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Abstract. We consider the problem of how the nilpotency class of a finite p-group can be
bounded in terms of the maximum length of the conjugacy classes of (cyclic) subgroups. We
sharpen some previously known bounds and also prove that a p-group in which every cyclic
subgroup has at most p

2 conjugates has class at most 4.

Dedicated to Charles Leedham-Green on the occasion of his 65th birthday

The breadth of an element x in a finite p-group G is defined to be that integer b = br(x) (or brG(x),
if G needs to be emphasized) such that pb = |G : CG(x)|, while the breadth br(G) of G is the
supremum of {brG(x) | x ∈ G} (as usual, p is tacitly assumed to be a prime number, throughout).
There is a wide literature on the relations between the breadth b and the nilpotency class c of G,
especially on how c is bounded in terms of b—some results are collected as Lemma 1.1 below, more
can be found in the introduction of [4]. C.R. Leedham-Green has been interested in this topic
since its earliest stages. Although the class-breadth conjecture, stating that c ≤ b + 1, has been
confirmed in several cases, this conjecture is known to be false in general, at least for 2-groups,
(see [4, 3]). The best general bound known still is that given by c < 1+(pb−1)/(p−1), established
in [5] by A.J. Gallian, a slight improvement on the bound c < 1 + pb/(p − 1) proved in [9]. A
refinement due to M. Cartwright [1] for the case of 2-groups yields c ≤ 1 + (5b/3) independently
of the prime p.

Compared to the ‘element’ breadth, the analogous concept of ‘subgroup’ breadth has not re-
ceived the same amount of attention. If H is a subgroup of the finite p-group G the subgroup
breadth (or s-breadth) sbrG(H) of H in G is defined by psbrG(H) = |G : NG(H)|, and the s-breadth
of G is sbr(G) := max{sbrG(H) | H ≤ G}. As far as we are aware, the first paper in the literature
dealing with explicit bounds concerning s-breadth is [11], where I.D. Macdonald investigates nu-
merical relations involving the biggest size of the conjugacy classes of subgroups in centre-by-finite
groups. For instance, a special case of his Lemma 3.18 is that br(G) ≤ 3 sbr(G) for every finite
p-group G. Macdonald and others also consider what we call the ‘cyclic subgroup breadth’, or
c-breadth for short. The c-breadth of a finite p-group G, denoted by cbr(G), is the maximum of the
s-breadths of cyclic subgroups of G, an invariant which in some sense provides a link between the
breadth and the s-breadth of G; it is of course less than or equal to each of them. A. Mann shows
in [13], Theorem 3, that br(G) ≤ 3 cbr(G) for every finite p-group G, thus improving Macdonald’s
result in the case of p-groups. Together with the bounds in the previous paragraph bounds like
this lead to a linear bound for the class of a finite p-group depending on the c-breadth only. The
aim of this paper is to contribute to improving on this bound. This will be done by showing
(Proposition 1.8) that br(G) is actually bounded by 1 + 2 cbr(G) or, better, by 2 cbr(G) if p is
odd. By comparison, it is interesting to observe that the s-breadth of a finite p-group cannot be
bounded above in terms of the breadth nor, therefore, in terms of the c-breadth: for instance, for
every positive integer n, if G is an extraspecial p-group of order p2n+1 and p is odd, then br(G) = 1
and sbr(G) = n; for p = 2 there is also the possibility sbr(G) = n − 1”.
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Our main concern is with the nilpotency class of groups with small c- or s-breadth. It is
almost immediate that p-groups of c-breadth at most 1 have class at most 3; our main result (see
Section 2) is that p-groups of c-breadth 2 have class at most 4. It might be that c ≤ 2 + sbr(G)
for every finite p-group G, where c still denotes the class of G. The counterexamples in [4] and [3]
show that the same result is generally false if sbr(G) is replaced by cbr(G).

A final remark is that our results are stated for finite p-groups, but every p-group with finite
c-breadth (with the obvious meaning) is an FC-group (by a well-known theorem of B.H. Neu-
mann [14] it actually has finite derived subgroup, and the size of the latter is bounded in terms of
the breadth and hence of the c-breadth, see [18]) and so our results immediately extend to infinite
groups.

1. General results and preliminary lemmas

We shall make use of some known results relating (element) breadth and nilpotency class of finite
p-groups:

Lemma 1.1. Let G be a finite p-group of breadth b and nilpotency class c. Then:

(i) (see [5]) c < 1 + (pb − 1)/(p − 1);
(ii) (see [1]) if p = 2 then c ≤ 1 + (5b/3);

(iii) (see [8, 9, 12]) if b ≤ 4 or G is metabelian then c ≤ b + 1;

(iv) (see [7]) b = 1 if and only if |G′| = p;

(v) (see [6, 10, 15]) b = 2 if and only if either |G′| = p2 or |G′| = |G/Z(G)| = p3.

Lemma 1.2 ([8]; see [13] for a generalization). Let G be a finite p-group generated by elements

of breadth at most 2. Then the nilpotency class of G is at most 3.

It is proved in [17] that if G is a finite p-group and n is an integer greater than 1 such that
the elements of G of breadth at least n generate a proper subgroup then br(G) ≤ 2n − 3. In the
special case when n = 2 this gives:

Lemma 1.3. Let G be a p-group, and assume that the elements of breadth greater than 1 in G
generate a proper subgroup of G. Then br(G) ≤ 1.

Groups with s-breadth (or, equivalently, c-breadth) 0 are nothing other than Dedekind groups,
hence abelian if p > 2, of class at most 2 if p = 2. As stated in the introduction, it is very easy to
prove that finite p-groups with c-breadth 1 must have class 3 at most.

Proposition 1.4. Let G be a finite p-group. If cbr(G) = 1 then the nilpotency class of G is at

most 3.

Proof. That cbr(G) ≤ 1 means that all normalizers of cyclic subgroups of G are either G itself or
maximal in it, hence the Frattini subgroup is contained in the kern of G and hence in Z2(G) (see,
[16, 2]; recall that the kern, or norm, of a group is the intersection of all subgroup normalizers).
This proves the result. �

At least when the prime p is odd, p-groups G of c-breadth 1 are very close to having class 2: for
instance, from the upcoming Proposition 1.8 and from Lemma 1.1 (v) it follows that G′ has order
at most p modulo Z(G) in this case. Nonetheless, for every prime, it is possible for the nilpotency
class to equal 3, so the bound in Proposition 1.4 is sharp, even with reference to the s-breadth. In
fact, the generalized quaternion group of order 16 and the groups

〈

a, b, c
∣

∣ a9 = c3 = [b, c] = 1, [b, a] = c, [c, a] = a3 = b−3
〉

,
〈

a, b, c
∣

∣ ap2

= bp = cp = [b, c] = 1, [b, a] = c, [c, a] = ap
〉

, if p > 3

all have (order p4, for the appropriate prime p and) class 3 and s-breadth 1, as they have kern
equal to the Frattini subgroup and of index p2.

For p-groups G with c-breadth s > 1 the analogue of the argument in Proposition 1.4 is
obtained by looking at the actions of G on each conjugacy class of cyclic subgroups, which has
size at most ps. For every cyclic subgroup H of G, if KG(H) denotes the normal core of NG(H)
in G then G/KG(H) is isomorphic to a p-subgroup of the symmetric group of degree ps, hence
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G/KG(H) can be embedded in a Sylow p-subgroup of Sps , which is isomorphic to the s-fold
iterated wreath product of groups of order p. Now the kern K(G) is the intersection of all such
subgroups KG(H). We draw two conclusions; the first settles the case ‘p = 2’ of the problem that
we are mainly interested in: bounding the class of p-groups of c-breadth 2. The bound is sharp,
as is shown by the example of the generalized quaternion group of order 32.

Lemma 1.5. Every finite 2-group of c-breadth 2 has nilpotency class at most 4.

Proof. If p = 2 = s then all the quotients G/KG(H) in the previous discussion embed in the
wreath product of two groups of order two, hence γ3(G) ≤ K(G) ≤ Z2(G). �

Lemma 1.6. Let G be a finite p-group of c-breadth s. Then Gps

≤ K(G). If G is regular

then Gps

≤ Z(G).

Proof. By the above remarks, Gps

≤
⋂

h∈G KG(〈h〉) = K(G). Therefore, for every g ∈ G, the

element gps

acts by conjugation on G by means of a power automorphism. Suppose that G is
regular, so that all power automorphisms of G are universal (see [2]), and let x be an element of G
of maximal order. Then xps

induces a universal power automorphism of G centralizing x, which
has order expG, therefore xps

∈ Z(G). Since Gps

is generated by the psth powers of elements of
maximal order in G we have Gps

≤ Z(G). �

For odd primes, a special case of interest that can be easily dealt with is that of metacyclic
groups.

Lemma 1.7. Let G be a metacyclic p-group of breadth b and c-breadth s. Then sbr(G) = s and

pb = |G′|; moreover:

(i) if p > 2 then s = b;
(ii) if p = 2 then b − 1 ≤ s ≤ b.

Proof. Since every subgroup of G is cyclic modulo its normal core we easily have that sbr(G) = s ≤
b. Let G = 〈x〉〈y〉, and suppose that 〈x〉 ⊳ G. Then G′ = {[xi, y] | i ∈ N} and so |G′| = pbrG(y).
As clearly pb ≤ |G′| we have pb = |G′| and b = brG(y).

Suppose that p > 2. Then G is regular, so pb = expG′ = exp
(

G/Z(G)
)

≤ ps by Lemma 1.6.
Hence s = b and we have (i).

To prove (ii), let p = 2 and D = 〈x〉 ∩ 〈y〉. It is clear that s ≥ sbrG

(

〈y〉
)

= sbrG/D

(

〈yD〉
)

=
brG/D(yD) =: b′, since the normalizer and the centralizer of 〈yD〉 in G/D coincide. Moreover

pb′ = |(G/D)′| ≥ pb/|D|, thus (ii) is proved if |D| ≤ 2. Henceforth we may assume that |D| > 2
and G is not abelian. Then xy = xn where n is an integer such that n ≡ 1 (mod 4). This latter
congruence implies that the order of n modulo ◦(x) is exactly ◦(x)/n̄, where n̄ is the maximal
power of 2 dividing n − 1. It follows that |G′| = |〈y〉/C〈y〉(x)| ≤ |G/〈x〉| and that b = brG(x).

Suppose that ◦(x) ≥ ◦(y), and let q = |G/〈x〉|. Then (G′)q = 1; moreover yqxtq = 1 for some
integer t, and since G′ ≤ 〈x〉, standard commutator collection yields:

(yxt)q = yqxtq[x, y]t(
q
2)[x, y, y]t(

q
3) · · · [x, iy]t(

q
i+1) · · · [x, q−1y]t.

For every integer i such that 1 ≤ i < q we have [x, iy] ∈ (G′)4
i−1

, while
(

q
i+1

)

is divisible by q/r,

where r is the largest power of 2 dividing i + 1. If i = 1 then r = 2. If i > 1 then r divides 2i−1

and so [x, iy](
q

i+1) ∈ (G′)4
i−1q/r ≤ (G′)q = 1. Therefore (yxt)q = [x, y]t(

q
2) ∈ (G′)q/2. It follows

that y′ := yxt has order 2q at most, so that G = 〈x〉〈y′〉 and |〈x〉 ∩ 〈y′〉| ≤ 2. Thus the proof
is completed, if ◦(x) ≥ ◦(y), by reduction to the previous case. Therefore we may assume that
◦(x) < ◦(y). There exists a power y1 of y which has the same order as x. By applying the previous
argument to y1 in the place of y we obtain that |〈x〉 ∩ 〈g〉| ≤ 2, where g = y1x

t for a suitable odd
integer t. Now |〈y〉/C〈y〉(g)| = |〈y〉/C〈y〉(x)| = pb, hence brG(g) = b. Moreover |G′ ∩ 〈g〉| ≤ 2, so
that |NG(〈g〉)/CG(g)| ≤ 2 and hence s ≥ sbrG(〈g〉) ≥ b − 1. This proves part (ii). �

It actually happens that s = b − 1 in the case of (generalized) quaternion groups.

Proposition 1.8. Let G be a finite p-group of breadth b and c-breadth s. Then b ≤ 2s if p > 2,

and b ≤ 2s + 1 if p = 2.
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Proof. Let x ∈ G, C = CG(x) and N = NG(〈x〉). If p > 2 then N = 〈y〉C for some y; since
〈x, y〉 is metacyclic of c-breadth at most s, Lemma 1.7 shows that yps

∈ C, hence |N/C| ≤ ps

and so |G : C| ≤ p2s. The argument is similar when p = 2: in this case |N : 〈y〉C| ≤ 2 for

some y, and y2s+1

∈ C by Lemma 1.7, hence |N/C| ≤ 2s+2 and |G : C| ≤ 22s+2. Furthermore, if
|G : C| = 22s+2 then |G : N | = 2s and |N/C| = 2s+2, hence ◦(x) > 2s+2, and N/C is not cyclic,

so that there exists y ∈ N such that xy = x−1. Now x2s+1

= [x2s

, y]−1 ∈ 〈x〉 ∩ 〈y〉 because x2s

is

in the kern of G by Lemma 1.6. Then x2s+2

= 1, a contradiction. �

This latter result improves on the bound b ≤ 3s obtained by Mann [13] and quoted in the
introduction. From Proposition 1.8 and from parts (i) and (ii) of Lemma 1.1 we can deduce a
general bound for the nilpotency class of p-groups in terms of their c-breadths. For a further
observation on Proposition 1.8 see the closing Remark 2.3.

Theorem 1.9. Let G be a finite p-group of c-breadth s and nilpotency class c. If p > 2 then

c < 1 + (2ps − 1)/(p− 1), hence c ≤ 3s. If p = 2 then c ≤ (8 + 10s)/3.

It is clear that every improvement on the bound in Lemma 1.1 (i) immediately yields an im-
provement on that in Theorem 1.9. In several special cases (among which are those in Lemma 1.1)
it is known that the class of a p-group G is bounded by br(G) + 1; when this happens the class
of G will be at most 2s + 1 if p > 2, or 2s + 2 if p = 2, where s = cbr(G).

The following lemmas play a role in the proof in the next section. Although elementary,
Lemma 1.11 could be of some independent interest and therefore we state it in a slightly more
general form than strictly needed.

Lemma 1.10. Let G be a finite p-group with c-breadth s > 0, and let T be a subgroup of G such

that sbrG(T ) = s and T/TG is cyclic. If S is the maximal subgroup of T containing TG then, for

every subgroup H of T not contained in S, we have NG(H) = NG(T ) and, in particular, H ⊳ T .

Proof. If H ≤ T and H � S then H = 〈H r S〉. For every h ∈ H r S we have T = 〈h〉TG and

hence NG

(

〈h〉
)

≤ NG(T ). But ps = |G : NG(T )| is the maximal possible index for the normalizer

of a cyclic subgroup in G, hence NG

(

〈h〉
)

= NG(T ). Thus H ⊳ NG(T ); as T = HTG we have
NG(H) = NG(T ). �

Lemma 1.11. Let T be a finite nonabelian p-group having a maximal subgroup S such that all

subgroups of T not contained in S are normal in T . Then T has nilpotency class 2 and T ′ is cyclic.

Moreover, if p > 2 there exists x ∈ T r S such that ◦(x) = exp T and T ′ = [x, T ] ≤ 〈x〉. For

every such x we have T = 〈x〉L where L =
〈

y ∈ T
∣

∣ 〈[x, y]〉 = T ′ and 〈x〉 ∩ 〈y〉 = 1
〉

has exponent

dividing |〈x〉/T ′|, and S = 〈xp〉L.

Proof. For all x ∈ T r S we have 〈x〉 ⊳ T , hence [T ′, x] = 1. It follows that T has class 2.
Arguing by contradiction, assume that T has minimal order subject to T ′ not being cyclic. Since
the hypotheses are inherited by quotients modulo proper subgroups of T ′ it follows that T ′ is
elementary abelian of rank 2. It follows that br(x) ≤ 1 for every x ∈ T r S. By Lemmas 1.3
and 1.1 this implies that |T ′| = p. This contradiction shows that T ′ must be cyclic.

To prove the remaining part of the statement assume that p > 2 and let C/(T ′)p = Z
(

T/(T ′)p
)

.
Then C < T and T1 := {g ∈ T | ◦(g) < exp T } is a subgroup, because T has class 2, and T1 < T .
It follows that X := C ∪ T1 ∪S 6= T , as p > 2. Hence we can choose x ∈ T r X . Then [x, T ] = T ′.
As x /∈ S then 〈x〉 ⊳ T , hence [x, T ] ≤ 〈x〉 and x has the required properties. Fix any such x.
Then T = 〈T〉, where T = {t ∈ T | 〈[x, t]〉 = T ′} is the set of all elements of T that do not
centralize x modulo (T ′)p. Let t ∈ T and let pα be the order of t modulo 〈x〉. Then tp

α

= xnpα

for some n ∈ N (because ◦(x) ≥ ◦(t) ) and so (tx−n)pα

= 1. Thus y := tx−n has order pα and
〈x, t〉 = 〈x〉 ⋊ 〈y〉. Therefore y ∈ L := {u ∈ T | 〈x〉 ∩ 〈u〉 = 1} and T = 〈x〉L, where L = 〈L〉 is
clearly normal in T . Moreover, L ⊆ S, as 〈y〉 ⋪ T for every y ∈ L, hence L ≤ S; since xp ∈ S
then S = 〈xp〉L. It remains to prove that expL ≤ q := |〈x〉/T ′|; it will be enough to fix y ∈ L

and show that yq = 1. We have |T ′| ≤ q, because T has class 2, hence (xy)q = xqyq. As xy /∈ S
we have that 〈xy〉 ⊳ T and so [x, y] = [x, xy] ∈ 〈xy〉. Therefore xq ∈ 〈xy〉 and so yq ∈ 〈xy〉; as
◦(x) ≥ ◦(y) we have yq ∈ 〈xq〉, hence yq = 1, as we wanted to prove. �
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Remark 1.12. In the odd-p case the previous lemma actually characterises the groups with the
property considered. In fact, let T be any finite p-group of odd order and class 2 that can be
factorised as T = 〈x〉L for some x ∈ T and L ≤ T . If T ′ = 〈xq〉 and Lq = 1 for some power q
of p, and S = 〈xp〉L, then every subgroup of T not contained in S contains T ′; as a matter of
fact it is easy to see that Hq = T ′ for all such subgroups. (The case of 2-groups is different,
the dihedral group of order 8 being an easy counterexample.) Hence, at least for groups of odd
order, the property is equivalent to the apparently stronger requirement that all subgroups of T
not contained in S contain T ′.

We say that a p-group is minimal irregular if all its proper subgroups are regular but it is not
itself regular.

Lemma 1.13. Let G be a minimal irregular finite p-group. Then [Gq, G] ≤ (G′)q for every

power q of p.

Proof. Let a, b ∈ G, and let H =
〈

a, ab
〉

. Then H < G and so H is regular. Therefore

[aq, b] = a−q(ab)q = (a−1ab)qcq = [a, b]qcq

for some c ∈ H ′, and the result follows. �

Lemma 1.14. Let G be a torsion nilpotent 4-Engel group of class 5 with no element of order 2.

Then [a, b, b, a, a] = [a, b, a, b, a] and [a, b, a, b, a]−2 = [a, b, a, a, b], for all a, b ∈ G.

Proof. If H = 〈a, b〉 then H/Z(H) is metabelian, hence [a, b, a, b] ≡ [a, b, b, a] modulo Z(H), so
[a, b, a, b, a] = [a, b, b, a, a] and [a, b, a, b, b] = [a, b, b, a, b]. For all integers i we have

1 = [a, aib, aib, aib, aib] = [a, b, a, a, b]i
2

[a, b, a, b, a]2i2 [a, b, b, b, a]i[a, b, b, a, b]2i.

By considering the choices 1 and −1 for i it is easy to deduce that 1 = [a, b, a, a, b]2[a, b, a, b, a]4

and hence the result, because G has no elements of order 2. �

Clearly the lemma holds under more general hypotheses. Rather than asking that G be periodic
and not involve the prime 2 it is enough to require that γ5(G) be a group in which square roots,
where they exist, are unique. We will make use of this lemma in a situation when γ5(G) has
exponent 3 and so the result takes the nicer form [a, b, b, a, a] = [a, b, a, b, a] = [a, b, a, a, b].

2. Groups of c-breadth 2

This section contains the proof our main result:

Theorem 2.1. Let G be a finite p-group. If cbr(G) = 2 then the nilpotency class of G is at

most 4.

By Lemma 1.5, to prove the theorem we shall only have to consider the case when p > 2.
The proof consists in deriving a contradiction from the assumption of the existence of a minimal
counterexample. So we suppose that there exists a finite p-group G of c-breadth 2 such that
all proper subgroups and quotients of G have class at most 4 while G has class 5. To simplify
notation we shall write Z for Z(G) and, for all positive integers i, Zi and γi for Zi(G) and γi(G)
respectively. Every nontrivial normal subgroup of G contains γ5, hence Z is cyclic and γ5 is its
socle. Moreover Z4 = Φ(G), because G has class 5 and so the fact that γp

5 = 1 implies that
Gp ≤ Z4, and, on the other hand, if Z4 � Φ(G) then G = HZ4 for some H < G, and so G would
have class 4 at most.

Lemma 2.2. If p > 3 then every finite p-group of c-breadth 2 has class at most 4.

Proof. The statement amounts to saying that our minimal counterexample G must be a 3-group.
Suppose that it is not. We shall first show that then G is regular. This is straightforward if
p > 5. If p = 5 we can argue as follows. Note first that if G is not regular then it is minimal
irregular, given that all proper subgroups (and also quotients) of G have class at most 4. We have
to prove that (xy)5 ≡ x5y5 modulo (〈x, y〉

′
)5 for all x, y ∈ G. This is certainly true if 〈x, y〉 < G,

as 〈x, y〉 is regular in this case, hence we may assume that G = 〈x, y〉. For a similar reason
(xy)5 ≡ x5y5 modulo (G′)5γ5. If (G′)5 6= 1 then γ5 ≤ (G′)5, as γ5 is the monolith of G, and we
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obtain (xy)5 ≡ x5y5 modulo (〈x, y〉
′
)5, as required. If (G′)5 = 1 then G5 ≤ Z by Lemma 1.13.

However it is clear that the breadth and the c-breadth of any group of prime exponent coincide,
hence br(G/G5) = cbr(G/G5) ≤ 2 and so G/G5 has class at most 3 by Lemma 1.1; hence G has
class at most 4, a contradiction. Therefore G is regular, even if p = 5.

Now we may apply Lemma 1.6 to obtain that Gp2

≤ Z. Let bars denote images modulo Z.

For every x ∈ G we have x̄p2

= 1 and so |NḠ(〈x̄〉)/CḠ(x̄)| ≤ p. It follows that brḠ(x̄) ≤ 3 and
that if brḠ(x̄) = 3 then NḠ(〈x̄〉) = NG(〈x〉)/Z and [x̄, NḠ(〈x̄〉)] 6= 1, hence [x, y] = xp for some

y ∈ NG(〈x〉). Since [xp2

, y] = 1 we have that x has order at most p3. We know from Proposition 1.8
that br(G) ≤ 4, hence brG(x) is either 3 or 4. In the former case CG(x)/Z = CḠ(x̄) and so x ∈
CG(Z2), in the latter |NG(〈x〉)/CG(x)| = p2 and so x has order p3. Let U = 〈g ∈ G | brḠ(ḡ) ≤ 2〉
and W = {g ∈ G | brG(g) = 4 and brḠ(ḡ) = 3}. By the above discussion G = U ∪ W ∪ CG(Z2).
Since U < G, because U/Z has class at most 3 by Lemma 1.2, and G cannot be the union of three
proper subgroups (as p 6= 2) we have that G = 〈W〉. We also showed that every element of W

has order p3, hence exp G = p3 by regularity. Now Gp2

is contained in Z and has exponent p,

therefore Gp2

= γ5.
Fix x ∈ W. As we showed, there exists y ∈ NG(〈x〉) such that [x, y] = xp, and so yp 6= 1.

We may also choose y such that it has order p2: if yp2

6= 1 then 〈yp2

〉 = γ5 = 〈xp2

〉, and so
some element of the coset y〈x〉 will have order p2. Fix such an element y, and let H = 〈x, y〉 =
〈x〉 ⋊ 〈y〉. Since 〈y〉 has p2 conjugates in H and cbr(G) = 2 then the G-conjugates of 〈y〉 are

exactly the H-conjugates of 〈y〉, so that 〈y〉
G

= 〈y〉
H

= 〈y, xp〉 (and G = 〈x〉NG(〈y〉) ). Now
|〈y, xp〉| = p4, thus y ∈ Z4 = Φ(G) (see the remarks immediately preceding this lemma). On the

other hand H/HG is cyclic, because H = 〈x〉〈y〉
G

, and H has class 3, so Lemmas 1.10 and 1.11
imply that |G : NG(H)| ≤ p. Also, NG(〈x〉) ≤ NG(H) and 〈xp〉 = H ′ is normal in NG(H)
but not in G, for otherwise [Φ(G), xp] = 1, which is false as y ∈ Φ(G) and [y, xp] 6= 1. Thus
NG(〈x〉) ⋖ NG(H) = NG(〈xp〉) ⋖ G (the symbol ‘⋖’ meaning ‘is a maximal subgroup of’). Let
N = NG(〈x〉)∩NG(〈y〉) and L = NG(〈xp〉)∩NG(〈y〉). As G = 〈x〉NG(〈y〉) we have N⋖L⋖NG(〈y〉).
Since y acts faithfully on 〈x〉 it is easy to see that N centralizes y. Let g ∈ NG(〈y〉) r L. If

gp normalizes 〈x〉 then [x, gp] ∈ 〈xp2

〉 ⊳ G (recall that gp2

∈ Z). But then, by regularity,

[xp, g] ∈ 〈xp2

〉 and so g normalizes 〈xp〉, which is false. Therefore gp /∈ N , hence L = N〈gp〉

and so [L, y] = 1. Now G′ ≤ NG(H) ∩ 〈xp〉NG(〈y〉) = 〈xp〉L, hence [G′, y] ≤ 〈xp2

〉 = γ5. On
the other hand [y, G, x] = [y, 〈x〉NG(〈y〉), x] ≤ [〈xp, yp〉, x] = γ5, hence the Hall-Witt identity
yields [xp, g] = [x, y, g] ∈ γ5, and this is again a contradiction, since g does not normalize 〈xp〉. �

Now we know that our minimal counterexample G must be a 3-group. Let K be the kern of G.
By the same argument used to prove Lemma 1.5 we have that K is the intersection of normal
subgroups KG(H) such that G/KG(H) is isomorphic to a subgroup of the wreath product W of
two groups of order 3, each KG(H) being the normal core of the normalizer of a cyclic subgroup H
of G. Extending the first half of Lemma 1.6 we conclude that:

Φ(G′G3) · [G3, G] ≤ K ≤ Z2, in particular G3 ≤ Z3, (1)

since the corresponding verbal subgroups in W are trivial. Let u, v, w, g ∈ G and k = [u, v, w, g].
Then

[

[u, v, w], k
]

= 1 and
[

[u, v], [u, v, w]
]

∈ Z, hence k3 =
[

[u, v, w]3, g
]

=
[

[u, v]3, w, g
]

, so that

k3 = 1 because [u, v]3 ∈ Z2 by (1). This shows that

γ3
4 = 1. (2)

Since the class of G/K is at least 3, we must have that G/KG(H) ≃ W for at least one (cyclic)
H ≤ G. Choose one such H and let S := KG(H). Then G/S ≃ W , hence G/S = (B/S) ⋊ (T/S),
where |T/S| = 3 and B/S is elementary abelian. By looking at the structure of W , we also
have that SG3 = Sγ3 and T ⋖ NG(T ) = Tγ3. Therefore T and S = TG satisfy the hypothesis
of Lemma 1.10 and hence T has the structure described in Lemma 1.11 if it is not abelian, in
particular, T ′ is cyclic and central in T . In agreement with the notation in Lemma 1.11, choose
x ∈ T r S so that ◦(x) = exp T and T ′ = [T, x], and let L = {y ∈ T | 〈[x, y]〉 = T ′ and 〈x〉 ∩ 〈y〉 =
1}. For every y ∈ L we can apply Lemma 1.7 to 〈x, y〉 and conclude that |T ′| ≤ 9. Also fix
b ∈ B r SG′, so that G = 〈S, x, b〉. We aim at proving that G = 〈x, b〉. To this purpose it will
be enough to show that S ≤ Z4, since Z4 = Φ(G). Suppose first that |T ′| = 9. For each y ∈ L
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the subgroup 〈y〉 has 9 conjugates in Hy := 〈x, y〉, hence 〈y〉
G

= 〈y〉
Hy = 〈y〉T ′. As G3 ≤ Z3

and T ′ ≤
〈

x3
〉

, now
〈

y3
〉

T ′ ≤ Z3, but |〈y〉
G

/
〈

y3
〉

T ′| = 3, hence 〈y〉
G
≤ Z4. Therefore S ≤ Z4 in

this case, and we may assume that |T ′| ≤ 3. Let N := NG(〈b〉). We have N ≤ B, because B is
the normalizer of 〈b〉 modulo S, hence |B/N | ≤ 3 and so [S, b] ≤ B′ ≤ N . Thus [S, b, b, b] = 1.
Suppose that T ′ ⊳ G. Then T ′ ≤ γ5 and so [S, b, b, T ] ≤ [S, b, T ] ≤ [S, T ] ≤ Z. Since G = 〈T, b〉 it
follows that S ≤ Z4. Otherwise, if T ′ ⋪ G then S′ < T ′, hence S is abelian, and Z(T ) ⋖ S. Also,
|S/S ∩ N | ≤ 3 and b3 ∈ S; it follows that |S/CS(b)| ≤ 9. Therefore Z = CZ(T )(b) has index at
most 27 in S, hence S ≤ Z4 also in this case. So we have that

G = 〈x, b〉.

Now, since cbr(G) = 2 every cyclic subgroup of G has subnormal defect at most 3, hence G is
4-Engel. As γ3

5 = 1, Lemma 1.14 shows that:

[x, b, x, b, b] = [x, b, b, x, b] = [x, b, b, b, x]

[x, b, b, x, x] = [x, b, x, b, x] = [x, b, x, x, b].
(3)

In order that G be of class 5 the commutators in at least one of these two rows must be nontrivial.
Then [x, b, b, x] /∈ Z. Since γ3 ≤ NG(T ) and NG(T ) = NG(〈x〉) by Lemma 1.10, we have that
[γ3, x] ≤ 〈x〉∩γ4; by (2) it follows that [γ3, x] lies in the socle of 〈x〉. As [x, b, b, x] /∈ Z this implies
that γ5 � 〈x〉. But [γ4, x] ≤ 〈x〉 ∩ γ5, hence [γ4, x] = 1. It follows that all the commutators in (3)
are trivial, and this contradiction completes the proof.

Remark 2.3. As happens for p = 2 and the quaternion group of order 32, also for the odd primes p
there exist finite p-groups of class 4 and c-breadth, and even s-breadth, 2. These groups can be
chosen to have breadth 4, hence, at least for this small value of s, the bounds in Proposition 1.8
are attained. For p = 3 one such example is the group with the following presentation:

〈a, b, x, y | a3 = y9 = x27 = [a, y] = [b, y] = [a, b] = 1,

b3 = x9, [x, y] = x3, [x, b] = x9y−3, [x, a] = x−3b〉,

while for p > 3 the analogous example is:

〈a, b, x, y | ap = bp = xp3

= yp2

= [a, y] = [b, y] = [a, b] = 1,

[x, y] = xp, [x, b] = yp, [x, a] = b〉.

In both cases the group has order p7 and the fact that it has s-breadth (and therefore c-breadth) 2
can be checked along the following lines. The elements of order at most p2 form a maximal
subgroup M such that |M/Z(M)| = p2. If H is a subgroup with more than p2 conjugates then
its normalizer N has order at most p4, hence |H | ≤ p3. On the other hand H � M , for otherwise
Z(M) < N . Therefore H must be cyclic of order p3, but it can be directly checked that then there
exists some element of N that induces by conjugation an automorphism of H of order p2, so that
|N/H | ≥ p2, which is again a contradiction.

It is also worthwhile to stress that, as anticipated in the introduction, the fact that the class c
of a finite p-group G is bounded above by 2 + cbr(G) for the small values of cbr(G) considered
(that is 1 and 2) is far from being a general rule, at least when p = 2. As a matter of fact the
counterexamples in [4] show that for every integer n there are finite 2-groups G such that c−br(G)
and, a fortiori, c − cbr(G) is greater than n.
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Università degli Studi di Napoli “Federico II”, Dipartimento di Matematica e Applicazioni “R. Cac-

cioppoli”, Via Cintia — Monte S. Angelo, I-80126 Napoli, Italy

E-mail address: cutolo@unina.it

URL: http://www.dma.unina.it/~cutolo/

Department of Mathematics, Bucknell University, Lewisburg, Pennsylvania 17837, USA.

E-mail address: howsmith@bucknell.edu

School of Mathematics, Cardiff University, Cardiff CF 24 4AG, United Kingdom

E-mail address: wiegoldj@cardiff.ac.uk


