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Abstract. We consider groups G such that NG(H)/HCG(H) is cyclic for all H ≤ G. More specifically, we characterize

locally nilpotent and supersoluble groups with this property.

1. Introduction

Given a group G and H ≤ G the group AutG(H) = NG(H)/CG(H) has been called the automizer of H in G, with
an obvious reference to the faithful conjugacy action that it has on H. A number of papers already in the literature
deal with groups in which restictions are imposed on the automizers of subgroups (see [1, 2, 3, 4, 5, 8, 13]). Not all
restrictions give rise to new interesting group classes. For instance, since all automizers of subgroups of a group G are
isomorphic to sections of AutG(G) = G/Z(G), requiring that all subgroup automizers in G are, say, finite, or abelian,
is equivalent to the requirement that G/Z(G) has the same property.

To the contrary, various group classes can be defined if automizers are replaced by what we call outer automizers.
If G is a group and H ≤ G, the outer automizer of H in G is the group OutG(H) := NG(H)/HCG(H), which embeds
in OutH. Thus OutG(H) can be roughly described as the group of outer automorphisms induced on H by conjugation
in G. The property of having trivial outer automizer is what has been called the property of having ‘small automizer’
in [2]; here the starting point was the result, proved by Zassenhaus in [14] as early as 1952, that finite groups in which
all abelian subgroups have small automizers are themselves abelian. For further results in the same thread also see
[3, 5]. Here we consider the weaker property of having cyclic outer automizer. Let us say that G ∈ (CO) if and only
if OutG(H) cyclic for all H ≤ G. Easy examples of (CO)-groups include all finite groups whose size is the product
of at most three (non necessarily different) primes and dihedral groups, or more generally all groups with a cyclic
subgroup of prime index, but also insoluble groups like the alternating group on five symbols or Tarski groups. In this
paper we shall characterize locally nilpotent (CO)-groups; these groups form a very restricted class of hypercentral
groups. We provide two alternative descriptions of such groups in Theorems 3.5 and 3.11. Our other major result
is a classification of finite supersoluble (CO)-groups (Theorem 5.5). As a matter of fact, also infinite supersoluble
groups are characterized by this result, because every polycyclic-by-finite group is in (CO) if and only if all of its finite
quotients are in (CO), as we prove in Proposition 4.5.

2. Generalities

Our first remark is that the class of (CO)-groups is section-closed.

Lemma 2.1. Let K ≤ G and N C G, where G ∈ (CO). Then K and G/N are in (CO).

Proof. Let H ≤ K. Then HCK(H) = HCG(H) ∩K, hence OutK(H) = (NG(H) ∩K)/(HCG(H) ∩K) is isomorphic
to a subgroup of OutH(G). Hence OutK(H) is cyclic; thus K ∈ (CO). Next, let H/N ≤ G/N . Then CG(H)N/N ≤
CG/N (H/N) and NG/N (H/N) = NG(H)/N . So OutG/N (H/N) is an epimorphic image of OutG(H). It follows that
G/N ∈ (CO). �

We have a couple of partial inverses.

Lemma 2.2. Let G be a group and let B C G be such that B ∩G′ = 1. Then G ∈ (CO) if and only if G/B ∈ (CO).

Proof. We only have to prove that G ∈ (CO) on assuming that G/B ∈ (CO). If H ≤ G we have NG(H) ≤ NG(HB)
and B ≤ Z(G) ≤ CG(H) = CG(HB). Hence OutG(H) ≤ OutG(HB). Thus, to show that G ∈ (CO) we only have
to prove that OutG(H) is cyclic for all H ≤ G such that B ≤ H. For any such H, if g ∈ G satisfies [H, g] ≤ B
then [H, g] = 1, because B ∩ G′ = 1. Then CG(H)/B = CG/B(H/B). Of course, NG(H)/B = NG/B(H/B), hence
OutG(H) ' OutG/B(H/B), and the latter is cyclic, because G/B ∈ (CO). The lemma follows. �

An obvious consequence is that if G ∈ (CO) and B is any abelian group then also G×B is in (CO). Therefore the
study of (CO)-groups could be reduced to the case of purely nonabelian groups. More generally, one can disregard
abelian factors in central products, as is shown by the following lemma.

Lemma 2.3. Let G = XZ, where X ≤ G and Z ≤ Z(G). Then G ∈ (CO) if and only if X ∈ (CO).
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Proof. Suppose that X ∈ (CO) and H ≤ G. Consider the projection H∗ := HZ ∩X of H in X. Since HZ = H∗Z
it is clear that CG(H) = CG(HZ) = CG(H∗) and HCG(H) = H∗CG(H∗). On the other hand NG(H) ≤ NG(H∗), so
that OutG(H) ≤ OutG(H∗), but OutG(H∗) ' OutX(H∗), hence OutG(H) is cyclic. The lemma follows. �

Normal abelian subgroups play a major rôle in our discussion on (CO)-groups, often considered together with the
concepts of ZC-action and ZC-embedding. If the group X acts on the group N we say that its action is ZC if and
only if H/[H,X] is cyclic for all X-invariant subgroups H of N . A normal subgroup N of a group G is ZC-embedded
in G if and only if G acts (by conjugation) ZC on N/N ∩ Z(G). This latter condition means that all central factors
U/V of G such that N ∩ Z(G) ≤ V < U ≤ N are cyclic. (Reference to the factor N/N ∩ Z(G) rather than to N in
this definition is admittedly artificial, but allows to state our results in a more compact form.) It is clear that if N is
ZC-embedded in G and M ≤ N is such that M C G then N/M is ZC-embedded in G/M .

Lemma 2.4. Suppose that A is a normal abelian subgroup of a (CO)-group G. Then:

(i) A ≤ CG(G′);
(ii) A is ZC-embedded in G.

Proof. Let C = CG(A). Then OutG(A) = G/C, thus G = C〈x〉 for some x ∈ G (hence G′ ≤ C and (i) follows) and
A ∩ Z(G) = CA(x). Let U/V be a central factor of G such that A ∩ Z(G) ≤ V < U ≤ A, and let H = V 〈x〉. Then
U ≤ NG(H). Moreover CA〈x〉(H) = CA(x)C〈x〉(V ) ≤ H. Therefore OutA〈x〉(H) ≥ UH/H ' U/U ∩H. Now we have
U ∩ H = V (U ∩ 〈x〉) = V , because A ∩ 〈x〉 ≤ CA(x) ≤ V . It follows that U/V embeds in OutA〈x〉(H), hence it is
cyclic. Thus (ii) is proved. �

In the case when A has prime index in G also the converse holds:

Lemma 2.5. Let G be a group with a normal abelian subgroup A of prime index. Then G ∈ (CO) if and only if A
is ZC-embedded in G.

Proof. The ‘only if’ part was proved in Lemma 2.4 (ii); we have to prove the ‘if’ part. Assume that A is ZC-embedded
in G and let H ≤ G. If H ≤ A then A ≤ CG(H) and OutG(H) is plainly cyclic. So we may assume H � A, hence
G = AH. Let U = NA(H) and V = A ∩HCG(H). Then A ∩Z(G) ≤ V ≤ U ≤ A and [U,G] = [U,H] ≤ V , so U/V is
cyclic. Finally U/V ' OutG(H), therefore OutG(H) is cyclic. �

In accordance with notation in [2], call (SA) the class of all groups G such that OutG(H) = 1 for all H ≤ G.

Lemma 2.6. Let G = Dri∈I Gi be a group.

(a) If G ∈ (CO) then Gi ∈ (SA) for all but finitely many i ∈ I.
(b) Assume that G is periodic and π(Gi)∩π(Gj) = ∅ for all distinct i, j ∈ I. Then G ∈ (CO) if and only if Gi ∈ (CO)

for all i ∈ I and Gi ∈ (SA) for all but finitely many i ∈ I.

Proof. For all i ∈ I let Hi ≤ Gi, and let H = Dri∈I Hi. Then NG(H) = Dri∈I NGi(Hi) and HCG(H) =
Dri∈I HiCGi(Hi), hence OutG(H) ' Dri∈I(OutGi(Hi)). Part (a) follows easily from this remark: let J be the set of
all i ∈ I such that Gi is not an (SA)-group. For each i ∈ J choose a subgroup Hi such that OutGi(Hi) 6= 1 and let
H = Dri∈J Hi. Since OutG(H) ' Dri∈J OutGi(Hi) is cyclic J is finite, as required. Also (b) follows, because in the
hypothesis of (b) all subgroups H of G are factorised as H = Dri∈I(H ∩Gi). �

Finite (SA)-groups are abelian, by Zassenhaus’ result from [14] cited in the introduction. Extensions of Zassenhaus’
result to classes of infinite groups are in [3], but Tarski groups provide examples of (infinite) nonabelian (SA)-groups.

The last lemma of this section is less general in scope than the previous ones. The classes considered here include
those that we shall deal with in the rest of the paper.

Lemma 2.7. Let G be a locally supersoluble group in (CO).

(i) If A is a maximal abelian normal subgroup of G then G/A is cyclic;
(ii) if G ∈ (SA) then G is abelian (see [3] for more general results);
(iii) G is metabelian and hypercyclic;
(iv) if G is locally nilpotent then it is hypercentral.

Proof. Assume first that G is hypercyclic. Let A be a maximal abelian normal subgroup of G. Then A = CG(A),
hence G/A = OutG(A) is cyclic and G is metabelian (also, G = A if G ∈ (SA)). If G is merely assumed to be locally
supersoluble, this conclusion applies to all finitely generated subgroups of G, and it follows that G itself is metabelian
in this case too. To prove parts (i–iii) we have to prove that G is hypercyclic, and to this end we only need to show
that G has a nontrivial cyclic normal subgroup, since all quotients of G satisfy the hypothesis of the lemma. Let

C = CG(G′). Then G = C〈x〉 for some x ∈ G. Let a ∈ G′ and H = 〈a, x〉, so that H = B〈x〉 where B = 〈a〉〈x〉.
Since H is supersoluble it has a cyclic normal subgroup X such that 1 6= X ≤ B. Clearly X C G. Thus (i–iii) are
proved. The proof of (iv) goes along similar lines: if G is locally nilpotent and H and B are defined as above, H is
nilpotent, hence Z(H)∩B 6= 1, but Z(H)∩B ≤ Z(G). Thus Z(G) 6= 1 and, as above, this is enough to prove that G
is hypercentral. �
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3. Locally nilpotent groups

In this section we shall describe locally nilpotent groups in (CO). Our first result is that such groups are abelian if
they are torsion-free.

Lemma 3.1. Let G be a locally nilpotent group in (CO). Then G′ is periodic.

Proof. We have to prove that G/T is abelian, where T is the torsion subgroup of G. Hence we may suppose that G
is torsion-free and prove that it is abelian in this case. Assume false. Then G has a nonabelian finitely generated
subgroup S. Of course S is nilpotent, of class c, say, and S/Zc−2(S) still is a counterexample. Hence we may
replace G with this section of its; in other words we may assume that G is a (torsion-free) nilpotent group of class 2.
Let p be a prime and let H = Z(G)Gp. Since G is torsion-free CG(Gp) = Z(G), hence CG(H) = Z(G) ≤ H and
OutG(H) = G/H. But G/Z(G) is a noncyclic free abelian group, so G/H is not cyclic. This is a contradiction,
because G ∈ (CO), so the proof is complete. �

Thus it is the case of periodic groups that needs more attention. In this case we are essentially reduced to considering
p-groups.

Lemma 3.2. For a prime p, let G be a nonabelian locally finite p-group in the class (CO) and let A be a maximal
abelian normal subgroup of G. Then |G/A| = p.

Proof. First assume that G is nilpotent. By Lemma 2.7 (i), G = A〈x〉 for some x ∈ G. Of course Z(G) ≤ A. Suppose,
by contradiction, xp /∈ A or, equivalently, xp /∈ Z(G). At the expense of replacing G by 〈a, x〉 for some a ∈ A such that
[a, xp] 6= 1, we may assume that G is finite. Let H = 〈xp〉Ap[A, x]. Then H C G, as [A, x] = G′. Moreover CG(H) =
C〈x〉(A

p[A, x])CA(xp). If x centralizes Ap[A, x] = ApG′ then G has nilpotency class 2 and so 1 = [Ap, x] = [A, xp].
But this is a contradiction, since xp /∈ Z(G). Thus C〈x〉(A

p[A, x]) ≤ 〈xp〉, so that HCG(H) = 〈xp〉Ap[A, x]CA(xp).
Also, CA(xp) < A, so B := Ap[A, x]CA(xp) < A, because Ap = Φ(A) and x acts nilpotently on A. It follows that
OutG(H) = G/〈xp〉B ' (A/B)× (〈x〉/〈xp〉) is not cyclic. This is a contradiction, hence |G/A| = p.

Now consider the general case. By the previous part of the proof every finitely generated subgroup of G has a
(normal) abelian subgroup of index at most p. By theorem due to Mal’cev (see [9], Theorem 2.5.10) it follows that G
has a (normal) abelian subgroup B of index p. If A ≤ B then A = B and so |G/A| = p. Otherwise, G = AB, hence
G is nilpotent and the result follows from the previous case. �

A consequence of Lemma 3.2 is that a locally finite p-group G in (CO) must either be nilpotent of class 2 at
most (and satisfy |G/Z(G)| ≤ p2) or have exactly one maximal abelian normal subgroup. Another, more relevant,
consequence is that, together with Lemmas 2.5, 2.6 and 2.7 (ii), this lemma provides a characterization of periodic
locally nilpotent (CO)-groups.

Corollary 3.3. Let G be a periodic locally nilpotent group. Then G ∈ (CO) if and only if G has an abelian normal
ZC-embedded subgroup A such that G/A is cyclic of square-free order.

Corollary 3.3 shows how relevant in our context ZC-actions are. In the case of (locally finite) p-groups the idea
of ZC-action can be considered as a generalisation of the concept of uniserial action, discussed, for instance in [6],
Chapter 4. As a matter of fact, in the case of locally nilpotent (CO)-groups, our ZC-actions essentially reduce to
uniserial actions, as we shall see soon. Beforehand, however, we remark that a standard, elementary argument shows
that one of the key properties usually associated to uniserial actions of finite p-groups (see [6], Propositions 4.1.7
and 4.1.8) is even more precisely expressed in terms of ZC-actions. By saying that a group X acts on a group N
hypercentrally we mean that N has an ascending normal series of X-invariant subgroups, on all factors of which X
acts trivially.

Lemma 3.4. Suppose that a group X acts hypercentrally on the periodic locally nilpotent group N . The action of X
on N is ZC if and only if π(N) is finite and, for every primary component P of N , the set of all X-invariant subgroups
of P , ordered by inclusion, is a chain.

Proof. Assume that X acts ZC on N . Then CN (X) is cyclic, hence finite. The hypothesis that X acts hypercentrally
on N implies that π(N) = π(CN (X)), hence π(N) is finite. Let U and V be two X-invariant subgroups in the same
primary component of N and let D = U ∩ V . If D < U and D < V then there exist X-invariant subgroups U∗

and V ∗ such that D < U∗ ≤ U and D < V ∗ ≤ V and X acts trivially on both U∗/D and V ∗/D. Let H = 〈U∗, V ∗〉,
then [H,X] ≤ D, but H/D is not cyclic. This is a contradiction, thus the necessity of the condition is proved. To
prove sufficiency, assume that N has the structure required (as an X-group) and suppose, by contradiction, that it
has a noncyclic factor which is centralised by X. Then there is a prime p such that the projection of this factor in the
p-component of N contains an elementary abelian p-subgroup of rank 2, say (U/D)×(V/D), where |U/D| = |V/D| = p.
Then U and V are X-invariant and not comparable by inclusion. This is a contradiction, and the proof is complete. �

Thus, apart from the few exceptions given in [6], Propositions 4.1.7 and 4.1.8, ZC-actions between finite p-groups
are nothing else than uniserial actions.

We are in position to prove the first major result of this section.
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Theorem 3.5. Let G be a locally nilpotent group. Then G ∈ (CO) if and only if G/Z(G) is periodic and G has
an abelian normal subgroup A such that G/A is cyclic of finite square-free order and any of the following equivalent
(under the previous requirements) conditions holds, where A∗ denotes A/A ∩ Z(G):

(a) A is ZC-embedded in G;
(b) every central factor U/V of G such that A ∩ Z(G) ≤ V and U ≤ A is finite of square-free order;
(c) (Z2(G) ∩A)/(Z(G) ∩A) is finite of square-free order;
(d) π(A∗) is finite and, for every primary component P of A∗, the set of all G-invariant subgroups of P , ordered by

inclusion, is a chain;
(e) π(A∗) is finite and G acts uniserially on every primary component of A∗.

Moreover, if G ∈ (CO) then the above description still is correct if A is replaced by any maximal normal abelian
subgroup A, and the order of each central factor U/V in (b) divides |G/A|.

Proof. Suppose that G ∈ (CO) and let A be a maximal normal abelian subgroup of G. We know that G = A〈x〉
for some element x and that G is hypercentral (Lemma 2.7). The mapping a ∈ A 7→ [a, x] ∈ G′ is an epimorphism
with kernel CA(x) = Z(G), hence A∗ = A/Z(G) ' G′ is periodic by Lemma 3.1. Moreover, A is ZC-embedded in G
(Lemma 2.4), hence Lemma 3.4 shows that π(A∗) is finite.

Suppose that G/A is finite. Then G/Z(G) is periodic and we may choose B ≤ Z(G) such that G/B is periodic and B
is torsion-free. Then A/B is maximal abelian in G/B, for, if U/B is an abelian subgroup of G/B then U ′ ≤ B∩G′ = 1
and U is abelian—recall that G′ is periodic. Therefore |G/A| is square-free, as a consequence of Lemma 3.2. Thus,
to prove that G/A has finite, square-free order we only have to show that it is finite. This amounts to saying that xn

centralises A for some positive integer n, since C〈x〉(A) = 〈x〉 ∩ Z(G) ≤ A.
First we consider the case when G is nilpotent and show that G/Z(G) is finite in this case. If G is nilpotent the fact

that A∗ is periodic and ZC-embedded in G/Z(G) easily yields that A∗ is finite. Then there exists a positive integer k
such that [A, xk] ≤ Z(G), so xk stabilises the series 1 ≤ Z(G) ≤ A. The stability group of this series is isomorphic
to Hom(A∗, Z(G)) and so has finite exponent. Hence [xn, A] = 1 for some positive integer n. Then G/A is finite, so
that G/Z(G) is finite, as we claimed. Now consider the general case. By earlier remarks we may assume that x has
infinite order. Let p be a prime and P the p-component of T := torA. If F is a finitely generated subgroup of P 〈x〉
containing x then F0 := F ∩ P is finite and F = F0〈x〉. Let C = C〈x〉(F0); then F/C is a finite p-group and therefore

Lemma 3.2 shows that [xp, F0] = 1. It follows that [P, xp] = 1. Since π(A∗) is finite we have that [xk, T ] = 1 for some
positive integer k. As G′ ≤ T it follows that G0 := A〈xk〉 is nilpotent. Therefore G0/Z(G0) is finite, and this shows
that C〈x〉(A) 6= 1. Hence G/Z(G) is periodic and so |G/A| is finite and square-free.

Now we prove sufficiency, together with the equivalence of the conditions listed. Suppose that G = A〈x〉, where
the abelian normal subgroup A has finite square-free index n, and G/Z(G) is periodic. Then A ≤ Zω(G) by [10],
Theorem 4.38, and G is hypercentral. Lemma 3.4 shows that (a) and (d) are equivalent. If U/V is a central factor
of G such that A ∩ Z(G) ≤ V and U ≤ A then, modulo [V, x], we have [Un, x] ≡ [U, xn] = 1, hence [Un, x] ≤ [V, x].
As a ∈ A 7→ [a, x] ∈ A is an endomorphism whose kernel A∩Z(G) is contained in V , we conclude that Un ≤ V . This
shows that (a) implies (b), and also justifies the final statement in the theorem. That (b) implies both (a) and (c)
is obvious. Hypercentrality of G and an almost immediate extension of [6], Lemma 4.1.6 to the case of locally finite
p-groups show that (c) implies (e)—note that (Z2(G) ∩ A)/(Z(G) ∩ A) is the centralizer of x in A∗. Finally, (b)
certainly follows from (e); thus we have proved that conditions (a)–(e) are pairwise equivalent. Now suppose that any
of them holds. Choose again B ≤ Z(G) such that B is torsion-free and Z(G)/B is periodic. Then G/B ∈ (CO) by
Corollary 3.3 and hence G ∈ (CO) by Lemma 2.2. The proof is complete. �

Corollary 3.6. Let G ∈ (CO). Then the Fitting subgroup of G is nilpotent and coincides with the Baer radical of G.

Proof. Let F be the Baer radical of G. Then F is abelian-by-finite, hence it is generated by an abelian normal subgroup
and finitely many cyclic subnormal subgroups. Therefore F is nilpotent. The result follows. �

Corollary 3.7. Let G be a locally nilpotent (CO)-group. Then G is nilpotent if and only if G/Z(G) is finite. In
this case, G/Z(G) is two-generator, unless G is abelian. If G is not nilpotent then it is hypercentral of length ω + 1;
moreover FitG coincides with Zω(G) and with the FC-centre of G.

Proof. Theorem 3.5 shows that Zi+1(G)/Zi(G) is finite for all positive integers i. Hence G is nilpotent if and only if
G/Z(G) is finite. If G/Z(G) is finite then, in the notation of the same theorem, all primary components of A∗ are cyclic
as G-modules, hence the same is true of A∗ and it follows that G/Z(G) is two-generator. Still in the same notation,
but now in the case when G is not nilpotent, G = A〈x〉 for some x, hence F := FitG = A〈xλ〉 for some λ ∈ N. By
the previous corollary F is nilpotent, hence F ′ is finite by the first part of the proof. But F ′ = [xλ, A] = [xλ, G]; it
follows that F lies in the FC-centre of G, hence in Zω(G) (see [10], Theorem 4.38). On the other hand, it is obvious
that Zω(G) ≤ F . Thus Zω(G) = F < G; since G/F is cyclic the hypercentral length of G is ω + 1, and the proof is
complete. �

We shall see (Corollary 4.2) that in every (CO)-group the Fitting subgroup is contained in the FC-centre.
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The following remark is of some interest in the light of Lemma 2.3. If G is a nilpotent (CO)-group then G = HZ(G)
for a two-generator subgroup H of G, by Corollary 3.7. Thus, by Lemma 2.3, the study of nilpotent (CO)-groups
is in some sense equivalent to the study of nilpotent two-generator (CO)-groups. Groups of the latter kind are of
course rather much restricted. For instance, they may have torsion-free rank 2 at most, since they have finite derived
subgroups.

Central factorisations of a different kind are also useful in the context of locally nilpotent (CO)-groups, for such
groups can be described as central products of certain groups in which the quotient modulo the centre involves one prime
only and this fact leads to a description of them which is more explicit than that obtained as Theorem 3.5. Indeed,
since it has periodic central factor group, any locally nilpotent (CO)-group has a central factorisation in ‘primary
components modulo the centre’. More precisely, let G be a locally nilpotent (CO)-group and π := π (G/Z(G)). For
each p ∈ π, let Gp/Z(G) be the primary p-component of G/Z(G). Then [Gp, Gq] = 1 for all different p, q ∈ π (for,
every periodic automorphism of Gp stabilising 1 ≤ Z(G) ≤ Gp has p-power order), hence G is a central product of
the subgroups Gp, with p ranging over the (finite) set π. Clearly Z(G) = Z(Gp) for all p ∈ π. Conversely, it is an
immediate consequence of Theorem 3.5 that if G is a central product of finitely many (CO)-groups G1, G2, . . . , Gk such
that, for all i, Gi/Z(Gi) is a locally finite pi-group, where p1, p2, . . . , pk are pairwise distinct primes, then G ∈ (CO).

For instance, a corollary to Theorem 3.5, providing a characterization of nilpotent (CO)-groups can be phrased as
follows.

Corollary 3.8. Let G be a nilpotent group. Then G ∈ (CO) if and only if either G is abelian or there are finitely
many, pairwise distinct primes p1, p2, . . . , pk such that G has a central decomposition G = G1G2 · · ·Gk, where, for
each i, the group Gi has an abelian subgroup of index pi and |Gi/G′iZ(Gi)| = p2

i .

Proof. For every nontrivial primary component Gp/Z(G) of G/Z(G) we have |Gp/G′pZ(G)| > p, because Gp is
nilpotent and not abelian. This and Theorem 3.5 show that the condition is necessary. Conversely, let G be as
specified, but not abelian, and fix i ∈ {1, 2, . . . , k}. Let bars denote images modulo Z(Gi) = Gi ∩ Z(G). Since
¯̄Gi/ ¯̄G′i is finite, also ¯̄Gi is finite. Let Ai be an abelian subgroup of index pi in Gi and let x ∈ Gi r Ai. Then
¯̄G′i = [ ¯̄Ai, x̄] ' ¯̄Ai/CĀi(x̄) = ¯̄Ai/ ¯̄Ai ∩ Z( ¯̄Gi). But ¯̄Ai is finite, hence pi = | ¯̄Ai/ ¯̄G′i| = | ¯̄Ai ∩ Z( ¯̄Gi)|. It follows that
condition (c) in Theorem 3.5 is satisfied if we let A = A1A2 · · ·Ak, and G ∈ (CO). �

Theorem 3.5 and the remarks preceding Corollary 3.8 make clear that, in order to give an explicit description of
locally nilpotent (CO)-groups, it is enough to concentrate on the case when the central factor group is a p-group. Our
next aim will be determining the structure of such central factor groups in detail.

Let p be a prime and G be (CO)-group such that G/Z(G) is a (nontrivial, locally finite) p-group. It follows
from Theorem 3.5 that G/Z(G) is the split extension of the abelian group A∗ = A/Z(G) (where A is abelian itself)
by a group 〈y〉 of order p, where y acts uniserially on A∗ and induces on A∗ a splitting automorphism (that is:

uuyuy
2 · · ·uyp−1

= 1 for all u ∈ A∗; in other words, aaxax
2 · · · axp−1 ∈ Z(G) for all a ∈ A and x ∈ G r A). Groups

with this structure can be described as quotients of easily defined wreath products. Let Cpn denote either a cyclic
group of order pn, if n is a positive integer, or a Prüfer p-group, if n is the symbol ∞. In either case let Wp,n be the

(standard, regular) wreath product of Cpn by a group of order p, and let W p,n = Wp,n/Z(Wp,n). Recall that, if finite

(and not too small), W p,n is a p-group of maximal class; thus the base group of Wp,n is ZC-embedded in Wp,n.
Although a unified discussion could also be possible, we deal with the case when G/Z(G) is finite first. In this case,

excluding the obvious small exceptions, G/Z(G) is a rather special group of maximal class.

Proposition 3.9. Let p be a prime. For a finite nontrivial p-group Q the following conditions are equivalent:

(i) there exists G ∈ (CO) such that G/Z(G) ' Q;
(ii) either Q is elementary abelian of order p2 or Q = A∗ o 〈y〉, where A∗ is abelian, y has order p and acts on A∗

uniserially and inducing a nontrivial splitting automorphism;

(iii) Q 'W p,n/N , where n is a positive integer and N is a W p,n-invariant subgroup of W
′
p,n.

Moreover, if Q satisfies these conditions then the rank r of A∗ in (ii) is at most p − 1, and r = p − 1 unless A∗ has
exponent p.

Proof. We know that (i) implies (ii). Assume that (ii) holds, and let pn = expA. If Q is abelian then Q 'W p,n/W
′
p,n.

In the other case, uniseriality implies that A∗ is a cyclic 〈y〉-module, say A∗ = 〈u〉〈y〉. Now W p,n has a presentation

with two generators, a, x and relations ap
n

= xp = 1, [ax
i

, ax
j

] = 1 for all integers i, j and aaxax
2 · · · axp−1

= 1.
These relations are satisfied by u and y (for a and x respectively), hence Q ' W p,n/N for some N C W p,n. Since

W p,n has maximal class and W
′
p,n � N we have N < W

′
p,n. Thus (iii) holds. Finally, assume (iii). If N = 1 let

G = Wp,n, otherwise let G = W p,n/[N,W p,n]. In either case Q ' G/Z(G) and G has an abelian subgroup of index p,
thus Corollary 3.8 shows that G ∈ (CO) and (i) holds. Thus we have proved that the conditions (i), (ii) and (iii) are
pairwise equivalent. The final claim can be deduced from the structure of W p,n. �

As already noted, the requirement that y acts uniserially on A∗ in (ii) can be replaced by either of |CA∗(y)| = p
and |A∗/[A∗, y]| = p. Also note that these conditions imply that A∗ is either homocyclic or the direct product of two
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homocyclic groups, of exponents pλ and pλ+1 for some positive integer λ. This follows from part (iii), or also directly
from [6], Proposition 4.3.6.

In the case of infinite p-groups, equivalences like those in Proposition 3.9 still hold, but we obtain a sharper and
more explicit result, the structure of G/Z(G) being uniquely determined.

Proposition 3.10. Let G be group such that G/Z(G) is an infinite locally finite p-group for some prime p. Then
G ∈ (CO) if and only if G/Z(G) 'W p,∞.

Proof. Assume that G ∈ (CO) and let Q := G/Z(G) = A∗ o 〈y〉 as in the discussion preceding Proposition 3.9,
and fix x ∈ yZ(G). If F/Z(G) is a finite, nontrivial y-invariant subgroup of A∗ then Z(F 〈x〉) = CF (x) = Z(G), so
Proposition 3.9 shows that F/Z(G) has rank p − 1 at most, and it has rank p − 1 if it has exponent greater than p.
It follows that A∗ has rank p − 1. Since y acts on it uniserially, the characteristic subgroups of A∗ form a chain and
therefore A∗ is divisible. For all positive integers n, let A∗n = Ωn(A∗). What we have just proved and Proposition 3.9
yield A∗n〈y〉 ' W p,n. Now Q =

⋃
n∈NA

∗
n〈y〉 and each W p,n can be identified with a subgroup of W p,∞ in such a

way that W p,∞ =
⋃
n∈NW p,n, so we only have to show that, for all n, any isomorphism A∗n〈y〉 → W p,n can be

extended to an isomorphism A∗n+1〈y〉 → W p,n+1. To this aim it is enough to observe the following: given b, c ∈ A∗

such that A∗n = 〈b〉〈y〉 and cp = b, we have A∗n+1 = 〈c〉〈y〉. To prove that, note that the mapping u 7→ up induces a
〈y〉-isomorphism from A∗n+1/A

∗
1 to A∗n, hence 〈c〉yA∗1 = A∗n+1 and so 〈c〉y = A∗n+1, because A∗1 ≤ (A∗n+1)p. Thus we

prove that Q 'W p,∞ if G ∈ (CO).

Conversely, if G/Z(G) 'W p,∞ then G has a subgroup A of index p such that A/Z(G) is a divisible abelian p-group,
therefore such is A/Z(A). But this implies that A is abelian, hence G ∈ (CO) by Theorem 3.5. �

Thus, if G ∈ (CO) and G/Z(G) is a locally finite p-group, also in the case when this latter quotient is infinite the
abelian maximal subgroup of G has rank p− 1 modulo Z(G).

We can sum up the results in the last part of this section as follows:

Theorem 3.11. Let G be a locally nilpotent group. Then G ∈ (CO) if and only if either G is abelian or there are
finitely many, pairwise distinct primes p1, p2, . . . , pk such that G has a central decomposition G = G1G2 · · ·Gk, where,
for each i, either Gi/Z(Gi) ' W pi,∞ or Gi has an abelian subgroup of index pi and Gi/Z(Gi) ' W pi,n/N , where n

is a positive integer and N is a W pi,n-invariant subgroup of W
′
pi,n.

A couple of final remarks are in order. Firstly, as happens when Gi/Z(Gi) is infinite, also when pi = 2 the
requirement that Gi has an abelian subgroup of index pi is redundant.

Corollary 3.12. Let G be group such that G/Z(G) is a nontrivial locally finite 2-group. Then G ∈ (CO) if and only
if G/Z(G) is either dihedral or locally dihedral.

Proof. The corollary follows from Theorem 3.11 and from the remark that if G/Z(G) is dihedral or locally dihedral
then it has a locally cyclic subgroup A/Z(G) of index 2, and A must be abelian. �

The second remark is that a similar statement fails for all other primes:

Example 3.13. For every odd prime p and every integer n > 1 there exists a p-group G such that G/Z(G) '
W p,n/Z(W p,n) but no maximal subgroup of G is abelian, so that G /∈ (CO). Our examples are defined as follows. Let
q = pn−1 and let A be the group in the variety of nilpotent groups of class 2 and exponent pn generated by elements
g1, g2, . . . , gp−2, c subject to the extra defining relations:

[gi, gj ] = cqνj−i , for 1 ≤ i < j ≤ p− 2; [gi, c] = cqµ, for 1 ≤ i ≤ p− 2. (R)

for some integers ν1, ν2, . . . , νp−3, µ, not all divisible by p. For a suitable choice of these integers an automorphism y
of A is defined by the assignments:

g1 7→ g2 7→ · · · 7→ gp−2 7→
((∏p−2

i=1
gii
)
c−1
)τ

and c 7→
(∏p−2

i=1
gi−p−iτi

)
cτ ,

where τ = 1 + p + p2 + · · · + pn−1. In fact, for any choice of ν1, ν2, . . . , νp−3, µ the relations in (R) are preserved by
these assignments with the possible exception of the p − 3 relations [gi, gp−2] = cqνp−2−i where 1 ≤ i < p − 2. The
condition that any of these is preserved is expressed by a linear equation modulo p; thus we have a system of p − 3
equation on the p− 2 indeterminates ν1, ν2, . . . , νp−3, µ; each nontrivial solution of this linear system over the integers
mod p gives rise to a group A in which the automorphism y is well defined. For such an A let G = Ao 〈y〉; we have

1 6= A′ = 〈cq〉 ≤ Z(G). Now, let W = Wp,n = B o 〈x〉, where B = 〈b〉〈x〉 is the base group. Let bars to denote images

modulo Z2(W ) in W and modulo A′ in G, and let bi = b̄x̄
i−1

for all i ∈ N. It can be checked that the assignments

ḡi 7→ b̄i for all i ∈ {1, 2, . . . , p − 2} and c̄ 7→
∏p−1
i=1 b̄

i
i define an isomorphism α : ¯̄A → ¯̄B such that (āȳ)α = (aα)x

for all a ∈ A; thus y acts on A/A′ in the same way as x acts on B/Z2(W ); it follows that y induces a splitting
automorphism of order p on A/A′. Since [A′, y] = 1 this implies that y has order p. As a further consequence, α may
be extended to an isomorphism ¯̄G → ¯̄W . Yet another one is that Z(G) = A′, for now we know that ¯̄G has maximal
class and A′ < Ω1(A) = 〈gq1, g

q
2, . . . , g

q
p−2〉 × A′ C G, hence Z(G) ≤ Ω1(A) and the conclusion follows. Therefore
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G/Z(G) ' W/Z2(W ) ' W p,n/Z(W p,n). If G had an abelian subgroup of index p then G/A′ would be nilpotent of
class 2 at most, which is clearly false. So G has all properties that we required.

4. Properties of soluble (CO)-groups

In this section we will consider soluble (CO)-groups. We do not aim at a classification of such groups. Rather, we shall
prove some general properties, one of which will be useful for the upcoming discussion on supersoluble (CO)-groups.

Theorem 4.1. Let G be a locally soluble (CO)-group. Then G is locally (abelian-by-finite), hence locally polycyclic,
and G′ is nilpotent of class at most 2. Thus G is soluble of derived length at most 3.

If F = FitG then G/F is cyclic. If G is not abelian-by-finite then F is abelian and G/F is infinite, and F is
maximal among the locally nilpotent subgroups of G, hence it is the Hirsch-Plotkin radical of G.

Proof. We may assume that G is soluble, for if the result is true in this case then all finitely generated subgroups
of G have derived length at most 3, hence G is soluble itself. So, let G be soluble. By Theorem 3.5, F is metabelian
and abelian-by-finite. On the other hand CG(F ) ≤ F , so OutG(F ) = G/F , hence G/F is cyclic. Therefore G has
soluble length 3 at most, that is, G′′ is abelian. Hence [G′, G′′] = 1 by Lemma 2.4 and G′ is nilpotent of class 2 at
most. There is nothing more to prove in the case when G/F is finite, and we may assume that G/F is infinite. Let
X = CG (Z(F )). By Corollaries 3.6 and 3.7, F is nilpotent and F/Z(F ) is finite, so Y := CX (F/Z(F )) has finite
index in X. Now, Y/Z(F ) embeds in the stability group of the series 1 ≤ Z(F ) ≤ F , which is periodic. Hence X/Z(F )
is periodic. As G/F is infinite cyclic X = F . Now let A be a maximal normal abelian subgroup of F . Since Z(F ) ≤ A
we have CG(A) ≤ CG (Z(F )) = F , hence A = CG(A). Let N = NG(A), then F ≤ N and |G : N | is finite, because
F/Z(F ) is finite, hence N/F is infinite. But N/A = OutG(A) is cyclic; it follows that A = F , that is: F is abelian. If
F ≤ S ≤ G and S is locally nilpotent then Z(S) C G, hence Z(S) ≤ F . But S/Z(S) is periodic (see Theorem 3.5)
and it follows that S = F . Hence F is a maximal locally nilpotent subgroup of G.

It remains to show that G is locally (abelian-by-finite). To this end we may assume that G is finitely generated,
still retaining the assumption that G/F is infinite, and prove that it is abelian-by-finite. If G is not polycyclic, than
it has a quotient Q which is just non-polycyclic (see, e.g., [7], 7.4.1). The FC-centre of Q is easily seen to be trivial,
and this implies that CQ(N) = 1 for all normal subgroups N of finite index in Q. Hence Q/N = OutQ(N) is cyclic
and Q′ ≤ N for all such N . But Q is residually finite, because G is metabelian and by a well-known theorem by
Jategaonkar (see [7], 7.2.1). Therefore Q is abelian, a contradiction. This argument shows that G must be polycyclic.
Then F is finitely generated. Let x ∈ G be such that G = F 〈x〉. There exists A ≤ F such that F/A is finite, A C G
and A is free abelian. Fix a prime p; then |F/Ap| is finite and there exists a positive integer n such that [F, xn] ≤ Ap.
For all k ∈ N the group F 〈xn〉/Apk is nilpotent, because xn centralises all factors Ap

i

/Ap
i+1

. Hence Lemma 3.2 shows

that xnp centralises A/Ap
k

. Therefore [A, xnp] ≤
⋂
k∈NA

pk = 1. Now, xnp stabilises the series 1 < A ≤ F ; since F/A
is finite and A is torsion-free we have [F, xnp] = 1. This is a contradiction, as C〈x〉(F ) = 1. The proof is complete. �

For any group X let FC(X) denote the FC-centre of X.

Corollary 4.2. Let G ∈ (CO). Then:

(i) if S is a soluble subnormal subgroup of G then FC(S) ≤ FC(G);
(ii) FitG ≤ FC(G).

Proof. To prove (i) we may assume S C G. Let a ∈ FC(S), let T be a right transversal of CS(a) in S (so T is finite),
and C = CG(S). We have G = CS〈x〉 for some element x. If H = 〈a, x, T 〉 then G = CG(a)H, and a ∈ FC(G) if
and only if a ∈ FC(H). Thus, at the expense of replacing G with H we may assume that G is soluble and finitely
generated. By Theorem 4.1, G has a normal abelian subgroup A of finite index. There exists a positive integer λ such
that xλ ∈ A and [xλ, S] ≤ S ∩ A. The stability group of the series 1 ≤ S ∩ A ≤ S is finite, so that xµ ∈ C for some
positive integer µ. Therefore |G : CS| is finite, and it follows that a ∈ FC(G). Thus (i) is proved. Since FitG is
centre-by-finite, by Corollaries 3.6 and 3.7, part (ii) is a special case of (i). �

Note that soluble non-metabelian (CO)-groups can be easily constructed, the smallest example being the following.
Let G = Q o 〈x〉, where Q is the quaternion group of order 8, x has order 3 and [Q, x] 6= 1, hence [Q, x] = Q. Then
G′ = Q is not abelian and G ∈ (CO). This follows from the fact that, for every subgroup H of G such that |G : H| is
not prime, H and AutH are cyclic.

Next we show that soluble (CO)-groups which are not abelian-by-finite do exist. According to Theorem 4.1 such
groups are bound to be metabelian and not finitely generated.

Example 4.3. Let A be an infinite periodic abelian group, all whose primary components have prime order. Fix any
automorphism α of A of infinite order and form the semidirect product G = Ao 〈x〉, where x (has infinite order and)
acts on A like α. Then G ∈ (CO) and, clearly, A = FitG.

To show that G ∈ (CO), let H ≤ G. Every subgroup of A is the product of some of the primary components of A,
hence H ∩ A = Aπ and H = Aπ〈bxλ〉 for some set π of primes, λ ∈ Z and b ∈ Aπ′ (following standard notation,
Aπ′ is the complement to Aπ in A). Let N = NG(H). Then N = AπNAπ′ 〈x〉(H). If a ∈ Aπ′ and t ∈ Z are such
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that g := axt ∈ N then k := [g, bxλ] ∈ H ∩ G′ ≤ H ∩ A = Aπ. But k = [a, xλ]x
t

[xt, b]x
λ ∈ Aπ′ , since Aπ′ C G.

It follows that k = 1. Therefore NAπ′ 〈x〉(H) = C := CAπ′ 〈x〉(bx
λ) and N = AπC. Now let ξ : N → AutH be the

map describing the conjugation action of N on H, and let I = InnH. Then OutG(H) ' NξI/I = CξI/I, because
C ≤ N ≤ HC. On the other hand, if ρ : AutH → AutAπ is the restriction map then Cξ ∩ker ρ = 1, hence Cξ ' Cξρ.
But Cξρ ' C/CC(Aπ) is cyclic. Therefore OutG(H) is cyclic. This proves that G ∈ (CO), as required.

The rest of this section is devoted to polycyclic-by-finite groups. We shall show that such groups are in (CO) if and
only if all of their finite quotients are in (CO). The following notation comes handy: if G is a polycyclic-by-finite group
we let F(G) denote the set of all normal subgroups of finite index in G. It is well-known that H =

⋂
{HK | K ∈ F(G)}

for all H ≤ G. A further result by Segal ([11], Theorem B) is that for every positive integer n two n-tuples of elements
of G are conjugate if and only if they are conjugate modulo every K ∈ F(G). It easily follows (see [12], Theorem 4)
that an automorphism α of G is inner if and only if it induces an inner automorphism on G/K for every characteristic
subgroup K of finite index in G. We shall use the following equivalent form of this result.

Corollary 4.4. Let G be a polycyclic-by-finite group and H ≤ G. For all K ∈ F(G) let C(K)/K = CG/K(HK/K).
Then HCG(H) =

⋂
{HC(K) | K ∈ F(G)}.

Proof. Let J be the intersection of the subgroups HC(K) with K ranging over F(G); it is clear that J normalises H,
as H =

⋂
{HK | K ∈ F(G)}. Let g ∈ J . If N is a characteristic subgroup of finite index in H then N = H ∩ NK

for some K ∈ F(G). Now g ∈ HC(K), hence g induces an inner automorphism on H/H ∩ K, hence on H/N too.
By Segal’s result cited in the previous paragraph, it follows that g induces an inner automorphism on H, that is,
g ∈ HCG(H). Therefore J ≤ HCG(H). The reverse inclusion is obvious, thus the proof is complete. �

Proposition 4.5. Let G be a polycyclic-by-finite group. Then G ∈ (CO) if and only if all finite quotients of G are
in (CO).

Proof. The necessity of the condition is clear. Suppose that all finite quotients of G are in (CO). Let H ≤ G and
N = NG(H). For all K ∈ F(G) the quotient N/N ∩ HC(K) ' NC(K)/HC(K) is cyclic, as G/K ∈ (CO). By
using Corollary 4.4 it follows that OutG(H) = N/HCG(H) is abelian. Every finite subgroup ¯̄F = F/HCG(H) of
OutG(H) is cyclic because, by Corollary 4.4 again, there exists K ∈ F(G) such that HCG(H) = F ∩ HC(K) and
hence ¯̄F ' C(K)F/HC(K). Finally, OutG(H) is finitely generated abelian; if it is not cyclic then it has a subgroup
H1/HCG(H) of finite index such that N/H1 is not cyclic. But CG(H1) ≤ CG(H) ≤ H1 and N ≤ NG(H1), hence
N/H1 is a finite subgroup of OutG(H1). By the previous part of the proof N/H1 is cyclic. This contradiction shows
that OutG(H) must be cyclic, hence G ∈ (CO), as required. �

5. Supersoluble groups

The aim of this final section is a description of finite supersoluble (CO)-groups. Thanks to Proposition 4.5 this will
also yield a characterization of arbitrary supersoluble (CO)-groups. If G is such a group, since G/FitG is finite
Lemma 2.7, together with the results in Section 3, shows that G is abelian-by-(finite cyclic). However, unlike nilpotent
(CO)-groups, finite supersoluble (CO)-groups may fail to have an abelian normal subgroup of square-free index (an
example being provided by the holomorph of a group of order 5), and this makes their stucture less transparent.
Thus, rather than in terms of the action of the group on a big abelian normal subgroup, as we did in Section 3, our
description will be worded in terms of a suitable Sylow basis. In the proof we shall make frequent use of the following
(certainly well known) elementary lemma, whose proof we omit.

Lemma 5.1. Let G = AB be a group, where A and B are periodic subgroups and π(A) ∩ π(B) = ∅. If N C G then
N = (N ∩A)(N ∩B).

Let G be a finite supersoluble group, let p1, p2, . . . , pn be the primes dividing |G| and assume p1 > p2 > · · · > pn.
For each i ∈ I := {1, 2, . . . , n} choose a Sylow pi-subgroup Pi of G in such a way that P1, P2, . . . , Pn form a Sylow basis
of G. Every subgroup of G has a conjugate X which is factorised with respect to the factorization G = P1P2 · · ·Pn,
that is, such that X =

∏
i∈I(X ∩ Pi). Let H ≤ G. In order to study OutG(H) we may replace H with a conjugate of

its and assume that NG(H) is factorised with respect to G = P1P2 · · ·Pn. Then, by Lemma 5.1, also H and CG(H)
are factorised, and

OutG(H) =

∏
i∈I NPi(H)∏

i∈I P
∗
i CPi(H)

,

where P ∗i := H ∩Pi for all i ∈ I. Thus, OutG(H) is cyclic if and only if each of the groups Xi := NPi(H)/P ∗i CPi(H) is
cyclic and the normalizersNPi(H) centralise each other moduloHCG(H). If i, j ∈ I and i < j we have [Pi, Pj ] ≤ Pi and
HCG(H) ∩ Pi = P ∗i CPi(H), hence the latter condition is equivalent to requiring that [NPi(H), NPj (H)] ≤ P ∗i CPi(H)
for all such pairs i, j.

Interest in these conditions motivates the next three lemmas, leading to our classification theorem.

Lemma 5.2. Let G be a finite supersoluble (CO)-group and p a prime, and let P be a nonabelian normal Sylow
p-subgroup of G. If Q is a p′-Hall subgroup of G then
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(i) P ∩G′ ≤ Zc−1(P ), where c is the nilpotency class of P ;
(ii) if P is two-generator then G = P ×Q;

(iii) [P,Q] ≤ Z(P ).

Proof. Let Z := Zc−1(P ). Then |P/Z| = p2, by Corollary 3.8. In order to prove (i) we may factor out Zc−2(P ) and
assume that Z = Z(P ). Since G is supersoluble it has a normal subgroup A such that Z < A < P . By Maschke’s
theorem G also has a normal subgroup B 6= A such that Z < B < P . Now A and B are abelian and P = AB, hence
Lemma 2.4 yields [P,G′] = 1, so P ∩ G′ ≤ Z(P ) = Z. Thus (i) is proved. As a consequence, [P,Q] ≤ P ∩ G′ ≤ Z
by (i), i.e., Q acts trivially on P/Z. Now, if P is two-generator then Z is the Frattini subgroup of P , hence [P,Q] = 1,
which proves (ii). Finally, if c = 2 then Z(P ) = Z, hence [P,Q] ≤ Z gives (iii); if c > 2 then (iii) follows from (ii) and
the fact that P/Z(P ) is nonabelian and two-generator by Corollary 3.7. �

Lemma 5.3. Let G = P o Q be a periodic (CO)-group, where Q is locally nilpotent q-group for some prime q and
P is a q′-group. Then either [Q,P ] = 1 or QP = CQ(P ) is abelian.

Proof. By Lemma 3.2, Q has a maximal subgroup A which is abelian. Assume that QP is not abelian. Then
QP � A and K := A ∩ QP � Z(Q), hence CQ(K) = A. Let H = PK. As H C G, Lemma 5.1 shows that
CG(H) = CP (H)CQ(H). Now CQ(H) = CQ(K) ∩ CQ(P ) = A ∩QP = K, hence CG(H) ≤ H. Therefore OutG(H) =
G/H ' Q/K, hence Q/K is cyclic. Since QP � A this shows that A < QP , that is QP = Q, or, equivalently,
[Q,P ] = 1. Thus the proof is complete. �

Lemma 5.4. Let G = Ro (P oQ) be a finite group, where |P | and |RQ| are coprime. Let H ≤ G and assume that
H = R∗P ∗Q∗, where R∗ = R ∩H, P ∗ = P ∩H and Q∗ = Q ∩H.

(i) Suppose that RP ∈ (CO) and [P,Q] ≤ Z(RP ). Then [NP (H), NQ(H)] ≤ P ∗C[P,Q](H) and NP (H)/P ∗CP (H)
is cyclic.

(ii) Let R = 1. Suppose that Q is a q-group for some prime q and Q ∈ (CO). If QP is abelian and Q/QP is cyclic
then NQ(Q∗)/Q∗CQ(H) is cyclic.

Proof. In the hypothesis of (i), let N = NP (H) and M = NQ(H). By standard results on coprime actions, and since
[P,Q] ≤ Z(P ), we haveN = [N,Q∗]×E, where E = CN (Q∗). Note that [N,Q∗] ≤ P∩H = P ∗, becauseQ normalises P
and N normalises H. Moreover M normalises [N,Q∗], hence [N,M ] ≤ P ∗[E,M ]. On the other hand, by looking at
the action of M on N we get N = [N,M ]× CN (M), hence E = C[N,M ](Q

∗)CN (M) and [E,M ] = [C[N,M ](Q
∗),M ] ≤

C[N,M ](Q
∗). But [N,M ] ≤ Z(RP ), hence C[N,M ](Q

∗) ≤ C[P,Q](H); therefore [N,M ] ≤ P ∗[E,M ] ≤ P ∗C[P,Q](H), as
required. Now consider J := N/P ∗CP (H). Since N = [N,Q∗]×E and [N,Q∗] ≤ P ∗, so that P ∗ = [N,Q∗](E∩P ∗), we
have J ' J1 := E/(E∩P ∗)CP (H). Next, CP (H) = CE(P ∗R∗) = CE([N,Q∗](E∩P ∗)R∗) = CE((E∩P ∗)R∗), because
[N,Q∗] ≤ Z(RP ). Now, E normalises R∗ and E∩R∗ = 1, hence J1 ' J2 := ER∗/(E∩P ∗)CE((E∩P ∗)R∗)R∗. Finally,
RP ∈ (CO), hence OutER∗((E ∩ P ∗)R∗) is cyclic. By Lemma 5.1, CER∗((E ∩ P ∗)R∗) = CE((E ∩ P ∗)R∗)CR∗((E ∩
P ∗)R∗), therefore J2 = OutER∗((E ∩ P ∗)R∗) and J2 is cyclic. Thus the proof of (i) is complete.

Next we shall prove (ii). If QP = Q the conclusion is clear since in this case NQ(Q∗)/Q∗CQ(H) = OutQ(Q)∗. In the
other case, by Lemma 3.2, the (only) maximal subgroup A of Q containing QP is abelian. If Q∗ ≤ A then A ≤ CQ(Q∗),
hence CQ(H) ≥ QP . As Q/QP is cyclic the result follows. Thus we may assume Q∗ � A, hence Q = QPQ

∗. Let
N = NQ(Q∗). Then QP ∩ Z(N) ≤ CQ(H). Moreover |N/N ′Z(N)| ≤ q2, by Corollary 3.8, and N ′ ≤ Q∗ ∩QP , hence
Q∗CQ(H) ≥ Q∗(QP ∩ Z(N)) = Q∗(QP ∩N ′Z(N)). Let Y = QP ∩N and note that N = Q∗Y . If |N/Q∗CQ(H)| > q
then, as a consequence of our previous remarks, |Y/QP ∩ N ′Z(N)| = |Y/Y ∩ N ′Z(N)| > q and so N = Y N ′Z(N).
Therefore N = Y Z(N) is abelian, so that N = CQ(Q∗) and CQ(H) = Y ; hence N/Q∗CQ(H) = N/Q∗Y = 1, a
contradiction. This shows that |N/Q∗CQ(H)| ≤ q; thus also (ii) is proved. �

Theorem 5.5. Let G be a finite supersoluble group. Then G ∈ (CO) if and only if G has a Sylow basis (P1, P2, . . . , Pn),
where each Pi is a Sylow pi-subgroup and the primes p1, p2, . . . , pn are such that p1 > p2 > · · · > pn, and the following
conditions hold for all i, j ∈ {1, 2, . . . , n}:

(i) Pi ∈ (CO);
(ii) Pi/CPi(P1P2 · · ·Pi−1) is cyclic;

(iii) if i < j then [Pi, Pj ] ≤ Z(Pi);
(iv) if i < j either [Pi, Pj ] = 1 or (Pj)Pi is abelian.

Proof. Let (P1, P2, . . . , Pn) be a Sylow basis of G, where, for every i ∈ {1, 2, . . . , n}, Pi is a pi-subgroup and the primes
p1, p2, . . . , pn satify p1 > p2 > · · · > pn. Suppose that G ∈ (CO). If i ∈ {1, 2, . . . , n} and R := P1P2 · · ·Pi−1 C G,
every nontrivial automorphism induced by conjugation by Pi on R is obviously not inner, hence Pi/CPi(R) is cyclic
and (ii) holds. Part (i) is obvious, (iii) and (iv) follow from Lemmas 5.2 and 5.3.

Conversely, assume that (i–iv) hold. Let H ≤ G; we have to show that OutG(H) is cyclic. As we observed earlier,
there is no loss of generality in assuming that NG(H) is factorised with respect to the factorisation G = P1P2 · · ·Pn
and, further, once this assumption has been made, it will be enough to show that for all i, j ∈ {1, 2, . . . , n} the factor
Xi := NPi(H)/P ∗i CPi(H) is cyclic and, if i < j, [NPi(H), NPj (H)] ≤ P ∗i CPi(H); here P ∗i = Pi ∩ H. We argue by
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induction on n. We consider Xn first. Let P = P1P2 · · ·Pn−1 and Q = Pn. If Q C G then G = P ×Q and it follows
that Xn = OutQ(Q ∩ H) is cyclic. If Q 6 G then QP is abelian by Lemma 5.3 and Lemma 5.4 (ii) yields that Xn

is cyclic, since NQ(H) ≤ NQ(Q ∩ H). Now let i < n, and set R = P1P2 · · ·Pi−1, P = Pi and Q = Pi+1Pi+2 · · ·Pn.
By induction hypothesis RP ∈ (CO). Also, [P,Q] ≤ Z(P ) by (iii), while [P,Q,R] ≤ [(PQ)′, R] = 1 because G is
supersoluble and |PQ| and |R| are coprime. Thus [P,Q] ≤ Z(RP ). Now Lemma 5.4 (i) shows that Xi is cyclic. The
same lemma also shows that [NP (H), NPj (H)] ≤ (P ∩H)CP (H) for all j ∈ {i+ 1, . . . , n}. Thus we have proved that
G ∈ (CO). �

As regards condition (ii), note that CPi(P1P2 · · ·Pi−1) is the pi-component of the Fitting subgroup of G.
Easy examples of finite and possibly nonnilpotent, supersoluble (CO)-groups provided by Theorem 5.5 are, for

instance, the groups with cyclic Sylow subgroups. Such groups are metacyclic; the wreath products considered in
the final part of Section 3 (see Theorem 3.11) provide (nilpotent) examples of arbitrarily high rank. Somehow more
complex (nonnilpotent) examples can be constructed as follows. For a fixed positive integer n, starting from pn
choose primes p1, p2, . . . , pn such that pi ≡ 1 (mod pi+1pi+2 · · · pn) for all i. Still for all i ∈ I := {1, 2, · · · , n}, let
Xi = Ai o 〈xi〉 be a nonabelian, centrally indecomposable pi-group in the class (CO), where Ai is abelian and xi
has order pi—for instance, Xi may be the wreath product of a cyclic group of order pλi , for some positive λ, by a
group of order pi, and Ai may be the base group of Xi. Next let Pi = Xi ×Ci, where Ci = Drnj=i+1 Cij is elementary

abelian of order pn−ii , all subgroups Cij having order pi. Now, if i, j ∈ I and i < j we can let Pj act on Pi as
follows: [AjCj , Pi] = 1 = [xj , Xi] = [xj , Cik] for all k 6= j, and xj induces an automorphism of order pj on Cij .
It is not hard to check that repeated semidirect products defined by these actions yield a finite supersoluble group
G = P1P2 · · ·Pn satisfying the conditions in Theorem 5.5, hence G ∈ (CO). Also, Z(G) = 〈Z(Xi) | i ∈ I〉 lies in the
Frattini subgroup of G, hence G cannot be centrally factorised as in Lemma 2.3. This example can be modified by
letting each element xi have arbitrary order divisible by pi, or possibly infinite. All properties discussed for G are
retained with the only exception that if the order of some xi is finite and not a power of pi then a nontrivial abelian
direct factor appears—we use Proposition 4.5 to prove that this group is in (CO) in the infinite case. Also note that we
can thus obtain supersoluble (CO)-groups of arbitrarily high torsion-free rank which are not centrally decomposable
in the sense of Lemma 2.3; this is in contrast with what we remarked in the case of nilpotent groups.

The example of this group G also shows that in nonnilpotent supersoluble (CO)-groups the Fitting subgroup
(which is in our case P1A2C2A3C3 · · ·AnCn) may be nonabelian. There are obvious examples sharing this property,
like suitable direct products, however G makes a more significant example in that the (nonabelian) p1-component P1

of Fit(G) is not even a central factor in G.
Still, there are restrictions on the Fitting subgroup of a finite supersoluble (CO)-group, in the case when the former

is not abelian, which we feel worth recording.

Proposition 5.6. Let G be a finite supersoluble (CO)-group whose Fitting subgroup F is not abelian. Then

(i) if A is a maximal normal abelian subgroup of G then π(F ) = π(A), G/A is cyclic, |F/A| is square-free and
coprime with |G/F |;

(ii) if P is a nonabelian primary component of F then P is a Sylow subgroup in G. Moreover, P is a direct factor
in G modulo Z(P ), and if P is two-generator then it is a direct factor in G.

Proof. Of course A ≤ F and π(A) = π(F ), and G/A is cyclic by Lemma 2.7 (i), Also, A = CG(A) is maximal abelian
in F , hence |F/A| is square-free by Theorem 3.5. Let p ∈ π(G/F ) and let x be a p-element in G of order p modulo F .
Then Ap〈x〉 is a p-group, so [Ap, x

p] = 1 by Lemma 3.2. As xp ∈ F we also have [Ap′ , x
p] = 1, hence xp ∈ CG(A) = A.

Since G/A is cyclic this argument shows that p /∈ π(F/A). Thus (i) is proved. Now let P be as in (ii) and let p be
the prime diving |P |. As P � A we have p ∈ π(F/A) and so p /∈ π(G/F ), hence P is a Sylow p-subgroup of G. Then
Lemma 5.2 applies and the proof is complete. �
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