FORMULA ESPLICITA PER I COEFFICIENTI BINOMIALI

GIOVANNI CUTOLO

Viene qui dimostrata, per induzione, la formula esplicita per il calcolo dei coefficienti binomiali. La dimostrazione è basata sulla formula ricorsiva:

$$\forall n, k \in \mathbb{N} \quad \left(\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1} \right) \tag{*}$$

Teorema. Per ogni $n, k \in \mathbb{N}$ tali che $k \le n$ si ha $\binom{n}{k} = \frac{n!}{k!(n-k)!}$.

Dimostrazione. Per ragioni di chiarezza, conviene fissare alcune notazioni, dando un nome a due formule. Chiamiamo $\psi(n,k)$ la formula

$$k \le n \Rightarrow \binom{n}{k} = \frac{n!}{k!(n-k)!} \tag{$\psi(n,k)$}$$

nelle variabili (libere) n e k, a cui è riferito l'enunciato. Osserviamo, innanzitutto, che se $n, k \in \mathbb{N}$, e k = 0 oppure $k \ge n$, allora $\psi(n,k)$ è vera. Infatti, se k > n, allora $\psi(n,k)$ è vera perché l'antecedente dell'implicazione in $\psi(n,k)$ è in questo caso falso; inoltre $n!/0!(n-0)! = n!/(1 \cdot n!) = 1 = \binom{n}{0}$, quindi è vera $\psi(n,0)$ e, similmente, $n!/n!(n-n)! = n!/n!0! = 1 = \binom{n}{n}$, quindi è vera $\psi(n,n)$. Sia poi $\varphi(n)$ la formula⁽¹⁾

$$\forall k \in \mathbb{N} \ (\psi(n,k)). \tag{\varphi(n)}$$

L'asserto del teorema è che $\varphi(n)$ vale per ogni $n \in \mathbb{N}$, cosa che ci accingiamo a dimostrare ragionando per induzione. Iniziamo dalla base d'induzione: $\varphi(0)$ è la formula $\forall k \in \mathbb{N} (\psi(0,k))$, che è vera perché, come osservato sopra, qualsiasi sia n, $\varphi(n,k)$ è vera per ogni $k \geq n$.

Proviamo ora che, per ogni $n \in \mathbb{N}$, vale $\varphi(n) \Rightarrow \varphi(n+1)$. Fissato n ed assunta $\varphi(n)$ come vera, dobbiamo dunque provare $\varphi(n+1)$, cioè: $\forall k \in \mathbb{N} \ (\psi(n+1,k))$. Sappiamo già che $\psi(n+1,k)$ vale per k=0 e per ogni intero $k \geq n+1$, quindi basterà provare $\psi(n+1,k)$, ovvero

$$\binom{n+1}{k} = \frac{(n+1)!}{k!(n+1-k)!}$$

per ogni intero positivo $k \leq n$. Per ogni tale k abbiamo $k-1 \in \mathbb{N}$ e possiamo dunque applicare la formula ricorsiva (*) a n e k-1, ottenendo

$$\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k},$$

e quindi, utilizzando prima $\varphi(n)$ e poi le uguaglianze k! = (k-1)!k e (n-(k-1))! = (n-k+1)! = (n-k)!(n-k+1),

$$\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k} = \frac{n!}{(k-1)!(n-(k-1))!} + \frac{n!}{k!(n-k)!} = \frac{n!}{(k-1)!(n-k)!} \left(\frac{1}{n-k+1} + \frac{1}{k}\right)$$

$$= \frac{n!}{(k-1)!(n-k)!} \frac{n+1}{(n-k+1)k} = \frac{(n+1)!}{k!(n-k+1)!} ;$$

l'uguaglianza così ottenuta non è altro che il conseguente dell'implicazione in $\psi(n+1,k)$. A questo punto abbiamo effettivamente dimostrato l'implicazione $\varphi(n) \Rightarrow \varphi(n+1)$ per ogni $n \in \mathbb{N}$; la dimostrazione è così completa.

 $^{{}^{(1)}}$ Considerando $\mathbb N$ come simbolo di costante, $\varphi(n)$ è un predicato unario nella variabile n.