CdL in Informatica — a.a. 2006/2007

Cul III IIII	Jimanca — a.a. 2000	J/ 2 007	
Esercitazione scritta di ALGEBRA	(Proff. Cutolo e Rao)	mercoledì 20 giugi	no 2007

`	•	0 0
NOME E COGNOME		MATRICOLA
GRUPPO $\Box I (Rao) \Box IV (Cutolo)$	PREFERENZA PER L'ESAME	□ urgenti □ non urgenti
Vero o falso? Oppure i dati non sono sufficient. Il polinomio $(x^3 + 2)(x + 5)$ è irriducibile in $\mathbb{Q}[x]$ È fissato un polinomio $f \in \mathbb{Z}_{19}[x]$ di grado 8 i constitution f ha radici in \mathbb{Z}_{19} . Vero f falso f dati interior data una tautologia f data una tautologia f data una tautologia f data che estimation infiniti interior modeli tali che estimation. Vero f Ogni reticolo booleano è distributivo. Vero f (f dati insequence f un gruppo. Vero f falso f dati insequence f in f estimation f also f dati insequence f estimation f estimation f also f dati insequence f estimation f estimat	c]. vero □ falso □ dati in ui fattori irriducibili monici h sufficienti □ • Φ è una tautologia. vero □ 9478236 mod m. vero □ fa falso □ dati insufficienti □ sufficienti □	nsufficienti □ nanno gradi 2, 3, 3. □ falso □ dati insufficienti □ also □ dati insufficienti □
2 Per definizione, un elemento x di un semigruppe di fornisca un esempio di elemento non cancellabili Siano $S=\{1,2,3,4,5\},\ A=\{(u,v)\in S\times S\mid u\}$	le a destra in (\mathbb{Z}, \cdot) : ; o _j	ppure: \square non ne esistono.
Si calcolino $ A =\ldots$, $ B =\ldots$, $ B>A$ $\mathrm{InjMap}(A,S) =\ldots$, $ \mathrm{InjMap}(B,A) =\ldots$.		
avole di Cayley (si ricorda che queste indicano, a $+ a b c d e f g h$	d esempio, che $c + f = e$ e by $e \mid f \mid g \mid h$ $a \mid a \mid a \mid a$ $e \mid e \mid g \mid g$ $a \mid a \mid a \mid a$ $e \mid e \mid g \mid g$ Si elenchino invertibili: $a \mid a \mid e \mid e$ $a \mid c \mid e \mid f \mid g \mid h$ $a \mid c \mid e \mid f \mid h \mid d$ Lo zero di $R \ni c$ $R \ni c$ ommu $R \ni c$ unitari sua unità è Si elenchino invertibili: cancellabili: divisori dell' idempotent $R \ni c$ un dom	$g=g)$: $R \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
5 Determinare (se esiste) una coppia $(x,y) \in \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} = \dots$ e $y = \dots$, oppure \square tale copper ognuna delle seguenti equazioni congruenzial entere: $49x \equiv_{151} 2. \ [S_1 = \dots] \]. 151x \equiv_{149} 2.$ Calcolare $44^{9999} \mod 149 = \dots$ Que equal è il periodo di $[148]_{149} \in \mathcal{U}(\mathbb{Z}_{149})$?	pia non esiste. i si trovi l'insieme (risp. S_1 , $S_2 = \dots $]. $151x \equiv$	S_2 , S_3) di tutte le soluzioni $\equiv_{149} 149$. $S_3 = \dots$.

6 Un albero G ha (esattamente) 144 vertici, 142 dei quali hanno grado 2. Quali sono i gradi dei due rimanenti vertici? e , oppure: \Box impossibile stabilirlo. Quanti lati ha G ? Esistono due tali alberi non isomorfi tra loro? s i
7 Un generatore casuale fornisce un intero positivo n . Sia $m = 3(6n + 1)$. $[9]_m \in \mathcal{U}(\mathbb{Z}_m)$? sì \square no \square impossibile stabilirlo \square . $[10]_m \in \mathcal{U}(\mathbb{Z}_m)$? sì \square no \square impossibile stabilirlo \square . $[1]_m \in \mathcal{U}(\mathbb{Z}_m)$? sì \square no \square impossibile stabilirlo \square . $ \mathcal{U}(\mathbb{Z}_m) $ è \square pari, \square dispari, \square né pari né dispari, \square sia pari che dispari, \square impossibile stabilirlo.
8 Sia $S = \mathbb{N} \times \mathbb{N}$ ordinato dalla relazione d'ordine ρ definita da: $\forall (a, a'), (b, b') \in S$,
$(a,a') \rho (b,b') : \iff (a \leq b \wedge (a' \bmod 2) < (b' \bmod 2)).$
(S, ρ) è totalmente ordinato? sì \square no \square , è un reticolo? sì \square no \square . Posto $T = \{(34, 3), (34, 5), (108, 1), (2, 11)\}$, si determini (in S) inf $T = \ldots$, oppure: \square inf T non esiste. $(\mathbb{N}, <)$ è isomorfo a $\{(n, 2n) \mid n \in \mathbb{N}\}$, ordinato dall'ordinamento indotto da ρ ? sì \square no \square impossibile stabilirlo \square . Si disegni a fianco il diagramma di Hasse di $X := \{(4, 9), (11, 12), (3, 7), (6, 0), (12, 5)\}$ ordinato dall'ordinamento indotto da ρ . Questo è un reticolo? sì \square no \square . Nel caso, è distributivo? sì \square no \square , complementato? sì \square no \square , booleano? sì \square no \square . min $X = \ldots$, oppure: \square min X non esiste. max $X = \ldots$, oppure: \square max X non esiste.
9 Siano $A = \{n \in \mathbb{N} \mid n < 30\}$ e $B = \{n \in \mathbb{N}^{\#} \mid n \leq 8\}$. Sia $f: A \to B$. Si considerino le relazioni binarie α , β e γ in A definite da: per ogni $x, y \in A$,
$x \alpha y : \iff x^f = y^f + 1;$ $x \beta y : \iff x^f + 1 = y^f + 1;$ $x \gamma y : \iff x^f = y^f.$
Quali tra α , β e γ sono: e quali non sono: e quivalenze? Se possibile, si scelga una relazione di equivalenza ρ tra α , β e γ (dunque $\rho = \dots$). Si ha $ A/\rho = \dots$, oppure: \square è impossibile calcolare $ A/\rho $. Nell'ulteriore ipotesi che f sia suriettiva, si ha $ A/\rho = \dots$, oppure: \square anche in questo caso è impossibile calcolare $ A/\rho $. Esiste $f \in \operatorname{Map}(A,B)$ tale che $ A/\rho = A $, se ρ è definita come sopra? sì \square no \square . Infine, se $f: x \in A \mapsto 2 + (x \mod 4) \in B$, si ha $ A/\rho = \dots$ e $[14]_{\rho} = \{\dots \}$ (dunque $ [14]_{\rho} = \dots$).
10 Si consideri l'operazione binaria \bot definita in $T := \mathbb{Q}[x] \setminus \{0\}$ ponendo, per ogni $f, g \in T$, $f \bot g$ uguale al massimo comun divisore tra f e g che abbia coefficiente direttore 4. L'operazione \bot è commutativa? sì \square no \square , associativa? sì \square no \square . Esiste in T elemento neutro rispetto a \bot ? \square no, oppure: \square sì, esso è \square Posto $f = x^5 + x^3 + 5x^2 + 5$ e $g = x^4 - 2x^3 - 2x^2 - 2x - 3$, si calcoli $d := f \bot g$:
$d = \dots \dots \dots \dots$
e si scrivano f e g come prodotti di polinomi monici irriducibili $\mathbb{Q}[x]$:
$f = \dots g = \dots g = \dots$
$g+9$ è irriducibile in $\mathbb{Q}[x]$? \square no, perché , oppure: \square sì, perché
/ 4