CdL e CdD in Informatica — a.a. 2002/2003 Esercitazione scritta di **ALGEBRA** (Prof. Rao) venerdì 30 gennaio 2004

NOME E COGNOME	MATRICOLA
 1 Vero o falso? Oppure i dati non sono sufficienti Ogni reticolo finito ha massimo. vero □ falso Ogni insieme ordinato non vuoto ha elementi mi 14707 divide 2¹⁵3¹⁶5¹⁷. vero □ falso □ dati (p ∧ q) ⇒ (((¬p) ∨ (¬q)) ⇒ r) è una tautologia r ⇒ (((¬p) ∨ (¬q)) ⇒ r) è una tautologia. ve 	dati insufficienti $□$ nimali. vero $□$ falso $□$ dati insufficienti $□$ insufficienti $□$. vero $□$ falso $□$ dati insufficienti $□$
	i equivalenza ρ in S tali che 1 ρ 4, 2 ρ 3 e 2 ρ 4? tali che 2 ρ 5 e, 4 ρ 2 e, rispetto a ρ , si abbia 3 = max S e zioni di ordine totale?
3 Una foresta ha 371 vertici. Quanti sono i suoi l	ati? (oppure: non è possibile stabilirlo \square)
radici reali comuni a f e g (suggerimento: si conside g in prodotto di polinomi monici irriducibili in \mathbb{R}	
[Risposte: $S = \{c \in \mathbb{R} \mid f(c) = 0\}$	$=g(c)\}=\ldots\ldots$
$f = \dots $	$g = \dots \qquad]$
5 Tra le operazioni binarie definite come segue, di (indicandone, nel caso, uno):	re quali sono associative e quali ammettono elemento neutro
• $: (a,b) \in \mathbb{Z} \times \mathbb{Z} \mapsto (2a)(2b) \in \mathbb{Z}$	$*:(a,b)\in\mathbb{Z} imes\mathbb{Z}\mapsto a^2b^2\in\mathbb{Z}$
$\circ: (a,b) \in \mathbb{Z} \times \mathbb{Z} \mapsto a \in \mathbb{Z}$	$\bot : (a,b) \in \mathbb{Q} \times \mathbb{Q} \mapsto a - b \in \mathbb{Q}$
,	,
Calcolare $ S \cap T = \dots$, $ T \cap U = \dots$, $ U \cap T = \dots$	$7 \mid n \in \mathbb{Z}$, $U = 3 + 7\mathbb{Z} \text{ e } V = \{n \in \mathbb{Z} \mid 50 < (4n)^2 \le 100\}$. $V \mid = \dots, (S \cup V) \cap U = \dots, S \setminus U = \dots$ $X \cup Y \subseteq X \text{ e } X \ne Y. \text{ [Risposta: } X = \dots, Y = \dots]$
7 Calcolare $ \mathcal{U}(\mathbb{Z}_{71}) = \dots$ Si trovi il gruppo $\mathcal{U}(\mathbb{Z}_{71})$. Dei tre numeri $a = (-14)^{1818}, b = modulo 71. Quali? a \in b \square a \in c \square b \in c$	periodo e l'inverso u^{-1} di $u:=[-14]_{71}$ nel $(-14)^{1919}$, $c=(-14)^{1414}$ soltanto due sono congrui tra loro

NOME	ME E COGNOME:

8 Si considerino $f: a \in \mathbb{Z} \mapsto [a]_9 \in \mathbb{Z}_9$, $g: [a]_9 \in \mathbb{Z}_9 \mapsto [9a]_{81} \in \mathbb{Z}_{81}$, $h: [a]_9 \in \mathbb{Z}_9 \mapsto [2a]_{81} \in \mathbb{Z}_{81}$. Per ciascuna di esse (e delle eventuali composte indicate) si dica se sono ben definite come applicazioni e, nel caso, si risponda alle ulteriori domande.

l'applicazione	f		g		h		fg		fh	
è	sì	no								
ben definita										
iniettiva										
suriettiva										

$f^{-1}\big(\{[6]_9\}\big)$ esiste? sì \square no \square è
$fg(20)$ esiste? sì \square no \square è
$fh(20)$ esiste? sì \square no \square è

9 Determinare l'insier	ne delle soluzioni in $\mathbb Z$ di ciascuna delle seguenti equazioni congruenziali:
$127x \equiv 2 \pmod{182}$	insieme delle soluzioni:
$254x \equiv 4 \pmod{364}$	insieme delle soluzioni:
$55x \equiv 180 \pmod{182}$	insieme delle soluzioni: