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In [1] we defined ‘bases’ of groups with respect to sets of endomorphisms as follows. Let G be a group
and let Γ be a set of endomorphisms of G. A subset X of G is a Γ -basis if and only if, for every
α, β ∈ Γ , we have α = β if α|X = β|X , where α|X and β|X denote restrictions to X. For instance,
an InnG-basis is simply a subset X of G such that CG(X) = Z(G). Of course X is a Γ -basis if and
only if ⟨X⟩ is, hence one can always reduce the study of Γ -bases to subgroups rather than to arbitrary
subsets of G. In [1] we were mainly interested in studying the property of being an Aut-basis as an
embedding property for subgroups. (We write ‘End-basis’, ‘Aut-basis’ or ‘Inn-basis’ of a group G to
mean EndG-, AutG- or InnG-basis respectively.) In particular, we discussed the consequences for the
structure of a group of the property of having a subgroup satisfying some group-theoretic condition
as an Aut-basis.

Here we aim at a different direction: to give some more explicit description of End-bases and
Aut-bases in certain groups. A subgroup H of a group G is an End-basis of G if and only if the
restriction map res : EndG → Hom(H,G) is injective. Thus a necessary condition for H to be an
End-basis of G is the following: the only endomorphisms ε of G such that H ≤ ker ε (that is: such
that εres = 0) is the zero endomorphism. We say that H is a zero-basis of G if this condition holds.
As is clear, this is also equivalent to the condition Hom

(
G/HG, G

)
= 0, and H is a zero-basis of G if

and only if HG is. If G is abelian the restriction map res is a homomorphism, and ker res is the set
of all ε ∈ EndG such that H ≤ ker ε. Hence H is an End-basis of G if and only if it is a zero-basis,
a fact that provides an easy characterization of End-bases of abelian groups. This raises the problem
of determining to which extent analogous characterizations of End-bases can be obtained for wider
classes of groups. As observed, every End-basis is a zero-basis, but the converse is not true in general.
However, we shall show that the conditions of being a zero-basis and that of being an End-basis are
equivalent for nilpotent groups. More generally, we shall prove that every subnormal subgroup of a
hypercentral group is an End-basis provided it is a zero-basis (see Theorem 1.3). Some counterexamples
bar the way to the most obvious attempts to further improvements on this result. This theorem and
related remarks on hypercentral groups are the subject of Section 1; some consequences for the explicit
description of End-bases and Aut-bases will be given in Section 2.
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1. Zero-bases and End-bases

Our first lemma is an easy remark about the property of having no non-zero homomorphism to a given
group G.

Lemma 1.1. Let K and G be two groups, of which at least one is hypercentral. Then Hom(K,G) = 0
if and only if Hom(Kab, G) = 0.

Proof — We have to prove the ‘if’ part of the statement. To this end, assume Hom(Kab, G) = 0 and
let ε ∈ Hom(K,G). Then Kε is a subgroup of G and Hom(Kε

ab, G) = 0, whence Hom(Kε
ab,K

ε) = 0.
But Kε is hypercentral, hence Kε = 1 and ε = 0. Thus Hom(K,G) = 0, as required. ⊓⊔

A consequence of this lemma is that a subgroup H of a hypercentral group G is a zero-basis if
and only if HG′ is a zero-basis.

The following is a slight generalization of Lemma 1.11 of [1]. We include a proof for the convenience
of the reader.

Lemma 1.2. Let H be a subgroup of the hypercentre of the group K, and let G be a hypercentral

group. If Hom(K/HK , G) = 0 then Hom
(
HK/H(HK), G

)
= 0.

Proof — Let N := HK , and suppose Hom(N/HN , G) ̸= 0. Then Hom(N/HNN ′, G) ̸= 0 by
Lemma 1.1. Thus there exists a proper subgroup S of N such that HN ′ ≤ S and N/S embeds
in G. Let V = SK and C/V = (N/V ) ∩ Z(K/V ). Obviously C ∩ S = V , thus C/V embeds in N/S
and so in G. Now S ̸▹ K as N = HK , hence C < N . As N lies in the hypercentre of K, there
exists d ∈ N r C such that dC is central in K/C. Let D/V be the centralizer of dV in K/V . Then
N ≤ D because N/V is abelian, and K/D is isomorphic to [d,K]V/V , a non-trivial subgroup of C/V .
Since the latter embeds in G, this gives rise to a non-zero homomorphism from K/N to G. Thus
Hom(K/N,G) ̸= 0, a contradiction. ⊓⊔

Now we are able to prove the main result of this section.

Theorem 1.3. Let H be a subnormal subgroup and a zero-basis of the hypercentral group G. Then
H is an End-basis of G, and CG(H

η) = CG(G
η) for all η ∈ EndG.

Proof — We will argue by induction on the subnormal defect d of H in G. Of course we may assume
d > 0. Let η ∈ EndG. Suppose that C := CG(H

η) does not centralize Gη, and let α be the minimal
ordinal such that [Zα(G) ∩C,Gη] ̸= 1. Then α is not a limit ordinal. Pick x ∈ Zα(G) ∩C rCG(G

η),
and let L = HG,d−1. Since Lη normalizes Hη and hence C we have [x, Lη] ≤ C ∩ Zα−1(G), so
[x, Lη, Gη] = 1. Therefore φ : g ∈ L 7→ [gη, x] ∈ G is a homomorphism. Clearly H ≤ kerφ.
Lemma 1.2 yields Hom(L/H,G) = 0, thus φ = 0, which amounts to saying [Lη, x] = 1. By the
induction hypothesis CG(L

η) = CG(G
η), hence x ∈ CG(G

η). This contradicts our choice of x. So
CG(H

η) = CG(G
η).

Now let ε and η be endomorphisms of G such that ε|H = η|H . For all g ∈ L and for all h ∈ H we
have

(hη)g
ε

= (hε)g
ε

= (hg)ε = (hg)η = (hη)g
η

,

so gεg−η centralizesHη and hence Lη by the above. It follows that the mapping δ : g ∈ L 7→ gεg−η ∈ G
is a homomorphism. As H ≤ ker δ and Hom(L/H,G) = 0 we have δ = 0 and so ε|L = η|L. By the
induction hypothesis L is an End-basis of G, hence ε = η. This proves that H is an End-basis of G.⊓⊔

Corollary 1.4. Let G be a nilpotent group. Then the zero-bases of G are precisely the End-bases
of G.
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Corollary 1.5. Let H be a nilpotent subnormal subgroup and a zero-basis of the hypercentral
group G. Then G is nilpotent, of the same class as H.

Proof — Theorem 1.3 shows in particular that H is an Aut-basis of G. Then G is nilpotent and has
the same class as H by [1], Theorems 1.12 and 1.8. ⊓⊔

Every subgroupH of a group G such thatHG = G is a zero-basis, obviously. This makes very easy
to construct examples of zero-bases that are not End-bases in hypercentral (non-nilpotent) groups.
For instance, let D = Co ⟨a⟩ be the locally dihedral 2-group: C is a Prüfer 2-group and a has order 2
and acts like the inversion map on C. Then ⟨a⟩D = D, so ⟨a⟩ is a zero-basis of D. By considering the
identity automorphism and the inner automorphism of D determined by a, one sees that ⟨a⟩ is not an
Inn-basis of D (also see [1], Lemma 1.7), in particular ⟨a⟩ is not an End-basis. It is worth remarking
that this example can be generalized to arbitrary primes. Indeed, let p be any prime and let A be
the (external) direct product of p − 1 copies of a Prüfer p-group. Let α be the automorphism of A
acting like the companion matrix of the polynomial 1 + x + · · · + xp−1, i.e., mapping every element
(a1, a2, . . . , ap−1) of A to (a−1

p−1, a
−1
p−1a1, a

−1
p−1a2, . . . , a

−1
p−1ap−2). Then α has order p and [A,α] = A, so

that G = Ao ⟨α⟩ is a hypercentral p-group in which the subgroup ⟨α⟩ is a zero-basis (since ⟨α⟩G = G)
but not an Inn-basis.

These examples show that the hypothesis that the zero-basis H is subnormal cannot be dismissed
in Theorem 1.3, even if we only intend to prove that H is an Aut- (or at least an Inn-) basis, rather
than an End-basis. The next example shows that Theorem 1.3 cannot be extended to arbitrary locally
nilpotent groups.

Example 1.6. There exists a locally nilpotent metabelian group G having an abelian normal sub-
group N such that N is a zero-basis but not an End-basis (not even an Inn-basis) of G.

Our construction starts with the standard wreath product W = Cp ≀ Cp∞ of a cyclic group of
prime order p by a Prüfer p-group. Let B be the base group of W , and let φ : Cp∞ → AutB be the
homomorphism describing the conjugation action of Cp∞ on B. Now let A be any abelian group such
that there exists an epimorphism π : A � Cp∞ but A has no subgroups isomorphic to Cp∞ . Possible
choices for A are the rational group Q and a direct product of cyclic p-groups of unbounded orders.
Let G = B oA, where the conjugation action of A on B is described by πφ. Then Z(G) = kerπ and
G/Z(G) ≃ W , so G is locally nilpotent. Finally let N = BZ(G). Then N ▹ G and G/N ≃ Cp∞ .
Since G has no subgroups isomorphic to Cp∞ we have Hom(G/N,G) = 0, hence N is a zero-basis of G.
However, N is abelian, so N is not an Inn-basis of G (by [1], Lemma 1.7 again). ⊓⊔

Remark 1.7. The second part of the argument in the proof for Theorem 1.3 may be straightforwardly
adapted to prove the following: let N be a normal subgroup, an Inn-basis and a zero-basis of the
group G. Then N is an Aut-basis of G. For, under these hypotheses, Nη still is an Inn-basis of G,
that is, CG(N

η) = Z(G) for all η ∈ AutG.
Another observation on zero-bases of arbitrary groups is that if, for any group G, we call Endc G

the ring of those endomorphisms of G whose image is contained in Z(G) then all zero-bases clearly
are Endc-bases. (Indeed the restriction map Endc G → Hom

(
H,Z(G)

)
is a homomorphism for every

H ≤ G.) This easily implies that every zero-basis of a group G is an Autc G-basis, where Autc G is
the group of the central automorphisms of G.

The remaining part of this section is about some inheritance questions related to zero- and End-
bases. One of the difficulties in studying ‘bases’, like End- or Aut-bases, of groups lies in the fact
that the property of being a ‘basis’ of some sort in not generally preserved under taking subgroups or
epimorphic images. Easy counterexamples showing this are implicitly suggested by the results in the
next section. However, passing to some subgroups or some factors may preserve the properties which
we are interested in. Before showing that, we record a further remark on the property considered in
Lemma 1.1 and Lemma 1.2.

— 3 —



Lemma 1.8. Let K and G be hypercentral groups. If Hom(Kab, G) = 0 then Hom(γi(K), G) = 0
for all i ∈ N.

Proof — Suppose Hom(γi(K), G) ̸= 0 for some i ∈ N. It follows from Lemma 1.1 that γi(K) has a
nontrivial abelian quotient A := γi(K)

/
N isomorphic to a subgroup of G. There is no loss of generality

in assuming NK = 1. Then γi(K) is abelian. Let a ∈ Z2(K) ∩ γi(K). Then [K, a] ≃ K/CK(a), hence
[K, a] is an epimorphic image of Kab and so Hom

(
[K, a], G

)
= 0. For every x ∈ K, the quotient

γi(K)
/
Nx is isomorphic to A and embeds in G, hence [K, a] ≤ Nx. Thus [K, a] ≤ NK = 1, so

a ∈ Z(K). As K is hypercentral we get γi(K) ≤ Z(K). Therefore K is nilpotent and γi(K) is an
epimorphic image of the tensor product of i copies of Kab. Now, since Hom(Kab, A) = 0 it easily
follows Hom

(
γi(K), A

)
= 0, a contradiction. ⊓⊔

Proposition 1.9. Let H be a subgroup and a zero-basis of the hypercentral group G. For every
i ∈ N we have:

(i) HZi(G)
/
Zi(G) is a zero-basis of G

/
Zi(G);

(ii) H is a zero-basis of HGγi(G).

Proof — To prove (i) we may assume i = 1. Let Z = Z(G) and suppose that there exists a non-zero
endomorphism ε of G/Z such that HZ/Z ≤ ker ε. Let V/Z := im ε, so that V > Z. We can pick an
element x ∈ GrCG(V ) belonging to the least term of the upper central series of G not centralizing V .
Then [x, V ] ̸= 1 = [x, V, V ], hence the mapping η : gZ ∈ V/Z 7→ [g, x] ∈ G is a homomorphism. Now
g ∈ G 7→ (gZ)εη ∈ G is a non-zero endomorphism of G whose kernel contains H. This contradiction
proves (i).

(ii) We have Hom(G/HG, G) = 0, hence Lemma 1.2 and Lemma 1.8 yield Hom(HG/S,G) = 0

and Hom(L/HG, G) = 0, where S = H(HG) and L = HGγi(G). Let T = HL. Then S ≤ T ▹ HG, so
Hom(HG/T,G) = 0. It follows Hom(L/T,G) = 0, which proves (ii). ⊓⊔

If the subgroup H in the last proposition is also subnormal, we may substitute ‘End-basis’ for
‘zero-basis’ in the statement, because of Theorem 1.3. As regards part (i) of the proposition, if G is
not hypercentral and Z = Z(G), then HZ/Z is not necessarily a zero-basis of G/Z (a counterexample
is the group in Example 1.6) but it is at least an Endc-basis in G/Z, as follows by an argument similar
to that in the proof above. On the other side, terms of the lower central series behave worse with
respect to taking quotients. Indeed, let G = AH be a central product, where A is isomorphic to
the additive rational group, H is a finitely generated group and H ′ = Z(H) = A ∩ H ̸= 1. Then
G is nilpotent of class 2 and H is an End-basis of G, but H/G′ = H/H ′ is not an End-basis (or,
equivalently, a zero-basis) of G/G′.

2. Description of End- and Aut-bases.

For periodic locally nilpotent groups the description of bases can be reduced to the case of p-groups.
Indeed, it is immediate to check the following lemma.

Lemma 2.1. Let G = Dri∈I Gi be a direct product of periodic pairwise coprime groups Gi (i.e.,
π(Gi) ∩ π(Gj) = ∅ if i ̸= j). Let H ≤ G and let Hi = H ∩ Gi for all i ∈ I. Then H = Dri∈I Hi is
a zero- (resp. End-, Aut-, Inn-) basis of G if and only if Hi is a zero- (resp. End-, Aut-, Inn-) basis
of Gi for all i ∈ I.

A special case of the following theorem provides a characterization of End-bases in periodic
nilpotent groups.
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Theorem 2.2. Let p be a prime and let G be a hypercentral p-group. If H is a proper subnormal
subgroup of G then:
(i) H is an End-basis of G if and only if G/HG is divisible and G is reduced;
(ii) if H is an Aut-basis of G then either G/HG is divisible and Z(HG) is reduced, or |G| = 2

and H = 1. In particular, G′ ≤ HG.

Proof — If H = 1 then H is an Aut-basis of G if and only if AutG = 1, that is if and only if |G| = 2
(we have G ̸= 1 since H < G), while H cannot be an End-basis as EndG ̸= 0. This is in accordance
with our statement, so we may assume H ̸= 1.

Theorem 1.3 ensures that H is an End-basis of G if and only if Hom(G/HG, G) = 0. Since G/HG

and G are nontrivial hypercentral p-groups, this is equivalent to the property that G/HG is divisible
and G is reduced. Thus (i) is proved. If H is an Aut-basis of G then Hom

(
G/HG, Z(HG)

)
= 0,

because Z(HG) ≤ Z(G) and so Hom
(
G/HG, Z(G)

)
is isomorphic to the group of the automorphisms

of G acting trivially on HG and on G/HG. Thus also (ii) follows (every hypercentral periodic divisible
groups is abelian, see [4], part 2, p. 125). ⊓⊔

Theorem 2.3. Let p be a prime and let G be a nilpotent p-group. If H ≤ G then H is an Aut-basis
of G if and only if either H is an End-basis of G or |G| = 2 and H = 1.

Proof — To prove our statement we shall assume that H is an Aut-basis but not an End-basis of G
and show that H is trivial. Suppose H ̸= 1. It is a consequence of Theorem 1.3 that HG is not an
End-basis of G, so we may replace H with HG, that is, we may assume H ▹ G. Theorem 2.2 shows
that G has a subgroup P ≃ Cp∞ but Z(H) is reduced. As G is nilpotent, P ≤ Z(G), hence P � H
and PH/H ≃ Cp∞ . Now G′ ≤ H, because G/H is divisible, therefore PH/H has a complement K/H
in G/H. Also, P ∩ K = P ∩ H is finite, of order pn, say. Then G has an automorphism α defined
by [K,α] = 1 and xα = xpn+1 for all x ∈ P . This contradicts the hypothesis that H is an Aut-basis.
Therefore H = 1, and so |G| = 2. Conversely, the stated condition clearly implies that H is an
Aut-basis of G, hence the result is proved. ⊓⊔

Theorem 2.2 shows that a hypercentral p-group G has a proper subnormal subgroup as an End-
basis if and only if G is reduced and Gab has a nontrivial divisible quotient. This latter condition is
equivalent to Gab being of infinite exponent. For nilpotent groups this can be stated as follows.

Corollary 2.4. Let p be a prime and let G be a nilpotent p-group. Then G has a proper subgroup
as an End-basis if and only if G is reduced and has infinite exponent.

Proof — If G has a proper subgroup as an End-basis then it is reduced and of infinite exponent by
Theorem 2.2. Conversely, assume that G is reduced and has infinite exponent. Then Gab has infinite
exponent. Let N/G′ be a basic subgroup of Gab. By Theorem 2.2, to prove that G has a proper
(normal) subgroup as an End-basis it suffices to check that Gab has a nontrivial divisible quotient. Of
course this is true if N < G. If N = G, then Gab is a direct product of cyclic subgroups of unbounded
orders, hence it has a quotient isomorphic to Cp∞ . ⊓⊔

By the remark preceding last corollary a periodic hypercentral group all whose primary com-
ponents have finite rank (that is: are Černikov groups) has no proper subnormal subgroup as an
End-basis. As a matter of fact, here the subnormality hypothesis can be dropped, as is shown by the
following—slightly more general—result.

Proposition 2.5. Let p be a prime and letG be a hypercentral p-group. Assume thatG has a divisible
abelian subgroup of finite index A. If |G| ̸= 2 then G has no proper subgroup as an Aut-basis.

Proof — By a theorem of Zaicev ([5], Theorem 1; see [3], p. 218) if Γ is a finite group of automorphisms
of A and B is a divisible Γ -invariant subgroup of A then there exists a Γ -invariant divisible subgroup C
of A such that A = BC and B ∩ C has finite exponent dividing |Γ |.

Let the subgroup H be an Aut-basis of G. As |G| ̸= 2 Theorem 2.2 (ii) shows that G/HG is
divisible, hence G = HA. Let B be the maximal divisible subgroup of H ∩ A. Let pn =

∣∣H/H ∩ A
∣∣,
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and let S = A[pn], the nth socle of A. It easily follows from Zaicev’s theorem that A has a set
{Ci | i ∈ I} of H-invariant divisible subgroups of finite rank such that

A/S =
(
BS/S

)
× Dr

i∈I

(
CiS/S

)
.

For every i ∈ I the subgroup H ∩ Ci is finite. Let pti = max{exp(H ∩ Ci), p
n}. Then it is clear that

one can define an automorphism α of G by setting hα = h for all h ∈ H and gα = g1+pti
for all i ∈ I

and g ∈ Ci. Since α ̸= 1 and H was supposed to be an Aut-basis of G this is a contradiction. ⊓⊔

Our next example shows that part (ii) of Theorem 2.2 cannot be improved to a characterization
as in Theorem 2.3.

Example 2.6. For every prime number p there exists a hypercentral p-group having a normal sub-
group which is an Aut-basis but not an End-basis.

Let A be the direct product of p− 1 copies of the Prüfer group Cp∞ . As we recalled above, A has
an automorphism α (of order p) such that 1+α+α2+· · ·+αp−1 = 0. From the latter equality it follows
that CA(α) has exponent p. For every n ∈ N let Hn be the standard wreath product of A by a cyclic
group ⟨an⟩ of order pn. Let Bn be the base group of Hn. Let αn be the automorphism of Hn that acts
like α on A (identified with a direct factor of Bn in the standard way) and centralizes an. Finally, set
H := Drn∈N Hn and G = H o ⟨t⟩, where t has order p and acts on each factor Hn like αn. Set also
B := Drn∈N Bn and let N = ⟨B, t, ana

−p
n+1 | n ∈ N ⟩. Then G′ ≤ B ≤ N , and G/N ≃ Cp∞ . We shall

prove that N is an Aut-basis of G. Since G is not reduced N cannot be an End-basis. By Lemma 1.3
of [1] it is enough to show that CG(N) coincides with Z(G) and Z(N), and that it is reduced, so that
Hom

(
G/N,Z(N)

)
= 0. To this end, let x ∈ CG(N). Then x = htu where u is a non-negative integer

less than p and h = (hn)n∈N ∈ H; here hn ∈ Hn for every n ∈ N, and hn = 1 for all but finitely
many subscripts n. Let i ∈ N be such that hi = 1. Then 1 = [Bi, x] = [Bi, t

u], hence u = 0, and
x = h ∈ H. For every n ∈ N we have 1 = [x, ana

−p
n+1], hence 1 = [hn, an] and 1 = [x,Bn] = [hn, Bn],

so hn lies in Z(Hn), which is the diagonal subgroup of Bn. Thus x ∈ Z(H) ≤ B ≤ N . This shows
CG(N) = Z(N) and, since G = NH, also CG(N) = Z(G). Finally, CB(t) is contained in the socle
of B, hence Z(G) has exponent p and is therefore reduced. ⊓⊔

Note that the groups in Example 2.6 are not reduced but have a proper subgroup as an Aut-basis.
We leave open the question whether a hypercentral p-groups with a proper subgroup as an End-basis
must necessarily be reduced.

Finally, we have a look at End-bases and Aut-bases of non-periodic groups. Such bases seem to
be much more difficult to describe in this case, even for abelian groups. Easy examples of End-bases of
non-periodic locally nilpotent groups can be obtained by considering the primes involved in periodic
sections of the groups.

Recall that if G is a locally nilpotent group and π is a set of primes then IG,π(H) := {g ∈ G |
gn ∈ H for some π-number n} is a subgroup of G (the π-isolator of H in G).

Proposition 2.7. Let G be a locally nilpotent group, and let π be a set of primes such that the
π-component Gπ of the torsion subgroup of G is trivial. If H is a subgroup of G such that G = IG,π(H)
then H is an End-basis of G.

Proof — Let ε, η ∈ EndG and let K be the equalizer of ε and η in G, that is to say, the subgroup
{g ∈ G | gε = gη}. For each g ∈ IG,π(K) there exists a π-number n such that gn ∈ K, hence
gεn = gηn. Since Gπ = 1 the mapping x ∈ G 7→ xn ∈ G is injective, so gε = gη and g ∈ K. Therefore
K = IG,π(K). Assume now ε|H = η|H , that is H ≤ K. Then K = IG,π(K) ≥ IG,π(H) = G. Hence
K = G, which amounts to saying ε = η. ⊓⊔

Thus every maximal independent subset of a torsion-free abelian group is an End-basis. The
converse of this last result does not hold. Indeed, there exist many torsion-free abelian groups A such
that EndA only consists of the universal power endomorphisms εn : x 7→ xn for n ∈ Z. Groups with
this property may have any arbitrary finite rank, or even be uncountable (see [2], vol. II, Theorem 89.2
and p. 133, Ex. 2). Clearly every nontrivial subgroup of such an A is an End-basis.
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