iff (\exists n, m \in A) ((n^{\varphi} = x) \land (m^{\varphi} = y) \land (n < m)).$ ρ è un ordinamento? sì \square no \square ; σ è un ordinamento? sì \square no \square . Se possibile, si scelga una tra le due che sia un ordinamento (specificare quale: . . .) e se ne disegni a fianco il diagramma di Hasse. B, così ordinato, è un reticolo? sì \square no \square ; nel caso, è distributivo? sì \square no \square , complementato? $si \square no \square$, booleano? $si \square no \square$. **5** Calcolare (se esistono): $100^3 \mod 657 = \ldots$, oppure: \square non esiste; $(-100)^3 \mod 657 = \ldots$, oppure: \square non esiste

 $100^4 \mod 657 = \dots$, oppure: \square non esiste; $(\sum_{i=0}^{210} 100^{10^i}) \mod 657 = \dots$, oppure: \square non esiste

 $2^{-1} \mod 657 = \ldots$, oppure: \square non esiste; $3^{-1} \mod 657 = \ldots$, oppure: \square non esiste;

 $5^{-1} \mod 657 = \ldots$, oppure: \square non esiste.

6 Sia $V = \{n \in \mathbb{N} \mid n < 10\}$ e siano $A = \{\{a,b\} \in \mathcal{P}(V) \mid a+b \equiv_4 2\}, B = \{\{a,b\} \in \mathcal{P}(V) \mid a+b \equiv_5 3\}, C = \{\{a,b\} \in \mathcal{P}(V) \mid a+b \equiv_6 3\}.$ Quali tra $G_A = (V,A), G_B = (V,B)$ e $G_C = (V,C)$ sono: e quali non sono: grafi (semplici)? Se possibile, se ne scelga uno che lo è e lo si chiami G (dunque, $G = \ldots$) e si risponda alle domande che seguono. Quante componenti connesse ha G ? ; G è un albero s ì □ n o □, una foresta?, s ì □ n o □ha cammini euleriani?, s ì □ n o □circuiti euleriani? s ì □ n o □. Senza modificare l'insieme dei vertici, è possibile: (1) aggiungere a G un numero m di lati in modo che: G diventi una albero? s ì □ n o □, nel caso, a questo scopo, il minimo valore possibile per m è G diventi una foresta? s ì □ n o □, nel caso, a questo scopo, il minimo valore possibile per m è G abbia circuiti euleriani? s ì □ n o □, nel caso, a questo scopo, il minimo valore possibile per m è (2) cancellare da G un numero n di lati in modo che: G diventi un albero? s ì □ n o □, nel caso, a questo scopo, il minimo valore possibile per n è G diventi una foresta? s ì □ n o □, nel caso, a questo scopo, il minimo valore possibile per n è G diventi una foresta? s ì □ n o □, nel caso, a questo scopo, il minimo valore possibile per n è G diventi una foresta? s ì □ n o □, nel caso, a questo scopo, il minimo valore possibile per n è G abbia circuiti euleriani? s ì □ n o □, nel caso, a questo scopo, il minimo valore possibile per n è G abbia cammini euleriani? s i □ n o □, nel caso, a questo scopo, il minimo valore possibile per n è G abbia cammini euleriani? s i □ n o □, nel caso, a questo scopo, il minimo valore possibile per n è G abbia cammini euleriani? s i □ n o □, nel caso, a questo scopo, il minimo valore possibile per n è G abbia cammini euleriani? g 1 □ g 2 □ g 3 □ g 3 □ g 4 □ g 5 □ g 5 □ g
7 Sia, ancora, $V = \{n \in \mathbb{N} \mid n < 10\}$. Si considerino in V le tre relazioni binarie α , β , γ definite ponendo, per ogni $a,b \in V$,
$a \alpha b : \iff a + 2b \equiv_6 2, \qquad a \beta b : \iff (5 \mid a \iff 5 \mid b), \qquad a \gamma b : \iff 125 \mid a + b.$
α è antisimmetrica? $si \square no \square$, β è transitiva? $si \square no \square$, γ è riflessiva? $si \square no \square$, γ è antiriflessiva? $si \square no \square$ Se almeno una delle tre è di equivalenza, detta questa ρ (dunque $\rho = \dots$) si indichino $ V/\rho = \dots$ e $[9]_{\rho} = \{\dots, \dots, \}$. Quante sono le relazioni di equivalenza σ in V tali che $[3]_{\sigma} = [3]_{\rho}$?
8 In $\mathbb{Q}[x]$, sia $f = x^7 - 4x^5 - 6x^4 + 3x^3 + 24x^2 - 18$ e, posto $S = \{c \in \mathbb{Q} \mid f(c) = 0\}$, sia $g = \prod_{c \in S} (x - c)$. Indicare il massimo comun divisore monico d_1 tra $f \in g$: $d_1 = \ldots \ldots$ Sia ora $h = x^6 - 2x^5 - 2x^4 - 2x^3 + 12x^2 + 12x - 24$; si calcolino il massimo comun divisore monico d_2 tra $2f \in 3h + f$ ed il massimo comun divisore monico d_3 tra $4g \in h$:
$d_2 = \ldots ; \qquad d_3 = \ldots \ldots $
Si scriva f come prodotto di polinomi monici irriducibili in $\mathbb{Q}[x]$: $f = \ldots \ldots$; Sia f_7 il polinomio f riguardato come polinomio a coefficienti in \mathbb{Z}_7 . Si scriva f_7 come prodotto di polinomi monici irriducibili in $\mathbb{Z}_7[x]$: $f_7 = \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$