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1. Introduction

The present paper continues a series of investigations on the structure of core-finite groups, that is,
groups G in which the factor H/HG is finite for every subgroupH ≤ G, where HG denotes the normal
core of H in G. If, moreover, the sizes of the factors H/HG are bounded by an integer n then we say
that G is core-n. Every core-finite locally finite group is core-n for some integer n and has an abelian
subgroup of finite index, as was proved in [1] (see also [7]). Here some hypothesis on G is certainly
necessary, in order to avoid counterexamples given by groups like Tarski monsters. Also, the minimal
possible index of an abelian subgroup in a locally finite core-n group can be bounded in terms of n
only (see [2]). By an argument in [6] (and by the Mal’cev Local Theorem), the problem of finding
such a bound reduces to the case when G is a finite p-group for some prime p, in which case n may
be taken to be a power of p. The question of determining a sharp bound for core-p (finite) p-groups
has been addressed in [6] and [3]. It turned out that the exact bound is p2 if p 6= 2. Thus, if p is
an odd prime then every core-p locally finite p-group has an abelian subgroup of index less than or
equal to p2, and, for every prime p, there exist finite p-groups without abelian subgroups of index p.
Not surprisingly, the case of 2-groups with the property core-2 seems to be rather more difficult to
deal with. For instance, the nilpotency class of a core-p finite p-group can be at most 3 if p is odd,
while the example of dihedral groups shows that it can be arbitrarily high if p = 2. Still, we know of
no example to disprove the conjecture that the exact bound is 4 (that is, p2) also in the case p = 2.
Computer calculation done with the package GAP (see [4]) confirms this conjecture for all 2-groups
of order at most 28.

The aim of this paper is to solve the problem for groups of class 2. We prove that the conjecture
holds true in this case.

Theorem. Every core-2 nilpotent 2-group of class 2 has an abelian subgroup of index 4.

The central product of a dihedral and a quaternion group of order 8 is a core-2 group of class 2 in
which no maximal subgroup is abelian (see [3], Example 2.5). Thus the lower bound for the index of
an abelian subgroup given by the theorem cannot be improved in this case.

By an easy argument (see for instance the proof for Corollary 2.9 in [3]), this implies that every
core-2 nilpotent 2-group of class 3 has a normal abelian subgroup of index 16 at most. Also, results
in [3] (Lemma 2.10, Lemma 2.12 and Corollary 2.14) ensure that every 2-group G with property
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core-2 has a subgroup of index 2 which has nilpotency class 2 unless G itself has class 3. Thus the
above theorem yields the following corollary:

Corollary. Let G be 2-group with the property core-2. If G is nilpotent of class 3 then it has a
normal abelian subgroup of index 16, otherwise it has a normal abelian subgroup of index 8 at most.

That the abelian subgroup may be taken normal follows from the fact that all core-2 groups are
metabelian ([3], Lemma 2.1) and a theorem by Gillam [5].

As noted above, the result given by the Corollary might well be not the best possible. We hope
to investigate the problem of determining the exact bound for arbitrary core-2 groups in future.

Both the theorem and the corollary improve on analogous results from [3] by lowering the bounds
given there. A further improvement is that the proofs presented here are self-contained, whereas the
proofs in [3] depended, at a critical stage, on (part of) the computation done with GAP that we have
mentioned above. Indeed, the main object of the next section will be a new proof of a key lemma
from [3], where this computation was used. However, we do not mean to underestimate the usefulness
to our research of a package like GAP. We are happy to acknowledge the enormous help that the
availability of this package has given to us, thanks to the possibility of testing several conjectures and
building useful examples.

As regards notation, we use V4, D8 and Q8 to denote the Klein 4-group, the dihedral and the
quaternion group of order 8 respectively. Also, H ⋖ G means that H is a maximal subgroup of G.
Finally, brG(x) denotes the breadth of the element x in the finite 2-group G, defined by the equality
2brG(x) = |G : CG(x)|, while ◦(x) is the order of x.

2. Centralizers in core-2 groups

We make silent use of the following properties established in [3].

Lemma 2.1 (see [3], Lemma 2.2). Let G be a core-2 nilpotent 2-group of class 2. Then the Frattini
subgroup G2 of G is contained in Z(G), so that expG′ ≤ 2.

The key property of core-2 groups is the following (which actually characterizes them among
2-groups). Let G be a 2-group satisfying core-2, and let u, v be nontrivial elements of G. Let
H = 〈u, v〉. Then H2

⊳ G and |H/HG| ≤ 2. Even if HG = H this implies that one of the subgroups
of index 2 in H , that is, one of H2〈u〉, H2〈v〉 and H2〈u, v〉, is normal in G. So, for some h ∈ {u, v, uv}
we have H2〈h〉 ⊳ G and hence [G, h] ≤ H2, as

∣∣H2〈h〉
/
H2

∣∣ ≤ 2. If we further assume that G has
nilpotency class 2, then [G, h] ≤ SocH2, since exp[G, h] ≤ 2 by Lemma 2.1. In particular, brG(h)
cannot exceed the rank of SocH2, which is at most 3 (and is at most 2 if H is abelian). Without
further explicit reference we will almost always apply the core-2 property in this form.

Core-2 groups without elements of breadth 1 will play an important role throughout the paper.
There are several limitations on their subgroups.

Lemma 2.2. Let G be a core-2 nilpotent 2-group of class 2. Assume that G has no elements of
breadth 1. Let H ≤ G and let Z = Z(G). Then:
(i) if H is cyclic and normal in G then H ≤ Z;
(ii) if |H | = 8 then H is abelian;
(iii) the elements of order at most 2 form a subgroup G[2] in G, and

∣∣G[2] : G[2] ∩ Z
∣∣ ≤ 2;

(iv) if a ∈ G[2] r Z then G[2] ≤ CG(a) = 〈a〉Z;
(v) if H is maximal in G then Z(H) ≤ Z.

Proof. (i) Let H = 〈x〉 ⊳ G. Then [G, x] ⊳ 〈x〉. But exp[G, x] ≤ 2 by Lemma 2.1, and hence∣∣[G, x]
∣∣ ≤ 2; i.e., brG(x) ≤ 1. Since G has no element of breadth 1 this gives x ∈ Z, as required.
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(ii) Assume that H is a non-abelian subgroup of G of order 8. Then H is 2-generator. By the
core-2 property [G, h] ≤ H2 for some h ∈ H r Z(H). But |H2| = 2; hence [G, h] = H2 and so
brG(h) = 1, a contradiction.

(iii) Let V be a subgroup of G generated by two different involutions. Then V is dihedral of
order at most 8, because G has class 2. It follows from (ii) that V is isomorphic to V4. Then the
core-2 property yields V ∩ Z 6= 1. Part (iii) follows easily from this.

(iv) As G[2] is abelian G[2] ≤ CG(a). Let b ∈ CG(a) r 〈a〉 and set A = 〈a, b〉. By the core-2
property [G, x] ≤ SocA2 for some x ∈ {a, b, ab}. But SocA2 = Soc〈b2〉 has order at most 2; hence
brG(x) ≤ 1. By hypothesis brG(x) 6= 1 and so x ∈ Z. Thus x ∈ {b, ab} and b ∈ 〈a〉Z, whence (iv)
holds.

(v) If x ∈ Z(H) then brG(x) ≤ 1; hence x ∈ Z. ⊓⊔

The next result is basic in our approach to core-2 groups. It was first proved in [3], with the help
of computer calculation. Indeed the proof in [3] consists in showing that if the result were false then
there would be a counterexample of order 28, a possibility that could be ruled out by computation
done with GAP. We provide here a proof (really a proof of that final step) that eliminates the need
for using computers.

Lemma 2.3 (see [3], Lemma 2.8). Let G be a core-2 nilpotent 2-group of nilpotency class 2 and let
x ∈ Gr Z(G). Then C = CG(x) has an abelian subgroup of index 2.

Proof. By the Mal’cev Local Theorem we may assume that G is finite. Let G be a counterexample
of the minimal possible order. The argument in [3], Lemma 2.8, steps (i)–(v), ensures the following:

|G| = 28, C ⋖ G, C′ = G′ = Z(G) = G2 has order 8, Z(C) = C′〈x〉.

Hence expG = 4. Also, |C/Z(C)| = 8. Since C has no abelian subgroup of index 2 it follows
that CC(a) = 〈a〉Z(C) and so brC(a) = 2 for all a ∈ C r Z(C). If b is another element of C
then [a, C] = [b, C] if and only if aZ(C) = bZ(C). For, if [a, C] = [b, C] and aZ(C) 6= bZ(C) then
U := 〈a, b〉Z(C) would be maximal in C; hence C′ = [U,C] ≤ [a, C], whereas |C′| = 8. Therefore the
seven maximal subgroups of C′ are precisely the subgroups [C, a] where a ranges over a transversal
of Z(C) in C deprived of the central element. Let us call c the nontrivial element of [G, x] (i.e.,
c = [x, y] for all y ∈ G r C; note that x has breadth 1 in C). There are exactly four maximal
subgroups of G′ = C′ not containing c, say N1, . . . , N4. Let i ∈ {1, 2, 3, 4}. Let ¯̄G = G/Ni and
x̄ = xNi. Then x̄ /∈ Z( ¯̄G). Assume that ¯̄G has an abelian subgroup ¯̄A = A/Ni of index 2. If x ∈ A
then ¯̄A = CḠ(x̄); hence C = A, so C′ ≤ Ni, a contradiction. If x /∈ A then C =

(
A ∩ C)〈x〉 and

again C′ ≤ Ni. This proves that G/Ni has no abelian subgroups of index 2. Since
∣∣G′/Ni

∣∣ = 2, by
Lemma 2.6 (i) of [3] there exists a normal subgroup Ki of G such that Ki ∩ G

′ = Ni and G/Ki is
isomorphic to the central product of D8 and Q8. Since [Ki, G] ≤ Ni it follows that c /∈ [Ki, G]; hence
[Ki, x] = 1 and Ki ≤ C. Also, |G/Ki| = 32. As |G| = 28 and |Ni| = 4 we get |Ki/Ni| = 2. Let
ai ∈ KirNi, so Ki = Ni〈ai〉. Now let j be any subscript from {1, 2, 3, 4} and different from i. Then
Ni 6= Nj yields aiZ(C) 6= ajZ(C); hence [ai, aj ] 6= 1 by an above remark. Also

〈
[ai, aj ]

〉
= Ni ∩Nj,

as the latter intersection has order 2. Since [ai, aj] is contained in exactly three maximal subgroups
of G′ these are Ni, Nj and

〈
[ai, aj], c

〉
, which makes sure that [ai, aj ] does not belong to Nk for

any third subscript k different from both i and j; hence [ai, aj ] 6= [ai, ak]. A further consequence
is that ai, aj and ak must be independent modulo Z(C). Note that this last remark implies that
a4 ∈ a1a2a3Z(C).

Now we claim x2 = c. For every i ∈ {1, 2, 3, 4} there exists y ∈ CG(ai) r C, because brG(ai) =
brC(ai) = 2. Then c = [x, y] = [aix, y] ∈ [G, x] ∩ [G, aix]. Suppose that x2 = 1. Apply the property
core-2 to 〈ai, x〉. We have [G, ai] = Ni � 〈ai, x〉

2 = 〈a2i 〉; hence this latter subgroup contains either
[G, x] or [G, aix]. Thus c ∈ 〈a2i 〉 and we get the contradiction c = a2i = Ni. Therefore x2 6= 1. The
intersection among any three of the four subgroups N1, . . . , N4 is trivial. Thus x2 does not belong to
at least two of them, say Ni and Nj . Then 〈ai, x〉

2 is not [G, ai]. By property core-2 again it is either
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[G, x] or [G, aix]; hence c ∈ 〈ai, x〉
2. Similarly c ∈ 〈aj , x〉

2. Since a2i 6= c 6= a2j , if c 6= x2 it follows

that c = a2ix
2 = a2jx

2, and so 1 6= a2i = a2j ∈ Ni ∩Nj =
〈
[ai, aj ]

〉
. Thus 〈ai, aj〉 ≃ Q8, contradicting

Lemma 2.2 (ii). Therefore c = x2.
The elements of order 2 in C commute pairwise, by Lemma 2.2 (iii); hence at most one of a1, . . . , a4

can have order 2. We may assume that a1 has order 4. By what we saw earlier the three commutators
[a1, a2], [a1, a3] and [a1, a4] are pairwise different, so they are the nontrivial elements of N1. Since
1 6= a21 ∈ N1 one of these three commutators is a21. We may assume that a21 = [a1, a2]. Then
a22 /∈ N1, otherwise a22 ∈ N1 ∩ N2 = 〈a21〉 and 〈a1, a2〉 would be nonabelian of order 8, against
Lemma 2.2 (ii). Thus a2 has order 4. By repeating for a2 the argument used for a1 we get a

2
2 = [a2, ai]

for some i ∈ {3, 4}, say i = 3. Once again, a23 /∈ N2 and [a3, ai] for some i ∈ {1, 4}. So we have
N2 = 〈a21〉 × 〈a22〉 and N3 = 〈a22〉 × 〈a23〉. Now c ∈ C′ r (N2 ∪N3) = {a21a

2
3, a

2
1a

2
2a

2
3}. Let us work out

[a1, a3]. This commutator does not belong to N2, by the above. Since c /∈ N2 and so C′ rN2 = cN2

we have [a1, a3] = cg for some g ∈ N2. From [a1, a3] ∈ N1 ∩ N3 and c /∈ N1 ∪ N3 it follows that
g ∈ N2 r (N1 ∪ N3) = {a21a

2
2}. Thus [a1, a3] = a21a

2
2c. Finally, let b = a1a2a3. Again as we learned

previously a4 ∈ bZ(C) = bC′ ∪ bxC′. Also b2 = a21a
2
2a

2
3[a1, a2][a2, a3][a1, a3] = a21a

2
2a

2
3c.

The proof will be completed by splitting it into two cases, according to the possible values of c.

Case 1 — c = a21a
2
2a

2
3.

In this case b2 = 1. If a4 ∈ bxC′ then a24 = x2 = c and so c ∈ N4, a contradiction. Hence a4 ∈ bC′

and a24 = 1. As already remarked, there exists y ∈ CG(a4)rC, and both [G, y] and [G, a4y] contain c.
Now 〈a4, y〉

2 = 〈y2〉 cannot equal [G, a4] = N4. By property core-2 it follows that 〈y2〉 = 〈c〉 = [G, u]
where u is either y or a4y. But then c = x2 = u2 = [x, u] and 〈x, u〉 ≃ Q8. This is impossible by
Lemma 2.2 (ii).

Case 2 — c = a21a
2
3.

In this case b2 = a21a
2
2a

2
3c = a22 belongs to N2 ∩ N3, hence not to N4. Then a4 /∈ bC′ and so

a4 ∈ bxC′. Hence a24 = b2x2 = a22c and c = a22a
2
4. Recall that ¯̄G = G/K1 is isomorphic to the

central product of D8 and Q8, and K1 = N1〈a1〉. We have [a3, a4] = [a3, a1a2] = (a21a
2
2c)a

2
2 = a23.

In particular a23 /∈ N1. Also, [a2, a3] = a22 /∈ N1. Since N1 = G2 ∩ K1 it follows that a2K1 and
a3K1 are noncommuting elements of order 4 in ¯̄G. Hence Q = 〈a2K1, a3K1〉 ≃ Q8. Therefore
D := CḠ(Q) ≃ D8. Since ¯̄G = DQ and Q ≤ C/K1 there exists y ∈ G r C such that yK1 is an
element of order 2 in D. In particular [y, a2] ∈ K1 ∩ N2 = 〈a21〉. If [y, a2] 6= 1 replace y with ya1,
another representative of yK1. Then the following hold:

y2 ∈ K1 ∩G
2 = N1, [y, a2] = 1, [y, a3] ∈ K1 ∩N3 =

〈
[a1, a3]

〉
, [y, x] = c. (‡)

Let H := 〈y, a2〉. Then H2 = 〈y2, a22〉 contains one of [G, a2] = N2, [G, y] and [G, a2y]. Assume that
one of the latter two cases occur. Whichever of [G, y] ≤ H2 or [G, a2y] ≤ H2 holds, then c ∈ H2,
as c = [x, y] = [x, a2y], and also [a3, y] ∈ H2, because [a3, a2y] = a22[a3, y] and a

2
2 ∈ H2. The former

relation gives H2 = 〈c, a22〉 ≃ V4, which in turn implies y2 6= 1 and [a1, a3] = a21a
2
2c /∈ H2. Thus

[a3, y] ∈ H2 and (‡) yield [a3, y] = 1. Moreover y2 ∈ H2 ∩N1 = 〈ca22〉 = 〈a24〉; hence y
2 = a24. Now

consider the abelian subgroup A := 〈y, a3〉. We have A2 = 〈a24, a
2
3〉 = N4. This is impossible by

property core-2, since then A2 contains neither [G, a3] = N3 nor any of [G, y] and [G, a2y], given that
these two latter subgroups both contain c. This contradiction proves that H2 = 〈y2, a22〉 = N2. Then
y2 ∈ H2 ∩N1 = 〈a21〉 and y

2 = a21. This also means y2 = (a1a4)
2, which suggests to apply property

core-2 to U := 〈y, a1a4〉. As above, commuting with x gives c ∈ [G, y] ∩ [G, a1a4y]. Furthermore, for
all i ∈ {1, 2, 3, 4} we have a1a4 /∈ aiZ(C) and so [C, a1a4] 6= Ni, because of one of the observations
made at the beginning of this proof. Thus c ∈ [G, a1a4] as well. So c ∈ U2 by core-2. On the
other hand from [y, a1a4] = [y, a1bx] = [y, a3x] = [y, a3]c we get U2 = 〈a21, [y, a3]c〉. As c 6= a21[y, a3]c
because a21 /∈ N3, we must have c = [y, a3]c. Thus [y, a3] = 1 again, and A = 〈y, a3〉 is abelian.
Now A2 = 〈a21, a

2
3〉, so [a2, a3] = [a2, ya3] = a22 /∈ A2. Hence property core-2 yields [G, y] ≤ A2.

Therefore [a1, y] ∈ A2 ∩N1 = 〈a21〉. Finally consider V := 〈y, a1〉. The above yields V 2 = 〈a21〉. From
c ∈ [G, y] ∩ [G, a1y] it follows that V

2 does not contain any of [G, a1], [G, y] and [G, a1y]. By core-2
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this is a contradiction, which proves the lemma. ⊓⊔

3. Core-2 groups with noncentral involutions

In this section we shall examine those core-2 nilpotent groups of class 2 that have some element of
order 2 not contained in the centre. It turns out that such groups must either have elements of
breadth 1 or central factor group of order 8. By Lemma 2.3 this implies that the theorem in the
introduction holds for such groups.

Throughout this section, if x is a nontrivial element of the 2-group G we shall write x∗ for the
element of order 2 in 〈x〉; that is, 〈x∗〉 = Soc〈x〉.

Lemma 3.1. Let G be a core-2 nilpotent 2-group of class 2. Assume that G has a noncentral
involution a and no elements of breadth 1. Assume that

∣∣G/Z(G)
∣∣ > 8. Then, for every b ∈ Gr〈a〉Z,

(i) at least one element h among b and ab has breadth 2 in G and is such that [G, h] =
〈
h∗

〉
×
〈
[a, h]

〉
;

(ii) if
∣∣G/Z(G)

∣∣ > 16 only one of b and ab has breadth 2 in G.

Proof. Apply the core-2 property to the subgroup H = 〈a, b〉. For some h ∈ {a, b, ab} we have
[G, h] ≤ SocH2. Now, H2 =

〈
b2, [a, b]

〉
=

〈
(ab)2, [a, b]

〉
, so brG(h) ≤ 2. As b /∈ 〈a〉Z(G) we

have h /∈ Z(G). Then brG(h) = 2 since G has no elements of breadth 1. Lemma 2.2 (iv) gives
brG(a) > 2; hence h 6= a. It also follows that H2 is not cyclic, so that H2 = 〈h2〉 ×

〈
[a, h]

〉
and

[G, h] = SocH2 = 〈h∗〉 ×
〈
[a, h]

〉
. Part (i) is proved. To prove (ii) note first that Lemma 2.2 (iv)

yields CG(b) ∩ CG(ab) ≤ CG(a) = 〈a〉Z(G). Since a /∈ CG(b) it follows that CG(b) ∩ CG(ab) = Z(G).
If both b and ab have breadth 2 this implies

∣∣G/Z(G)
∣∣ ≤ 16. Thus also (ii) is proved. ⊓⊔

For the sake of later reference we state the next obvious remark as a lemma. The following one
also is doubtless well-known.

Lemma 3.2. Let b and c be elements of the group G such that [G, b] ∩ [G, c] = 1. Then [b, c] = 1
and CG(bc) = CG(b) ∩ CG(c).

Proof. Let g ∈ CG(bc). Then [bc, g] = 1 and so [b, g]c = [c, g]−1 ∈ [G, b] ∩ [G, c] = 1. Thus
g ∈ CG(b) ∩ CG(c). The statement follows. ⊓⊔

Lemma 3.3. For a prime p, let A be an elementary abelian p-group of rank greater than 3. Let S
be a set of subgroups of of A such that the following conditions are satisfied:

(i) every element of S has order p2;

(ii) every two different elements of S have nontrivial intersection;

(iii) A is generated by the elements of S.

Then
⋂
S has order p.

Proof. Let H and K be two distinct elements of S. We shall show that every element of S contains
the (nontrivial) subgroup H ∩K. Consider elements of S not contained in HK first. Let X ∈ S be
such that X 6≤ HK. Then |X ∩HK| ≤ p. Both X ∩H and X ∩K are nontrivial and contained in
X ∩HK; hence X ∩H = X ∩HK = X ∩K. As |H ∩K| = p this gives H ∩K ≤ X . Now let Y be
an element of S contained in HK. Since HK has rank 3, by condition (iii) there exists X ∈ S such
that X 6≤ HK. Then 1 6= X ∩ Y ≤ X ∩HK, and the latter intersection is H ∩K by the above. So
H ∩K = X ∩ Y ≤ Y . This proves that

⋂
S = H ∩K. ⊓⊔
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Lemma 3.4. Let G be a core-2 nilpotent 2-group of class 2. Assume that G has a noncentral
involution a and no elements of breadth 1. Let B = {b ∈ G | brG(b) = 2} and further assume that
|G/Z(G)| > 16. Then:
(i) for every b, c ∈ B we have [b,G] ∩ [c,G] 6= 1;
(ii) G′ =

〈
[b,G] | b ∈ B

〉
;

(iii) if |G′| > 8 then
⋂
b∈B

[b,G] has order 2.

Proof. Let b, c ∈ B and assume that [b,G] ∩ [c,G] = 1. Then A := 〈b, c〉 is abelian by Lemma 3.2.
Further, b∗ ∈ [b,G] and c∗ ∈ [c,G] by Lemma 3.1; hence b∗ 6= c∗, so A = 〈b〉 × 〈c〉. By the
core-2 property SocA2 = 〈b∗, c∗〉 = [x,G] for some x ∈ {b, c, bc}. If x = b then c∗ ∈ [b,G] ∩ [c,G], a
contradiction, so x 6= b. Similarly x 6= c. Hence x = bc. In particular, brG(bc) = 2, so that Lemma 3.2
gives CG(bc) = CG(b) = CG(c). Also, for suitable u and v in G we have [b, u] = b∗ = [bc, v]. Then
[c, v] = [b, uv] ∈ [b,G]∩ [c,G] = 1. Hence v ∈ CG(c) = CG(bc), which is impossible as [bc, v] = b∗ 6= 1.
This proves (i).

Part (ii) follows from the fact that G is generated by {a} ∪B, because of Lemma 3.1 (i). Finally,
if |G′| > 8, we may apply Lemma 3.3 to S = {[G, b] | b ∈ B} to obtain that K :=

⋂
b∈B

[b,G] has
order 2. ⊓⊔

Lemma 3.5. Let G be a core-2 nilpotent 2-group of class 2. Assume that G has a noncentral
involution a and no elements of breadth 1. Further assume that |G/Z| > 16, where Z = Z(G). Then
all elements of Gr 〈a〉Z have the same order expG and expG = 2 expZ.

Moreover, if 2λ = expG > 4 then the mapping g ∈ G 7→ g2
λ−1

∈ G is an endomorphism whose
kernel is 〈a〉Z and which maps every g ∈ Gr 〈a〉Z to g∗.

Proof. The core of the proof is the following claim:

Let b be an element of minimal order in Gr 〈a〉Z. If ◦(b) ≤ exp(Z) then:
(i) ◦(b) = exp(Z) and Z = 〈z〉 × Z1 where exp(Z1) < exp(Z) and z∗ = [a, b];
(ii) for all c ∈ Gr 〈a, b〉Z we have ◦(b) = ◦(c2) and c∗ = [a, b].

To prove this claim, let z ∈ Z be such that ◦(b) ≤ ◦(z). By Lemma 2.2 (iv) all involutions in G
lie in 〈a〉Z; hence ◦(b) > 2 and ◦(ab) > 2. Also (ab)4 = b4 by Lemma 2.1, so ◦(b) = ◦(ab). In
view of Lemma 3.1, at the expense of replacing b by ab we may assume that brG(b) = 2 and hence
[b,G] =

〈
b∗
〉
×

〈
[a, b]

〉
. Of course brG(zb) = 2 and so [b,G] = [zb,G] =

〈
(zb)∗

〉
×

〈
[a, b]

〉
. The

minimality of ◦(b) yields 〈b, z〉 = 〈b〉 × 〈z〉. Then (zb)∗ is either z∗ or z∗b∗, according to whether
◦(b) < ◦(z) or ◦(b) = ◦(z); in any case (zb)∗ 6= b∗. Also, by the above, (zb)∗ ∈

〈
b∗, [a, b]

〉
r

〈
[a, b]

〉
.

Hence (zb)∗ = [a, b]b∗; that is, [a, b] = (zb)∗b∗. Assume that ◦(b) < ◦(z). Then [a, b] = z∗b∗. On
the other hand z has a power z1 of the same order as b. By substituting z1 for z in the argument
just set out we get (z1b)

∗ = z∗1b
∗ and [a, b] = z∗1 . This is a contradiction because z∗1 = z∗. Therefore

◦(b) = ◦(z) and so [a, b] = z∗. This also shows that [a, b] belongs to all cyclic subgroups of maximal
order in Z. Part (i) of the claim follows.

Now let c ∈ G r 〈a, b〉Z. Assume that ◦(c) = ◦(b). Then we can replace b with c in part (i)
and obtain [a, c] = z∗ = [a, b]. This yields bc ∈ CG(a) = 〈a〉Z, contrary to our choice of c. Thus
◦(c) > ◦(b). Hence c2 ∈ Z and ◦(b) ≤ ◦(c2). By (i) it follows that ◦(b) = ◦(c2) and [a, b] = (c2)∗ = c∗,
so the claim is proved.

To complete the proof, now pick an element b of minimal order in G r 〈a〉Z and assume that
◦(b) = 2e < expG. Then ◦(b) ≤ exp(Z), because G2 ≤ Z. Since e > 1 by Lemma 2.2 (iv), and
expG′ = 2, the mapping ϕ : x ∈ G 7→ x2

e

∈ G is an endomorphism. The above claim implies that
kerϕ = 〈a, b〉Z and imϕ =

〈
[a, b]

〉
. Thus

∣∣G
/
〈a, b〉Z

∣∣ = 2 and |G/Z| = 8, a contradiction. Therefore
◦(b) = expG. This makes part (ii) of the claim impossible; hence we also have ◦(b) > expZ. This
proves the first paragraph of the statement. Finally, if expG > 4 the fact that the mapping in the
statement is an endomorphism follows since expG′ = 2; the rest is an immediate consequence of what
was just proved. ⊓⊔
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Lemma 3.6. Let G be a core-2 nilpotent 2-group of class 2. Assume that G has a noncentral
involution a and no elements of breadth 1. Then

∣∣G/Z(G)
∣∣ ≤ 16.

Proof. Let Z = Z(G) and suppose that |G/Z| > 16. The proof is split into two cases, according to
the exponent of G. Let B = {b ∈ G | brG(b) = 2}. Also let C = 〈a〉Z and note |G/C| > 8.

Case 1 — expG > 4.

By appealing to the final clause in the statement of Lemma 3.5 for justifying ψ, we can define the
following two monomorphisms from G/C to SocG2:

ϕ : gC 7−→ [a, g]; ψ : gC 7−→

{
1, if g ∈ C
g∗, otherwise.

Since b∗ 6= [a, b] for all b ∈ B, because of Lemma 3.1, the mapping

ρ = ϕ+ ψ : gC ∈ G/C 7−→

{
1, if g ∈ C
[g, a]g∗, otherwise

∈ SocG2

is also a monomorphism. For a fixed b ∈ B consider the preimages F :=
(
[G, b]

)
ϕ−1, P :=

(
[G, b]

)
ψ−1

and R :=
(
[G, b]

)
ρ−1. Every nontrivial element of G/C can be written as gC for some g ∈ B, by

Lemma 3.1. By the same lemma and Lemma 3.4 (i) one of (gC)ϕ, (gC)ψ , and (gC)ρ belongs to [G, b].
This proves that F ∪ P ∪ R = G/C, which is a contradiction since each of F , P and R has order 4
while |G/C| ≥ 16.

Case 2 — expG = 4.

Since
∣∣[G, a]

∣∣ = |G/C| > 8 we have |G′| > 8 and are in position to apply Lemma 3.4 (iii).
Let z be the nontrivial element of

⋂
b∈B

[b,G]. For all b ∈ B we have z ∈ {b∗, [a, b], [a, b]b∗}, in
view of Lemma 3.1 (i). We shall show that z = b∗. Let u ∈ CG(b) r 〈b〉Z. By Lemma 2.2 (iv)
(or by Lemma 3.5) the subgroup 〈b, u〉 = 〈b〉 × 〈u〉 is homocyclic (of exponent 4). By the core-2
property the Frattini subgroup 〈b2, u2〉 of 〈b, u〉 is [G, x] for some x ∈ {b, u, bu}. Then x ∈ B and so
z ∈ [G, x] = 〈b2, u2〉. As

∣∣CG(b)
/
Z
∣∣ ≥ 8 we may choose two elements c and d in CG(b) in such a way

that b, c and d are independent modulo C. Applying the last remark to c, d and cd gives:

z ∈
{
b2, c2, b2c2

}
∩
{
b2, d2, b2d2

}
∩
{
b2, (cd)2, b2(cd)2

}
.

Suppose that z 6= b2. Then z is one of c2 and (bc)2. At the expense of replacing c with bc if necessary
we may assume that z = c2. Similarly, we may assume that z = d2. If z = (cd)2 too, then 〈c, d〉 ≃ Q8,
which is impossible by Lemma 2.2 (ii). Therefore z = b2(cd)2, whence [c, d] = (cd)2 = b2z. Now
consider the subgroup H = 〈bc, bd〉. What was just worked out gives (bc)2 = (bd)2 = b2z = [c, d] =
[bc, bd]. Thus either H ≃ Q8 —a contradiction again— or H is abelian; hence b2z = 1. Therefore
z = b2, as claimed.

What we have proved is that all elements of breadth 2 in G have the same square z. Let again
b ∈ B. For all u ∈ CG(b) r 〈b〉 we have brG(u) > 2, as u2 6= b2. Hence applying the property
core-2 to 〈b, u〉 yields 〈b2, u2〉 = [G, b]. Once again choose two elements c and d in CG(b) which
are independent modulo 〈b〉Z. Then 〈b2, c2〉 = [G, b] = 〈b2, d2〉, so c2 ∈ {d2, (bd)2}. Without loss
of generality assume that c2 = d2. Then the Frattini subgroup of K := 〈c, d〉 has rank at most 2.
However c, d and cd have breadth greater than 2. Property core-2 makes this impossible. ⊓⊔

Lemma 3.6, together with Corollary 2.4 of [3] and Lemma 2.3, proves the special case of the
theorem that we are considering in this section, namely that every core-2 nilpotent 2-group of class 2
containing a noncentral element of order 2 has an abelian subgroup of index 4. However, more
structure information is available for such groups.
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Proposition 3.7. Let G be a core-2 nilpotent 2-group of class 2 containing a noncentral involution.
Then either
(i) G has an element of breadth 1; or
(ii) G/Z(G) has order 8.
In both cases G has a (normal) abelian subgroup of index 4.

Proof. As just remarked, the final clause holds. We shall assume that G has no element of breadth 1
and shall prove that |G/Z| = 8, where Z := Z(G). Suppose to the contrary that |G : Z| 6= 8.
Lemma 3.6, the absence of elements of breadth 1 and the fact that G is not abelian yield |G/Z| = 16.
Let B = {b ∈ G | brG(b) = 2} and let A be the set of all abelian subgroups of index 4 in G. Each
element of A contains Z, otherwise G would have an abelian subgroup of index 2, contrary to
Lemma 2.2 (v). For every b ∈ B the subgroup 〈b〉Z is central and maximal in CG(b), which is
therefore abelian. From this remark it follows that

B =
⋃

A∈A

(Ar Z).

Moreover, the latter is a disjoint union. Indeed, let U , V ∈ A. If U 6= V and U ∩ V 6= Z then
UV ⋖ G and so U ∩ V = Z by Lemma 2.2 (v) again. But this is impossible as |G : U ∩ V | = 8.
Let ¯̄B = {bZ | b ∈ B}. For every A ∈ A the set A r Z is union of three elements of ¯̄B; hence
3 divides |¯̄B|. Moreover, by Lemma 3.1 each nontrivial coset of 〈a〉Z in G contains at least one
element of ¯̄B, so |¯̄B| ≥ 7. Therefore |¯̄B| > 7 and there exists u ∈ G such that both u and au
belong to B. As [u, au] 6= 1 we have that A1 := CG(u) and A2 := CG(au) are distinct elements
of A. Choose v ∈ A1 r 〈u〉Z and w ∈ A2 r 〈au〉Z, so that {a, u, v, w} is a basis of G modulo Z.
At least one of vw and avw has breadth 2; call it x. Similarly, there exists y ∈ {uvw, auvw} ∩ B.
Both A3 := CG(x) and A4 := CG(y) are in A and are of course different from each of A1 and A2.
If A3 = A4, then xy ∈ A3. But xy is congruent to either u or au modulo Z, so one of u and au
belongs to A3. This is certainly false as A1 ∩ A3 = A2 ∩A3 = Z. Thus A3 6= A4. Hence |A| ≥ 4 and
so |¯̄B| = 3|A| ≥ 12. Since there are 15 nontrivial cosets of Z in G and aZ /∈ ¯̄B by Lemma 2.2 (iv),
it follows that |¯̄B| = 12 and A = {A1, A2, A3, A4}. Hence exactly two of the 14 cosets of Z in G
different from Z and aZ contain elements of breadth more than 2. Thus, at least two elements of A
have the property that for each element g they contain, ag is also in B. Without loss of generality
we may assume that A1 and A2 have this property. In particular, av and auv are in B. They do
not commute, as [u, av] 6= 1. Therefore one of them belongs to A3, the other one to A4. It follows
that for one of the sets {(av)x, (auv)y} and {(av)y, (auv)x} the following condition is satisfied: of
its two elements one belongs to A3, the other to A4; hence they are not congruent modulo Z and
and do not lie in A1 ∪A2. A simple direct check shows that this is impossible: working out the first
pair, from x ∈ {vw, avw} we get that (av)x is congruent modulo Z to either aw or w, but the latter
has to be excluded since w ∈ A2, so (av)xZ = awZ. Similarly from y ∈ {uvw, auvw} it follows that
(auv)yZ = awZ; thus we get the contradiction (av)xZ = (auv)yZ. Analogous computation for the
second pair gives (av)yZ = uwZ = (auv)xZ, a contradiction again. This proves our statement. ⊓⊔

It is worth noting that it is indeed possible for groups like those in the statement of Proposition 3.7
to have no elements of breadth 1. This is shown by the next example. At the other extreme, it is
clear that a semidirect product A⋊ 〈a〉, where A is an abelian group of exponent 4 and a has order 2
and acts on A like the inversion map, satisfies the hypothesis of Proposition 3.7 and can be made to
have central factor group of arbitrarily high cardinality.

Example 3.8. Let M = L × 〈z〉, where ◦(z) = 2 and L = 〈u〉 ⋊ 〈v〉 is the nonabelian semidirect
product of two cyclic groups of order 4. For each i ∈ {1, 2, 3} let Gi =M⋊ 〈wi〉, where wi has order 2
and acts on M as specified here:

w1 : u 7→ uz, v 7→ v−1u2, z 7→ z;
w2 : u 7→ uv2, v 7→ vz, z 7→ z;
w3 : u 7→ u−1v2, v 7→ vz, z 7→ z.
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Then |Gi| = 64 and G′
i = Z(Gi) = G2

i = 〈u2, v2, z〉. Both Z(Gi) and Gi/Z(Gi) are elementary
abelian of order 8. All noncentral elements of Gi have breadth 2. Of course wi is a noncentral
involution.

Let G be any of the groups Gi. We want to prove that G is core-2. Assume that this is false.
Then

∣∣H/HG

∣∣ > 2 for some H ≤ G. Since all groups of order 16 and nilpotency class 2 are core-2

(because their centres have index 4) it follows that
∣∣H/HG

∣∣ ≥ 32 and |HG| ≤ 2. Also, |H | > 2; hence
D := H∩M 6= 1. As all involutions ofM are central in G it follows thatHG has order 2 and is the socle
of D. Thus |H | = 8. Assume that H ≤ M . Since H ∩G′ ≤ HG and so |H : H ∩G′| ≥ 4 = |M : G′|
we have M = HG′. Thus H ⊳ M and M/H has exponent 2, as also happens for M/G′. Hence
M2 ≤ H ∩ G′ ≤ HG, which is false as |M2| = 4. Therefore H 6≤ M . It follows that |D| = 4. Hence
D is cyclic since its socle HG has order 2; say D = 〈d〉. Also, HG = D2 ≤ M2 = 〈u2, v2〉. Since
G2 = Z(G) it even holds that H2 = HG.

Set w := wi and let h ∈ H rD. Then h = mw for some m ∈ M . For either λ ∈ {0, 1} we have
(dλmw)2 ∈ H2 ≤M2. Hence [dλm,w] ∈M2. It follows that both [d, w] and [m,w] are in M2. From
this and from the description of the conjugation action of w on M , since z /∈M2 one gets that both
d and m lie in 〈v〉G′ if i = 1 or in 〈u〉G′ if i 6= 1. In either case [d,m] = 1. But D = 〈d〉 ⋖ H ; hence
D must be normalized by w, which amounts to saying that [d, w] ∈ 〈d2〉. Suppose that i = 1. Then
d ∈ vG′, as ◦(d) = 4, so d2 = v2 and [d, w] = [v, w] but, on the other hand, [v, w] = u2v2 /∈ 〈v2〉. If
i 6= 1 we obtain an analogous inconsistency from [u,w] /∈ 〈u2〉. These contradictions prove that each
of the groups G1, G2 and G3 is core-2. ⊓⊔

The above examples are somehow typical, according to the next proposition.

Proposition 3.9. Let G be a core-2 finite 2-group of nilpotency class 2 and breadth 2. If |G′| = 8
then G has no elements of breadth 1.

Proof. Lemma 2.4 of [8] shows that G has a 3-generator subgroup H such that H ′ = G′. It is clear
that if u, v and w are any three elements generating H then H ′ =

〈
[u, v]

〉
×

〈
[u,w]

〉
×

〈
[v, w]

〉
, so

that each of the subgroups [h,H ] with h ∈ {u, v, w} has order 4 and coincides with [h,G], and the
intersection of these three subgroups is trivial.

Let x ∈ G. We want to prove that brG(x) 6= 1. To this end assume first that [x,H ] = 1
and let H = 〈u, v, w〉. Then, for all h ∈ {u, v, w} we have [xh,H ] = [h,H ]. Since

∣∣[xh,G]
∣∣ ≤ 4

this gives [xh,G] = [h,H ] = [h,G], from which it follows that [x,G] ≤ [h,G]. Hence [x,G] ≤
[u,G] ∩ [v,G] ∩ [w,G] = 1 and x ∈ Z(G). So our result is proved in this case and we may assume
that [x,H ] 6= 1. Let C = CH(x). Then H = 〈u, v, w〉 for suitable u, v, w ∈ H r C. Suppose that
|H : C| = 2. Then for every h ∈ {u, v, w} it holds that H = C〈h〉, so [xh,C] = [h,C] = [h,H ] = [h,G]
and [xh,G] = [h,G] by comparison of orders. It follows that [x,G] ≤ [h,G]. This leads to a
contradiction as for the previous case. Hence |H : C| > 2 and so brG(x) = 2, as wished. ⊓⊔

4. Proof of the Theorem

This final section is devoted to proving the main result of the paper. Let us start with two lemmas
in the spirit of Lemma 2.2.

Lemma 4.1. Let G be a core-2 nilpotent 2-group of class 2. Assume that G has a maximal sub-
groupM such that |M ′| = 2. Then M has an abelian subgroup of index 2, or some element of GrM
has order 2, or G has some element of breadth 1. In any case G has a normal abelian subgroup of
index 4.

Proof. Assume that none of the three possibilities occurs. Since G has no elements of breadth 1,
Lemma 2.2 (v) yields Z := Z(G) = Z(M).
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Let a be an element in GrM . Then a2 6= 1. For every x ∈ CM (a) we have brG(x) = brM (x) ≤ 1,
as |M ′| = 2; hence CM (a) = Z. Thus brG(a) = n where |M/Z| = 2n. We claim that M ′ is not
contained in [M,a]. Otherwise [u, a] ∈ M ′ for some u ∈ M r Z, so [u, a] = [u, v] for some other
v ∈ M , but this is impossible as CM (av−1) = Z. Let N be a normal subgroup of M , maximal with
respect to the conditions [M,a] ≤ N and N ∩M ′ = 1. By [3], Lemma 2.6, the quotient M/N is
isomorphic to the central product of D8 and Q8. In particular, M/N has a noncentral element xN
of order 2 and its centre has index 16. Thus |M/Z| ≥ 16 and so all elements of GrM have breadth
greater than 3. Hence, if H = 〈x, a〉, the core-2 property gives [G, x] ≤ H2 = 〈x2, [x, a], a2〉. Now
M ′ = [M,x] ≤ [G, x]. Since x2, [x, a] ∈ N and M ′ � N it follows that a2 /∈ N . Hence G/N is
isomorphic to the central product of D8, Q8 and a cyclic group of order 4. This is impossible because
such a product has a subgroup isomorphic to V4 that intersects the centre trivially; hence it cannot
be a core-2 group. ⊓⊔

Lemma 4.2. Let G be a core-2 nilpotent 2-group of class 2. Let A be a homocyclic subgroup of G
of rank 3 and such that AZ(G)/Z(G) has rank 2. Then there exists x ∈ A such that brG(x) = 1.

Proof. For suitable a, b ∈ A and c ∈ Z(G) we have A = 〈a〉 × 〈b〉 × 〈c〉. Let H be any of the
four subgroups 〈a, b〉, 〈ac, b〉, 〈a, bc〉, 〈ac, bc〉. Assume that none of a, b and ab has breadth 1 in G.
By the core-2 property there exists h ∈ H r H2 such that [G, h] ≤ H2. Clearly [G, h] is one of
[G, a], [G, b] and [G, ab], as c ∈ Z(G). Thus

∣∣[G, h]
∣∣ = 4 and so [G, h] = Soc(H). However the four

subgroups considered for H have pairwise different socles, while, as just seen, [G, h] may range over
three possible values only, a contradiction. ⊓⊔

We are now in position to prove the theorem. By the Mal’cev Local Theorem it will be enough
to prove it for finite groups. Arguing by means of contradiction, assume that the finite 2-group G is
a minimal counterexample; that is to say, G is a core-2 group of nilpotency class 2 of the minimal
possible order for having no (normal) abelian subgroup of index 4. We will reach a contradiction
after several steps, as follows.

Let Z := Z(G). From Lemma 2.4 and Lemma 2.6 of [3] we get |G/Z| ≥ 32 and |G′| ≥ 8. Also,
G has no element of breadth 1, by Lemma 2.3. Furthermore, Proposition 3.7 and Lemma 4.1 show
that every element of order 2 in G is central and |M ′| > 2 for every maximal subgroup M of G.

By minimality of |G| every maximal subgroup and every proper quotient of G has a normal abelian
subgroup of index less than or equal to 4. It follows that if we let

A := {A ≤ G | A is abelian and |G : A| = 8} and L := {L ⊳ G
∣∣ |G/L| = 4 and |L′| = 2}

then we have:

1. Every maximal subgroup of G contains some element of A.

2. For every subgroup X of order 2 in Z there exists L ∈ L such that L′ = X .

Thus every maximal subgroup of G must contain Z, since A = CG(A) for all A ∈ A, and every
subgroup of order 2 in Z is contained in G′. Hence:

3. Z = G2 and G′ = Soc(Z).

We want to show that every element of L has an abelian subgroup of index 2. To this end, let
L1 be the set of all elements of L that have an abelian subgroup of index 2 and let L2 := Lr L1. If
L ∈ L1 then |L/Z(L)| = 4, as |L′| = 2, while elements of L2 have centre of index 16, according to
Lemma 2.6 of [3]. Other easy remarks are:

4. For every L ∈ L we have Z ≤ L, and L = CG(x) for every x ∈ Lr Z.

Indeed, that Z is contained in every L ∈ L follows from Lemma 4.1: if there existed z ∈ Z r L
then M := L〈z〉 would be either G or a maximal subgroup of G with derived subgroup M ′ = L′ of
order 2. The second part of (4), is also clear since |G : L| = 4 and x cannot have breadth 1 in G.
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5. Let L,K ∈ L. If G = LK then Z = Z(L) ∩K.

For, let x ∈ Z(L) ∩K. If x /∈ Z then L ∩K = CK(x) by (4). Now G = LK yields brK(x) = 2,
which is impossible since |K ′| = 2.

6. If L1 6= ∅ then |G/Z| = 32.

To prove this statement, let L ∈ L1. By (2) and since |G′| > 2 there exists K ∈ L such that
L′ 6= K ′. Then D := L ∩K is abelian. If G = LK then Z = Z(L) ∩ D by (5). Now L > DZ(L);
otherwise L would be abelian. Since |L : D| ≤ 4 = |L : Z(L)| it follows that |L : Z| ≤ 8 and
so |G/Z| = 32. Otherwise, if LK < G then D is maximal in both L and K. Hence K ∈ L1.
Again L > DZ(L), so Z(L) is a maximal subgroup of D. For the same reason Z(K) ⋖ D. Thus
|D : Z(L) ∩ Z(K)| ≤ 4. Now (4) implies Z(L) ∩ Z(K) = Z, and we get |G/Z| = 32, as required.

7. L = L1 and |G/Z| = 32.

Suppose that L2 6= ∅. Let L ∈ L2. Assume that Z 6= Z(L) and let x ∈ Z(L) r Z. Then
L = CG(x) by (4), and Lemma 2.3 proves that L has an abelian subgroup of index 2. This is
impossible by definition of L2. Therefore Z = Z(L). Hence |G/Z| = 64. By (6) it follows that
L1 = ∅. Now let A and B be different elements of A. Then Z ≤ C := A ∩ B ≤ Z(AB). If
AB < G then G/AB has order 2 or 4, so |G : C| ≤ 32 and Z < C. If |G/AB| = 2 then C ≤ Z by
Lemma 2.2 (v), a contradiction; if |G/AB| = 4 then Z(AB) = C has index 4 in AB and it follows
that AB ∈ L1, again a contradiction. Therefore G = AB and so A∩B = Z. Since G2 = Z it follows
that G has exactly 63 maximal subgroups. By (1) and by what just proved each of these maximal
subgroups contains exactly one element of A. On the other hand every element of A is contained
in precisely seven maximal subgroups of G. Therefore |A| = 63/7 = 9. For each X ≤ G such that
Z ≤ X let X∗ = (X/Z) r {Z}, the set of all nontrivial cosets of Z in X . By the above and by
comparing orders the set {A∗ | A ∈ A} is a partition of G∗. Now let L ∈ L. Then A∗∩L∗ = (A∩L)∗

for every A ∈ A and {(A∩L)∗ | A ∈ A} is a partition of L∗ in seven blocks. As |L∗| = 15 there must
exist A ∈ A such that |(A ∩ L)∗| < 3, which amounts to saying that |(A ∩ L)/Z| ≤ 2. As |G : L| = 4
and |G : A| = 8 we have |G : A ∩ L| ≤ 32 and so Z < A ∩ L. It follows that |(A ∩ L)/Z| = 2 and
G = AL. Let x ∈ (A∩L)rZ. Then brG(x) = brL(x) = 1, a contradiction. This proves that L = L1.
Now (6) gives |G/Z| = 32.

The next step in the proof will consist in bounding the possible size of G′ to 8.
Let B be the set of all elements of breadth 2 in G. For all b ∈ B we shall write b̄ for the set bZ

(which is still contained in B); let ¯̄B := {b̄ | b ∈ B}. Conversely, throughout this proof, a notation
like b̄ will always refer to elements b ∈ B.

Let b ∈ B and set L = CG(b). Then |G/L| = 4, so that L is not abelian, and |L/Z| = 8. The
centre of L contains 〈b〉Z, of index 4 in L. Hence |L/Z(L)| = 4 and so |L′| = 2 and L ∈ L. Therefore
we can consider the mapping b̄ ∈ ¯̄B 7−→ CG(b) ∈ L. This mapping is bijective: its inverse maps
every L ∈ L to b̄, defined by the equality 〈b〉Z = Z(L). Moreover ¯̄B ⊆ (G/Z)r {Z} and, by (2), the
mapping L 7→ L′ from L to the set of all subgroups of G′ of order 2 is surjective. Since the last set
has cardinality |G′| − 1 we conclude that

|G′| − 1 ≤ |L| = |¯̄B| ≤ |G/Z| − 1 = 31. (∗)

This implies that |G′| ≤ 32. Furthermore, if |G′| = 32 then ¯̄B = (G/Z) r {Z}, which means that G
has breadth 2. By [9] this would imply that |G′| = 8, a contradiction. Thus |G′| ≤ 16. Define the
equivalence relation ∼ in ¯̄B by setting, for all x̄, ȳ ∈ ¯̄B,

x̄ ∼ ȳ : ⇐⇒ [G, x] = [G, y].

Assume that |G′| = 16. To show that this assumption yields a contradiction we shall consider two
cases separately. First note that (∗) gives 15 ≤ |¯̄B|. From this it follows that either V := 〈B〉 = G or
V ⋖ G. In either case G′ =

〈
[G, b] | b ∈ B

〉
.
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Case 1 — For all x, y ∈ B, [G, x] ∩ [G, y] 6= 1.

In this case Lemma 3.3 shows that U :=
⋂
b∈B

[G, b] has order 2. If x, y ∈ B and x̄ ≁ ȳ then
[x, y] ∈ [G, x]∩ [G, y] = U . Since G′/U has rank 3 and is generated by the rank-1 subgroups [G, b]/U ,
with b ranging over a complete set of representatives of ¯̄B modulo ∼, the quotient set ¯̄B/∼ has at
least 3 elements. Choose y ∈ B by choosing ȳ ∈ ¯̄B in the following way. Let X be a basis of V/Z.
If one of the ∼-equivalence classes has no representative in X , let ȳ be one element of this class.
Otherwise, one of the classes has only one representative in X , since |X | ≤ 5, and we can choose ȳ
to be that element of X . In either case x̄ ≁ ȳ for all x̄ ∈ X r {ȳ}; thus [V, y] ≤ U by the above
remark. Now, [G, y] � U , because brG(y) = 2; hence V 6= G and so V ⋖ G. By comparing orders
it follows that V = B ∪ Z. For every c ∈ G′ r 1 step (2) provides L ∈ L such that L′ = 〈c〉.
Now |L : L ∩ V | ≤ 2; hence there exists b ∈ L ∩ V r Z(L). By what was just observed b ∈ B and
c ∈ L′ = [L, b] ≤ [G, b]. This proves that G′ =

⋃
b∈B

[G, b]. It follows that each of the seven subgroups
of order 4 of G′ containing U is [G, b] for some b ∈ B. Thus |¯̄B/∼| = 7. Let R be a complete set
of representatives of the ∼-equivalence classes. If 〈R〉 6= V/Z then 〈R〉 = R ∪ {Z}, because |R| = 7
and

∣∣V/K
∣∣ = 16. In this case it is enough to replace one element in R with another element in

the same ∼-equivalence class (which is certainly possible, as |¯̄B| ≥ 15) to obtain a complete set of
representatives of the ∼-equivalence classes that generates V/Z. So we may assume that 〈R〉 = V/Z.
Then, for any different elements x̄, ȳ ∈ R we have x̄ ≁ ȳ and so [x, y] ≤ U . Hence V ′ ≤ U . However
this is impossible because of Lemma 4.1. Thus Case 1 is excluded.

Case 2 — There exist x, y ∈ B such that [G, x] ∩ [G, y] = 1.

For such x and y we have G′ = [G, x]× [G, y]. Let Cx := CG(x), Cy := CG(y) and Cxy := CG(xy).
By Lemma 3.2 we have 〈x, y〉Z ≤ Cxy = Cx∩Cy . As |G/Z| = 32 and |〈x, y〉Z/Z| = 4 (otherwise x̄ = ȳ
and [G, x] = [G, y] ) we have 〈x, y〉Z ⋖ Cx. If Cxy = Cx then Cx = Cy and 〈x, y〉Z would be central
in Cx, so the latter would be abelian. Hence Cxy = 〈x, y〉Z and brG(xy) = 3. This implies that B

generates G, since V/Z contains at least 17 elements of G/Z, namely Z, xyZ and the elements of ¯̄B.
As |G : Cx ∩Cy| = 8 we have |G : CxCy| = 2; hence we can pick d ∈ BrCxCy. Then Cd ∩Cxy = Z,
so G/Z =

(
Cxy/Z

)
×

(
Cd/Z

)
. Clearly Cd = 〈a, b, d〉Z where 〈a〉Z = Cx ∩ Cd and 〈b〉Z = Cy ∩ Cd.

Thus {[x, d], [x, b], [y, d], [y, a]} is a basis of G′.

We shall use this description of G to exhibit more elements of breadth greater than 2 than G can
contain. Besides xy other elements of breadth at least 3 in G are:

— those of the form g = tab, where t ∈ {x, y, xy}.

Indeed, the description of a basis of G′ just given shows that the three commutators [g, d] = [t, d],
[g, x] = [x, b] and [g, y] = [y, a] are independent, so the rank of [G, g] is at least 3. Thus we have
three cosets of Z in G different from xyZ and consisting of elements of breadth greater than 2.

— those of the form g = tcd, where t ∈ {x, y, xy}, c ∈ 〈a, b〉 and [c, t] 6= 1.

For, let t′ be an element of {x, y, xy} different from t. Then the commutators [g, c] = [t, c],
[g, d] = [t, d] and [g, t′] = [t′, c][t′, d] are independent. This provides seven further cosets mod Z
not belonging to ¯̄B: two cosets each for t = x and t = y, three for t = xy.

— those of the form g = td, where t ∈ {x, y, xy} again.

For, choose c ∈ 〈a, b〉 such that [c, t] 6= 1. Then [g, c] = [t, c], [g, x] = [x, d] and [g, y] = [y, d] are
independent. This gives other three cosets not in ¯̄B.

The argument so far has provided 14 cosets of Z in G containing elements of breadth greater
than 2. Since |G/Z| = 32 and |¯̄B| ≥ 15 (and taking into account the trivial coset Z), to get a
contradiction it will be enough to exhibit three more such cosets. To this end we turn our attention
to k := [a, b]. Certainly k 6= 1, otherwise Cd would be abelian. Since [G, ad] =

〈
[x, d], [y, ad], k

〉
and

[G, bd] =
〈
[y, d], [x, bd], k

〉
we have:

brG(ad) = 2 ⇐⇒ k ∈
〈
[x, d], [y, ad]

〉
; brG(bd) = 2 ⇐⇒ k ∈

〈
[y, d], [x, bd]

〉
.
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As
〈
[x, d], [y, ad]

〉
∩
〈
[y, d], [x, bd]

〉
= 1 one of the two conditions fails, and one of ad and bd has breadth

greater than 2. Of course neither of ad and bd belong to any of the 14 cosets modulo Z already listed.
To find two more cosets not in ¯̄B consider xa, ya, xb and yb. We have

[G, xa] =
〈
[x, d], [y, a], [x, b]k

〉
, [G, ya] =

〈
[y, d], [y, a], k

〉
,

[G, xb] =
〈
[x, d], [x, b], k

〉
, [G, yb] =

〈
[y, d], [x, b], [y, a]k

〉
;

hence

brG(xa) = 2 ⇐⇒ k ∈ [x, b]
〈
[x, d], [y, a]

〉
; brG(ya) = 2 ⇐⇒ k ∈

〈
[y, d], [y, a]

〉
;

brG(xb) = 2 ⇐⇒ k ∈
〈
[x, d], [x, b]

〉
; brG(yb) = 2 ⇐⇒ k ∈ [y, a]

〈
[y, d], [x, b]

〉
.

Since [x, b]
〈
[x, d], [y, a]

〉
∩
〈
[y, d], [y, a]

〉
= ∅ =

〈
[x, d], [x, b]

〉
∩ [y, a]

〈
[y, d], [x, b]

〉
we conclude that at

least one of xa and ya and one of xb and yb has breadth greater than 2. Now we have found that at
least 17 cosets of Z in G consist of elements of breadth more than 2, and this leads to a contradiction.
Thus also Case 2 is impossible and we have proved:

8. |G′| = 8.

Now, G′ = Soc(Z) by (3); hence (8) means that Z has rank 3. We shall prove that Z = G′, i.e.,
that G has exponent 4.

As exp(G′) = 2 the mapping g ∈ G 7−→ g4 ∈ G is an endomorphism; thus W := {g ∈ G | g4 = 1}
is a (normal) subgroup of G and G/W ≃ G4 = Z2. Hence 3 = rk(Z) ≥ r := rk(Z2) = rk(G/WZ)
(for the last equality recall that Z = G2 from (3)). In particular rk(WZ/Z) = 5− r ≥ 2. As regards
squares of noncentral elements we have:

9. For all g ∈ Gr Z we have g2 /∈ Z2.

Otherwise g2 = z2 for some z ∈ Z and gz−1 would be a noncentral element of order 2.

Keeping in mind that G′ is the socle of Z we can therefore consider the mapping defined by
gZ 7→ g2Z2 from the set of all nontrivial cosets of Z in WZ to the set of all nontrivial cosets of Z2

in G′Z2. We claim that the image I of this mapping has more than one element. If not, let x
and y be elements of W independent modulo Z (such elements do exist, as rk(WZ/Z) ≥ 2). Then
x2Z2 = y2Z2 = (xy)2Z2 is the only element of I. Then x2 = (yc)2 for some c ∈ Z; at the expense
of substituting yc for y we may assume that x2 = y2. Then [x, y] = (xy)2 = x2z2 for some z ∈ Z.
Now let x1 := xz and y1 := yz. Then x21 = y21 = [x, y] = [x1, y1] and so 〈x1, y1〉 ≃ Q8, a contradiction
by Lemma 2.2 (ii). Hence |I| > 1, which implies |G′Z2/Z2| > 2. Therefore Z2 ∩ G′ = Soc(Z2) has
order at most 2; i.e., r ≤ 1. Suppose that r = 1. Then rk(WZ/Z) = 5− r = 4. By minimality of |G|
(or because |W/Z(W )| ≤ 16) W contains an abelian subgroup A of index 4. Pick two elements a
and b independent modulo Z and belonging to A. Then 〈a, b〉 = 〈a〉 × 〈b〉, since SocA ≤ Z. Let c
be an element of order 4 in Z. It follows from (9) that 〈a, b, c〉 is homocyclic; by Lemma 4.2 this is
impossible. This contradiction proves that r = 0, so exp(G2) = exp(Z) = 2. Whence:

10. exp(G) = 4.

Look back at the equivalence relation ∼ over ¯̄B introduced by proving (8). For all x, y ∈ B,
we have x̄ ∼ ȳ if and only if the maximal subgroups [G, x] and [G, y] of G′ coincide. Let M ⋖ G′

and U/M = Z(G/M). Lemma 2.6 (i) of [3] shows that |G/U | is either 4 or 16; hence the set
U∗ = (U/Z) r {Z} is not empty. For all x ∈ U r Z we have [G, x] = M , as brG(x) > 1. Hence
U∗ is an equivalence class with respect to ∼. Since G′ has seven maximal subgroups, then ¯̄B is split
into seven ∼-equivalence classes. Moreover each class U∗ may only have order 1 or 7, according to
whether |G/U | = 16 or |G/U | = 4. The latter case may occur for at most one class. For, if M
and N are different maximal subgroups of G′ such that both U/M = Z(G/M) and V/N = Z(G/N)
have index 4 (in G/M and G/N respectively) then Z < U ∩ V and, for any x ∈ U ∩ V r Z, since
[G, x] ≤M ∩N we would have brG(x) = 1, a contradiction.

Thus either |¯̄B| = 7 and ∼ is the equality relation in ¯̄B or there is one ∼-class of order 7 and
|¯̄B| = 13.
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Let us now define a (simple, nondirected) graph B̂ whose vertices are the elements of ¯̄B and two
of them, say x̄ and ȳ, are adjacent if and only if [x, y] = 1 and x̄ 6= ȳ.

11. Let b ∈ B and let L = CG(b). Then L = 〈b, u, v〉Z for some u, v ∈ B. Hence every vertex of B̂

has valency at least 2.

Indeed, assume that the first part of the statement fails for b. As L/Z has rank 3 there exists
u ∈ L r 〈b〉Z such that brG(x) > 2 for every x ∈ L r 〈b, u〉Z. By property core-2, for such an x we
must have:

〈b, x〉2 = 〈b2, x2〉 = [G, b] = 〈b2, (ux)2〉 = 〈b, ux〉2.

Then one of the following holds: either x2 = (ux)2 or x2 = (bux)2. Since we may substitute bu for u
if necessary, we may assume that x2 = (ux)2, so u2 = [u, x]. Then 〈u, x〉2 = 〈u2, x2〉 has rank 2 at
most, and again by core-2 we get = 〈u2, x2〉 = [G, u]. Similarly, from u2 = [u, bx] it follows that
〈u2, b2x2〉 = 〈u, bx〉2 = [G, u]; hence 〈u2, b2x2〉 = 〈u2, x2〉 ≃ V4. As b

2 6= 1 it follows that x2 = u2b2x2,
so u2 = b2 and u−1b is a noncentral element of order 2, a contradiction. This proves the first part
of (11). The rest is an immediate consequence: if u, v ∈ B are as in the statement then ū and v̄ are
distinct and both adjacent to b̄.

12. Let b̄ be a vertex of valency 2 in B̂. Let u and v be the two elements of B such that L :=
CG(b) = 〈b, u, v〉. Then L′ = 〈b2〉 and u2 /∈ [G, b] = 〈b2, u2v2〉. Furthermore [G, u] = 〈u2, b2〉.

By hypothesis the only elements of breadth 2 in G lying in L are those congruent to b, u or v
modulo Z. Therefore no element of H := 〈bu, bv〉 has breadth 2 and property core-2 shows that
H2 = 〈b2u2, b2v2, [u, v]〉 has rank 3 and so coincides with G′. Hence [u, v] /∈ 〈b2u2, b2v2〉. Again
by core-2 we also have 〈b, uv〉2 = 〈b2, u2v2[u, v]〉 = [G, b] ≃ V4, which yields [u, v] 6= b2u2v2. We
claim [u, v] ∈ 〈b2, u2, v2〉. Indeed, if this is false then property core-2 and the fact that [u, v] =
[bu, v] /∈ 〈b, u〉2 yield 〈b2, u2〉 = 〈b, u〉2 = [G, b]. By comparing this with the previous description
of [G, b] we obtain [u, v] ∈ 〈b2, u2, v2〉, so that our claim is proved. The information collected so far
on [u, v] shows that [u, v] ∈ {b2, u2, v2}. It follows that G′ = H2 = 〈b2〉 × 〈u2〉 × 〈v2〉.

Suppose that [u, v] = u2. Then 〈u, bv〉2 ≃ V4 and [G, u] = 〈u, bv〉2 = 〈u2, b2v2〉 by core-2.
By the same property, since v2 /∈ [G, u] and so 〈u, v〉2 6= [G, u] we have 〈u, v〉2 = [G, v]. Hence
b2 /∈ [G, u]∪ [G, v]. By using property core-2 once more it follows that 〈b, u〉2 = [G, b] = 〈b, v〉2. Then
G′ = 〈b2, u2, v2〉 ≤ [G, b], a contradiction. Thus [u, v] 6= u2. Substituting v for u in the previous
argument gives [u, v] 6= v2. Therefore [u, v] = b2. Finally, L′ =

〈
[u, v]

〉
and [G, b] =

〈
b2, u2v2[u, v]

〉
=

〈b2, u2v2〉. Thus u2 /∈ [G, b] and core-2 shows that 〈u, b〉2 = [G, u]. So (12) is proved.

A further consequence is that ū cannot have valency 2 in B̂. For, it had then we could apply (12)
to ū in place of b̄; from b ∈ CG(u) it would follow that b2 /∈ [G, u], against the last clause in the
statement of (12). Since a vertex x̄ is adjacent to b̄ if and only if x ∈ B ∩ CG(b) this remark proves
next statement.

13. B̂ has no adjacent vertices of valency 2.

14. B̂ has no subgraph of the form
ā b̄

d̄ c̄

b

b b

bb

b

Indeed, if such a subgraph exists then the subgroup A := 〈a, c〉Z is abelian of index 8 in G and is
central in B := 〈a, b, c, d〉Z. Now, B 6= A, because B/Z has at least four nontrivial elements. So A
is not self-centralizing and G has an abelian subgroup of index 4, a contradiction.

An equivalence relation σ can be defined in ¯̄B by setting x̄ σ ȳ : ⇐⇒ CG(x)
′ = CG(y)

′, for all
x, y ∈ B.

15. Assume that B̂ has a subgraph of the form
ā b̄

d̄ c̄

b

b b

bb

. Then ā σ c̄ and b̄ σ d̄.

For, [a, c] 6= 1 by (14). Now both CG(b) and CG(d) contain a and c; hence they have
〈
[a, c]

〉
as

derived subgroup. So ā σ c̄. Of course this also yields b̄ σ d̄.
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16. |¯̄B| = 13.

To prove this equality it suffices to exclude the possibility that ¯̄B has only seven elements. Suppose
that |¯̄B| = 7. The set Σ of all subgroups of order 2 of G′ has order 7. As seen above the mapping
f : b̄ ∈ ¯̄B 7→ CG(b)

′ ∈ Σ is surjective. Hence f is bijective and x̄ σ ȳ ⇐⇒ x̄ = ȳ for all x, y ∈ B.

By (15) it follows that B̂ has no circuit of length 4. Furthermore, if B̂ has a circuit of length 3 then
this cannot involve any vertex of valency 2. For, if ā b̄

c̄
b b

b
b were a subgraph of ¯̄B and b̄ had valency 2

in B̂ then CG(b) = 〈b, a, c〉Z by (11), so that CG(b) would be abelian of index 4 in G.

Next, B̂ has no vertices of valency more than 3. Indeed, let b ∈ B and L = CG(b). Let the vertex
x̄ be adjacent to b̄; that is to say, x ∈ B∩Lr 〈b〉Z. For such an x we have L′ = [L, x] ⋖ [G, x]. Since
[G, x] has only three maximal subgroups the injectivity of the above mapping f gives that the valency
of x̄ is at most 3, hence either 2 or 3 by (11). Let n be the number of the vertices of valency 3.

These are the only vertices of odd valency in B̂; hence n is even. By (13) any vertex of valency 2 is
adjacent to two vertices of valency 3. If two different vertices of valency 2 were adjacent to the same
two vertices then B̂ would have a circuit of length 4, which we have excluded. It follows that n > 2.
Assume that n = 4. Suppose first that one of the vertices of valency 3, say x̄, is adjacent to each of
the three vertices of valency 2; call them ā, b̄ and c̄. By (12) we have 〈a2〉 = CG(a)

′, 〈b2〉 = CG(b)
′

and 〈c2〉 = CG(c)
′, and also [G, x] = 〈a2, x2〉 = 〈b2, x2〉 = 〈c2, x2〉. Hence a2, b2, c2 and x2 are

four pairwise different nontrivial elements of [G, x], a plain contradiction. Having disposed of this
possibility, it is easy to see that the same argument used to exclude n = 2 gives that the subgraph
of B̂ obtained by cancelling all edges joining two vertices of valency 3 is of one of the following types:

x y

z t

b

b

b b b

b

b x

y

z t

bb

b b b

bb

b

,

where the labelled vertices have valency 3 and the unlabelled ones have valency 2. In the former
case x cannot be adjacent to z, otherwise there would be a circuit of length 3 involving a vertex
of valency 2. Then x is adjacent to both y and t thus giving rise to a circuit of length 4, which is
impossible. In the second case x must be adjacent to y, z and t and again B̂ has circuits of length 4.
This contradiction shows that n 6= 4. The only possibility left is n = 6, which means that B̂ has
only one vertex, say a, of valency 2. Let u and v be the vertices adjacent to a. Since there are
neither circuits of length 3 involving a nor circuits of length 4, drawing the edges of B̂ with endpoint
u or v gives a subgraph

u a vb
b b b

b

b
b

b
b , call it G. The four unlabelled vertices, that have valency 1 in G, have

valency 3 in B̂. Let S be the subgraph on these four vertices whose edges are the edges of B̂ not
appearing in G. Each of the vertices will have valency 2 in S; hence the edges of S will give a circuit
of length four. This is the final contradiction, which proves that |¯̄B| = 13.

Now the description of the ∼-equivalence classes set out just before (11) shows that G has a
subgroup of index 4, say B, such that (B/Z) r {Z} is an equivalence class with respect to ∼,
consisting of seven elements, and the remaining six ∼-equivalence classes are singletons.

Moreover B is split into seven equivalence classes with respect to σ. To compute their possible
sizes we first observe the following.

17. Let L, K be distinct elements of L such that L′ = K ′. Then LK < G.

Indeed, assume that G = LK. Then [G,L ∩K] ≤ L′; hence the elements of L ∩K have breadth
at most 1 in G. Thus L ∩K ≤ Z, which is impossible since |G : L ∩K| = 16.

18. Each σ-equivalence class has order 1 or 3.

Let ā and b̄ be different elements of ¯̄B such that ā σ b̄. Let L = CG(a) and K = CG(b), so
L′ = K ′. Since x̄ ∈ ¯̄B 7→ CG(x) ∈ L is bijective it will be enough to show that there exists exactly
one more element U ∈ L such that U ′ = L′. By (17) we have M := LK ⋖ G. Let D := L ∩ K.
Hence M/D ≃ V4 and there exists exactly one subgroup strictly contained between D and M and
different from L and K; call it U . Now, [D,M ] = [D,LK] ≤ L′; hence D/L′ ≤ Z(M/L′) and D ⋖ U
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gives U ′ = L′ (and U ∈ L). Thus U has the required property. Also, M ′ 6= L′ by Lemma 4.1; hence
D/L′ = Z(M/L′). For a contradiction, suppose that there exists T ∈ Lr{L,K,U} such that T ′ = L′.
If T ≤ M then M = LT , so (L ∩ T )/L′ ≤ Z(M/L′) = D/L′. This implies D < T < M , which is
impossible by the definition of U . Therefore T �M and G =MT . Hence [G,D∩T ] ≤ [M,D]T ′ = L′.
Thus brG(x) ≤ 1 for all x ∈ D ∩ T , so D ∩ T ≤ Z. As |G : D| = 8 and |G : T | = 4 it follows that
D ∩ T = Z and G = DT . So G = LT , against (17). Thus (18) is proved.

For all x ∈ B r Z we have [G, x] = [G,B] ≃ V4. Let b ∈ B and let L = CG(b). If LB < G
then |L : L ∩B| ≤ 2, so L′ = [L,L ∩ B] ≤ [G,B]. Otherwise, if G = LB then G′ ≤ L′[G,B] and so
L′ � [G,B]. There are four subgroups of order 2 in G′ not contained in [G,B]; hence there are four
σ-equivalence classes in ¯̄B of elements b̄ = bZ for which the second case occurs. For any such b we
have [L,L∩B] ≤ L′∩ [G,B] = 1 and |L : L∩B| = 4; hence L∩B = Z(L) = 〈b〉Z. Thus b ∈ B. Now,
|B : L ∩B| = 4, so brB(b) = 2. The last equality yields |B/Z(B)| > 4; hence Z(B) = Z and B /∈ L.

Noncentral elements of B have breadth 1 or 2 in B. So we can distinguish among three types of
elements of ¯̄B:
(©): those of the form b̄ such that b ∈ BrB;
(△): those of the form b̄ such that b ∈ B and brB(b) = 1;
(⊡): those of the form b̄ such that b ∈ B and brB(b) = 2.

Let us have a look at how the 13 elements of ¯̄B are divided between the three types. The elements
of type △ or ⊡ form the (only) ∼-equivalence class of order 7. As just seen every b̄ ∈ ¯̄B is of type ⊡ if
and only if G = BCG(b), and such elements fill four σ-equivalence classes. Each of these classes has
an odd number of elements by (18); hence the number of elements of type ⊡ is even, at least 4. Hence
the number of elements of type △ is odd, at most 3. In particular there are elements of breadth 1
in B. Thus B has a maximal subgroup A that is abelian. Clearly the three nontrivial cosets of Z
in A are of type △. We conclude that ¯̄B has 6 elements of type ©, 3 of type △ and 4 of type ⊡ (those
contained in B r A). This last piece of information, together with our observation about ∼-classes,
shows also that each of the elements of type ⊡ is σ-equivalent to itself only.

19. Let b ∈ B and assume that b̄ is of type ©. Then b2 ∈ [G, b].

For {b̄} is a ∼-equivalence class, i.e., the centre of G/[G, b] is 〈b〉Z
/
[G, b], of index 16. From [3],

Lemma 2.6, we also get that G has a normal subgroup N such that N ∩ Z = [G, b] and G/N is
isomorphic to the central product of D8 and Q8. Now NZ

/
[G, b] ≤ Z

(
G/[G, b]

)
= 〈b〉Z

/
[G, b]. By

comparing orders we get 〈b〉Z
/
[G, b] = NZ

/
[G, b] ≃ V4. Hence b

2 ∈ [G, b], as claimed.

Now we shall examine in some detail the graph B̂. In drawing subgraphs of its the symbols ©,
△ and ⊡ will represent vertices of the corresponding types, while plain dots will represent vertices
whose type is not specified.

20. B̂ has no subgraph of the form
rsb

b b

b

.

This is a direct consequence of (15), since each element of type ⊡ is σ-equivalent to itself only.

21. Let b̄ a vertex of B̂ of type ©. Then b̄ is adjacent to exactly one vertex of type △ and two vertices
of type ⊡.

Let L = CG(b). By the characterization of the vertices of type ⊡ we have LB ⋖ G, so B ⋖ LB
and L∩B ⋖ B. Moreover L = (L∩B)Z(L), whence L∩B is not abelian and L∩B 6= A. Now every

nontrivial coset of Z in B is a vertex of B̂; it is adjacent to b̄ if and only if it is contained in L, and
it is of type △ or ⊡ according to whether it is contained in A or not. This proves (21).

22. The three vertices of type △ are pairwise adjacent and each of them is adjacent to exactly two
vertices of type ©.

Indeed, the vertices of type △ are the cosets b̄ such that b ∈ A r Z, where A is our subgroup of
index 8. Since A is abelian they are pairwise adjacent. Assume that one of them is adjacent to three

— 16 —



vertices of type ©. By (21) each of these vertices is adjacent to two vertices of type ⊡. Since there

are only four vertices of type ⊡ it follows that B̂ has a subgraph of the form
ut

bc

rsb

bcbc .

However, this contains a subgraph forbidden by (20). Since there are six vertices of type © and three
of type △, (22) now is an easy consequence of (21).

23. B̂ has no subgraph of the form bc bc
ut

.

For, assume that B̂ has such a subgraph. Let ū be its vertex of type △ and x̄ one of the two
vertices of type ©. The remaining vertex must be ūx̄, otherwise the three vertices would generate an
abelian subgroup of index 4 in G. Let v ∈ Ar 〈u〉Z. Then (21) shows that [x, v] = [ux, v] 6= 1. Also,
x2 ∈ [G, x] and u2x2 = (ux)2 ∈ [G, ux], by (19). We remind the reader that G has a subgroup B of
index 4 such that (B/Z)r {Z} is an equivalence class with respect to the relation ∼ described just
before (11). As [G, u] = [G, v] = [G, uv] = [G,B] property core-2 yields 〈u, v〉2 = [G,B]; in particular
u2 ∈ [G,B]. Now, suppose that x2 = [x, v]. Then u2x2 ∈ [G,B] ∩ [G, ux]. The latter intersection
is

〈
[x, v]

〉
, because [G,B] 6= [G, ux] as ū ≁ ūx̄ (a vertex of type © is ∼-equivalent to itself only).

Hence u2x2 = [x, v] = x2, a contradiction. Therefore x2 6= [x, v]. Similarly (ux)2 6= [ux, v] = [x, v].
Thus [G, x] =

〈
[x, v], x2

〉
and [G, ux] =

〈
[x, v], u2x2

〉
. Now, apply property core-2 to the abelian

subgroup 〈x, u〉. As [x, v] = [ux, v] belongs to [G, x], to [G, ux] and also to [G, u] = [G, v] we have
[x, v] ∈ 〈x, u〉2. But then [G, x] =

〈
u2, x2

〉
= [G, ux]. As x̄ ≁ ūx̄ this is a contradiction, and (23) is

proved.

24. B̂ has no edge of the form bc bc .

By contradiction, let x̄ and ȳ be two adjacent vertices of type ©. Step (21) provides two vertices
ū and v̄ of type △ such that [x, u] = 1 = [y, v]. Moreover, ū 6= v̄ by (23). So, x̄, ȳ, v̄ and ū form a
circuit of length 4. As CB(x) has index 2 in CG(x) we have y = ax for some a ∈ B. If a ∈ A then
[y, u] = [a, u] = 1 in contradiction to (14); hence a /∈ A; i.e., ā is of type ⊡. Now xv commutes with
both u and av, because [x, a] = [x, y] = 1 and so [xv, av] = [x, v][v, a] = [x, v][v, x−1][v, y] = 1. Since
u, av and xv are independent modulo Z, we get brG(xv) ≤ 2, and xv ∈ B. Similarly yu ∈ B. Of
course x̄v̄ and ȳū are of type ©. Now apply (22) to the three vertices of type △, that are ū, v̄ and ūv̄.
The two vertices of type © adjacent to ū are x̄ and x̄v̄; those adjacent to v̄ are ȳ and ȳū. Thus the
remaining two vertices of type ©, call them t̄ and s̄, are adjacent to ūv̄. Also, since G = BCG(a)
and {x, y, xv, yu} ⊆ B〈x〉 it follows from (11) that one of t and s, say t, does not lie in B〈x〉 and
commutes with a. Next, CG(uv) = A〈t〉; hence s̄ = t̄w̄, where w is one of u, v and uv. If w = uv
then ūv̄, t̄ and s̄ give rise to a subgraph of the type excluded by (23). Hence w ∈ {u, v}. By (21) we
know that s̄ is adjacent to two of the four vertices of type ⊡, which are ā, āū, āv̄ and āūv̄. If one of
the two were ā or āūv̄ then s would commute with a, which is false because [t, a] = 1 6= [w, a]. Hence
[s, av] = [s, au] = 1. Now [tu, au] = [t, u][u, a] = [u, at] and [tv, av] = [v, at]. As s ∈ {tu, tv} one
of u and v commutes with at. But CG(u) = A〈x〉 and CG(v) = A〈y〉 are contained in B〈x〉, while
at /∈ B〈x〉. This contradiction proves (24).

We are now in position to complete the proof of the Theorem.

Steps (21) and (22) ensure that, starting from a vertex x̄ of type ©, we can construct a subgraph

of B̂ of the form

rsb

rsb

bc ut bc

ā

āū

x̄ ū ȳ
.
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As in the proof for (24), from CG(u) = A〈x〉 it follows that ȳ = x̄w̄ for some w ∈ {u, v, uv}, and by
the partial result proved there [y, x] 6= 1; hence w 6= u. Thus the four vertices of type ⊡ are ā, āū,
āw̄ and āūw̄. From (20) we get [y, a] 6= 1 6= [y, au]. Therefore (21) yields [y, aw] = [y, auw] = 1.
Now 1 = [y, aw] = [xw, aw] = [w, ax]. Then CG(ax) contains a, x and w, which are independent
modulo Z, and it follows that ax ∈ B. But [ax, x] = 1, so, by (24), we have reached the final
contradiction. The proof of the Theorem is now complete. ⊓⊔
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