CdS in Informatica — a.a. 2009/2010 Esercitazione scritta di **ALGEBRA** (Proff. Cutolo e Rao) giovedì 24 giugno 2010

NOME E COGNOME	MATRICOLA
GRUPPO $\Box I (Rao) \Box rec. (Cutolo)$	ESAME: martedì 29 giugno, ore 9, aula C
1 Vero o falso? Oppure i dati non sono sufficienti per fornire alcuna • $100000000000000000000000000000000000$	8. vero
2 Si eunuci il criterio di irriducibilità di Eisenstein: sia $f = b_0 + b_1 x$	$+\cdots+b_nx^n$ un polinomio a coefficienti
in \mathbb{Z} , con $b_n \neq 0$. Se	
allora	
3 Sia $X = \{n \in \mathbb{N} \mid n < 9\}$, dunque $ X = \ldots$, $ \{A \subset X \mid A = Si$ consideri in X l'operazione binaria * definita ponendo, per ogne $6*7 = \ldots$. L'operazione * è commutativa? $sì \square no \square$, associatir rispetto a *? $\square no$, oppure: $\square sì$, $esso$ è \ldots $(X,*)$ è un semigruppun gruppo? $sì \square no \square$. In $(X,*)$, 1 è invertibile? $\square no$, oppure: $\square si$ le? $si \square no \square$. Si elenchino gli elementi invertibili in $(X,*)$: \ldots	$(a,b) \in X$, $a*b = 2ab \mod 9$. Allora $(a,b) \in X$, $(a*b) \equiv ab \mod 9$. Allora $(a*b) \cong ab \cong ab \mod 9$. Allora $(a*b) \cong ab \cong ab \mod 9$. Allora $(a*b) \cong ab \cong ab \mod 9$. Allora $(a*b) \cong ab \cong ab \mod 9$. Allora $(a*b) \cong ab \cong $
4 Sia X l'insieme $\{1,3,12,20,21,60,84,210^2\}$ ordinato per divisibili ne disegni a lato il diagramma di Hasse. Questo insieme ordinato reticolo? $si \square no \square$. Nel caso, esso è distributivo? $si \square no \square$, complitato? $si \square no \square$, booleano? $si \square no \square$. In questo insieme ordinato si cinf $\{84,20\} = \ldots$, oppure: $\square \inf\{84,20\}$ non esiste; $\sup\{12,21\} = \ldots$, oppure: $\square \sup\{12,21\}$ non esiste. X è un sottoreticolo di (\mathbb{N}, \cdot) (il reticolo dei naturali ordinati per di Esistono $a,b \in \mathbb{N}$ tali che $X \cup \{a,b\}$ sia un sottoreticolo di (\mathbb{N}, \cdot) (\mathbb{N}, \cdot) (\mathbb{N}, \cdot) sia un sottoreticolo di (\mathbb{N}, \cdot) (\mathbb{N}, \cdot) (\mathbb{N}, \cdot) sia un sottoreticolo di (\mathbb{N}, \cdot)	o è un emen-ealcoli: \square no \square .
5 Si completino i due diagrammi di Venn, tratteggiando le aree corrisp denti a $X = (B \setminus C) \cup ((A \cap C) \setminus B)$ e $Y = ((A \cap B) \cup (A \cap C)) \setminus (B \cap E)$ è vero che $X \subseteq Y$ per ogni scelta degli insiemi $A, B, C? \square sì$, opput \square no, un controesempio è dato da $A = \dots, B = \dots$ $C = \dots$ È vero che $Y \subseteq X$ per ogni scelta degli insiemi troesempio è dato da $A = \dots, B = \dots, C = \dots$	C). A $Y: \qquad Y: \qquad Y: \qquad Y: \qquad X: \qquad X: \qquad X: \qquad Y: \qquad X: \qquad X$