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On a construction by Giudici and Parker on commuting graphs of
groups

GIOVANNI CUTOLO

ABsTRACT. Given a connected graph A, a group G can be constructed in such a way that A is often isomorphic to a
subgraph of the commuting graph XG(A) of G. We show that, with one exception, XG(A) is connected, and in this
latter case its diameter is at most that of A. If A is a path of length n > 2, then diam(X$(A)) = n.

1. INTRODUCTION

In [2], M. Giudici and C. Parker show that for every positive integer n there exists a finite 2-group of nilpotency class 2
whose commuting graph is connected and has diameter greater than n. Their construction can be interpreted as a
variant of a general procedure which makes possible to define a class-2 nilpotent group starting from a graph (see [3]
for an early example).

In this case the construction is as follows. Let A be a (simple, undirected) connected graph. We define G(A) as the
group generated by the vertices of A subject to the following relations: for all a,b,c,d € V(A), a®> = [a,b,c] = 1 and
[a,b] = [c,d] if da(a,b) = da(c,d) > 1, while [a,b] = 1 if da(a,b) = 1 (da denotes distance in A). Then G(A) is a
nilpotent 2-group of class at most 2 and exponent at most 4. Let n be the (possibly infinite) diameter diam A of A.
Write G for G(A) and, for all 7 € N such that 1 < i < n, let ¢; = [u,v] € G where u, v are (any) vertices of A such that
da(u,v) =i. Then G’ is elementary abelian with {cs,¢s3,...,¢,} or {¢; | 1 <4 € N} as a basis, according to whether n
is finite or infinite, so the rank of G’ is n — 1 in the former case, infinitely countable in the latter. Also G* = G/G’
is elementary abelian; it has rank |V(A)|. It is of course possible that G < Z(G) < Gj for instance if A is a path of
length 2 then G is isomorphic to the direct product of a dihedral group of order 8 and a group of order 2, as a more
extreme case: GG would be abelian if A were a complete graph.

In the definition of G(A), the choice of letting adjacent vertices of A commute is justified by the fact that it often
allows to identify A with a subgraph of the commuting graph of G(A). Here, with reference to an arbitrary group G
with center Z = Z(G), we define the commuting graph X(G) of G as the graph with the set {aZ | a € G \ Z} of all
nontrivial cosets of Z in G as the vertex set, and in which any two distinct vertices aZ and bZ are adjacent if and
only if [a,b] =1 in G. Note that a slightly different definition of commuting graph is more common in the literature;
it requires G \ Z as the vertex set and essentially the same adjacency condition: two distinct vertices are adjacent
iff they commute in G. Calling X*(G) this second graph, it is clear that K(G) is a retract of X*(G): this latter is
obtained from X(G) by replacing every vertex with a complete graph on |Z] vertices and adding edges so that any
two distinct vertices of K*(G) will be adjacent iff the corresponding cosets coincide or are adjacent in X(G). Thus,
K(G) is a minor of X*(G), and embeds in it. What is relevant to our purposes is that if a,b € G, then the distances
of a and b in X*(G) and aZ and bZ in K(G) are the same, and diam(K*(G)) = diam(X(G)). Since we shall almost
exclusively be concerned with connectedness and metric questions, this means that up to irrelevant details all our
results will still remain valid if X(G) is replaced by X*(G). An advantage of working with K(G) rather than X*(G)
is that if G and H are groups, then X(G) and X(H) are isomorphic not only if G and H are isomorphic, but also if
G and H are merely isoclinic. For instance X(G) ~ X(H) for all subgroups H of G such that G = HZ(G).

It is also worth noting that, by construction, X(G) cannot have just one vertex nor a vertex of eccentricity 1 (i.e.,
adjacent to all other vertices), so either it is empty (which happens iff G is abelian) or its diameter is greater than 1.

The main result in [2] can be rephrased as follows: if A is a (finite) path of length n > 2, then KXG(A) := K(G(A))
is a connected graph whose diameter can be arbitrarily large, in fact bounded below in terms of n. The authors also
note that some computational evidence suggests that this diameter could actually be precisely n. We shall prove that
this is the case. We also show that, up to small exceptions, if A is an arbitrary connected graph, XG(A) is connected
of diameter at most diam A. Our main result is the following.

Theorem. Let A be a connected graph of (possibly infinite) diameter n, let G = G(A) and I' = KG(A). Then:

(i) if n > 2, then I' is connected and diam(I") < n. Moreover, if A is a path, then diam(I") = n;
(ii) if n = 2, then either I' is connected and diam(I") = 2, or |G/Z(G)| = 4 and I is the graph on three vertices and
no edges.
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Which of the two possible cases does actually occur for a given graph of diameter 2 is discussed in Proposition 2.4.
Finally, Proposition 5.9 shows for a few small values of n = diam A > 2 that the maximum diameter n for diam(XG(A))
is only attained when XG(A) is isomorphic to the graph constructed from a path of the same length.

2. NOTATION AND PRELIMINARIES

We use standard terminology for groups and graphs (a reference for the latter is [1]); note that we admit the empty
graph (the one with empty vertex set) and that v ~o w (or simply v ~ w, if A is suggested by the context) means
that v and w are adjacent vertices of the graph A.

In accordance with standard terminology, an element g of a p-group G (where p is a prime) has breadth a positive
integer brg(g) iff g has (exactly) p*'¢(9) conjugates in G. In this paper G will almost always be a nilpotent 2-group
of class 2 and G’ will have exponent 2; in these cases brg(g) is the rank (that is, the dimension as a vector space over
the integers modulo 2) of G/Cg(g) or, equivalently, of [G, g].

With reference to a connected graph A and the group G = G(A), for each g € G we shall write g for the coset
9Z(G) € G/Z(G). Furthermore, for every finite set X of vertices of A, we denote by P(X) the product in G of
the elements of X in a prefixed order (which one is irrelevant to our purposes, since we will only be interested in
commutators involving P(X); of course we let P(X) = 1 if X = @) and let P(X) = P(X)Z(G) = [ [,ex 9; this latter
is of course independent of the ordering of the factors and is either Z(G) or a vertex of KXG(A).

As usual, |z] and [z] denote the floor: max{n € Z | n < x} and the ceiling: min{n € Z | n > z} of the number z.

For any sentence ¢ we write ¢, for the truth value of ¢: so 0, is 1 or 0 according to whether ¢ is true or false.
This symbol will be mostly used in Section 3.

Just for the sake of further reference we state an obvious lemma.

Lemma 2.1. Let A be a connected graph and G = G(A). Let X,Y be finite subsets of V(A). Then [P(X),P(Y)] =1
(in G) if and only if, for all integers i > 1, the number of all pairs (z,y) € X x Y such that da(z,y) = i is even.

Proof. For all integers i such that 1 < i < diam(A), let A; = |{(z,y) € X x Y | da(z,y) = i}|, moreover, let
¢i = [u,v] for any u,v € V(A) such that da(u,v) = i. Then [P(X),P(Y)] = [[,ex ey [z 9] = [} M, where n =

i=2Ci >
max{da(z,y) | z € X and y € Y}. Now the result follows from the fact that, as remarked earlier, the commutators ¢;

form a basis of G”. 0O

Of course, in the previous lemma, the condition [P(X),P(Y)] = 1 exactly means that one of the following holds:
either one of P(X) and P(Y) is Z(G), or P(X) = P(Y), or P(X) and P(Y') are adjacent vertices of XG(A).

It is worth noting that the assignment A — G(A) does not appear to be part of a description of a meaningful
functor from the category of connected graphs to that of groups, in that a graph morphisms ¢: A; — A (i.e., an
adjacency preserving mapping V(A1) — V(A)) of graphs does not usually induce, at least in the obvious sense, a
group homomorphism G(A;) — G(A). It does when ¢ preserves distances, so we have a functor from the category
of connected graphs and distance-preserving mappings to that of groups.! We shall make use of the fact that this
functor preserves embeddings, and state this property in the form that we need, as part (i) of the next lemma. If A
is a connected subgraph of the graph A, we say that it is isometrically embedded in A iff any two vertices of A; have
the same distances in A and in A;. This is certainly the case when A is a tree, but also when A; is a subpath of a
path of minimal length among those joining two given vertices in A.

Lemma 2.2. Let A be a connected graph and G a group.

(i) If Ay is an isometrically embedded, connected subgraph of A, then the inclusion map V(A1) — V(A) extends
to a group monomorphism G(A1) — G(A).

(ii) If H is a subgroup of G, then the inclusion map H — G induces a graph embedding X(H) — X(G). This
embedding is an isomorphism if and only if G = HZ(G).

Proof. Tf v: V(A1) — V(A) preserves distances, that is, da(a,b) = da, (a,b) for all a,b € V(Ay), then ¢ preserves the
relators in the presentations defining G(A;) and G(A); hence it induces a homomorphism G(A;) — G(A), which is
easily seen to be monic.

Now we prove (ii). Let T" be a right transversal of Z(H) in H. Then the assignments gZ(H) — gZ(G), where
g ranges over the elements of T\ Z(H), define an injective mapping from V(X (H)) to V(X(G)) which clearly is a
graph embedding X(H) — X(G), as required. This mapping is surjective (that is, an isomorphism) if and only if
G = TZ(G), which in turn is equivalent to G = HZ(G), as this latter equality implies Z(H) = H n Z(QG). O

We have already seen, in the introduction, that there are (finite, connected) graphs A; such that §(A;) is not
abelian; but any such Aj is certainly embedded (not isometrically) in a complete graph K, and of course G(K)
is abelian. This shows how things can go wrong in (i) if the hypothesis of isometric embedding is removed. As

1As a matter of fact, the construction discussed in this paper could be generalised by starting from an arbitrary (pseudo)metric space
rather than from a connected graph. This construction provides a functor from (pseudo)metric spaces to groups.
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regards (ii), note that the embedding K(H) — X(G) is usually not isometric and is not always uniquely determined
by H: it depends on the choice of T unless Z(H) = H n Z(G).
Once again, assume that A is a connected graph. We show that, in order to discuss KXG(A), we can replace A with

a certain subgraph (a retract, in fact) of its. Indeed, for all a € V(A) let N*(a) = {x € V(A) | da(a,z) < 1}. It is
easily seen that, for all a,b e V(A), the following three conditions are equivalent:

o N*(a) = N*(b);

e da(a,b) <1, and da(a,x) = da(b,z) for all z € V(A) \ {a, b};

e a=bh.
Define an equivalence relation p in V(A) by letting a p b if and only if these conditions hold. Fix a complete set R
of representatives of the p-equivalence classes. The subgraph of A induced by R is clearly isomorphic to the graph
obtained by contracting each p-equivalence class in one single vertex; therefore, up to isomorphism, this subgraph of A
is independent of the choice of R; we call it A,. The following is immediately checked.

Lemma 2.3. In the notation just established, A, is connected and isometrically embedded in A; moreover, diam(A,) =
diam(A) unless A is complete. Let G, be the image of the embedding §(A,) — G := §(A) described in Lemma 2.2 (i).
Then G = G,Z(G) and so XG(A,) ~ KG(A).

Proof. For all v € V(A) let v* be the vertex of A, which is p-equivalent to v (so v* = v if v € V(A,)). For all
a,be V(A), if P is a path in A joining a and b, then the vertices in {v* | v € V(P)} form a path in A, joining a*
and b* of length at most that of P, therefore da(a,b) = da,(a*,b*) unless a* = b*. This shows that A, is connected
and isometrically embedded in A, and diam(A,) = diam(A) if A, is not complete. Now the lemma follows from
Lemma 2.2 and the fact that v € v*Z(G) for all v e V(A). O

The reduction provided by Lemma 2.3 is useful in settling the case of graphs of diameter 2. If ¥ is any finite,
connected graph and k = |V(X)|, we define the remoteness matrix of 3 as the k x k matrix (a,,) over the field Fy of
order 2, with rows and columns labelled by the vertices of ¥ (with respect to a fixed linear order), where each entry
ayw 18 0 or 1 according to whether da (v, w) < 1 or da(v,w) > 1.

Proposition 2.4. Let A be a connected graph of diameter 2, and let A, the subgraph of A defined as in the previous
paragraphs. Let G = G(A) and I' = XG(A). Then either I' is connected of diameter 2, or |G/Z(G)| = 4 and I' is the
graph with three vertices and no edges. The latter case occurs if and only if A, is finite and its remoteness matrix
has rank 2.

Proof. Let Z = Z(G). We have |G'| = 2, because diam(A) = 2. Then |G/Cq(g)] = 2 for all g € G~ Z. If
|G/Z| > 4, this shows that for all g,h € G we have Z < Cg(g) n Cg(h); then, if g, h ¢ Z(G) then g ~ & ~ h for some
ce (Calg) nCq(h)) N Z(G). It follows that KXG(A) is connected of diameter 2 in this case: note that, as remarked in
the introduction, XG(A) certainly has at least a pair of non-adjacent vertices. In the remaining case G/Z is non-cyclic
of order 4, and it is clear that the three nontrivial cosets of Z in G are isolated vertices in XG(A). Therefore XG(A)
has three vertices and no edges.

We are only left to prove that |G/Z| = 4 is equivalent to the stated condition. The cosets @ = aZ, where a ranges over
the vertices of A, are pairwise distinct and generate G/Z, by Lemma 2.3. It follows that G/Z is finite if and only if A,
is finite. We may therefore assume that A, is finite. With reference to the notation of Lemma 2.3, let H = G,. Then
H is finite and G = HZ, so that H' = G’ and H/Z(H) ~ G/Z. The mapping (gH',hH') € H*® x H*® s [g,h] € H’
is bilinear, and since |H’| = 2, it can be regarded as a symmetric bilinear form over Fy. With respect to the basis
{aH' | a € V(A,)}, this form is represented by the remoteness matrix A of A,, and its radical is Z(H)/H'. Therefore
tk(G/Z) =rk(H/Z(H)) = tk A. Now we see that |G/Z| = 4 if and only if rk A = 2, as required. O

3. PATHS

In this section we discuss the case in which the graph A is a path. This is the case of the original construction
in [2], where it is proved that, unless diam(A) < 2, the resulting graph is connected. Our argument does not use this
information.

The following notation will be in use throughout this section. P is a fixed path of length an integer n > 2 and
endvertices a, b. We let G = §(P), Z = Z(G), and ¥ = X(G) = KG(P). Also, for all i € I, :== {0,1,...,n}, we let a;
be the vertex of P at distance i from a, thus ap = a and a,, = b. As a first easy observation, we note that the vertices
of P, considered as elements of GG, are linearly independent modulo Z.

Lemma 3.1. Let X € V(P). Then P(X) e Z if and only if X = @.

Proof. Assume P(X) € Z. Let i € I, be such that a; € X. Then qa; is the only vertex of P at distance ¢ from a.
Applying Lemma 2.1 to X and {a} yields i € {0,1}. On the other hand, a; is the only vertex of P at distance n —1
from b, hence, by the same lemma applied to X and {b}, we have i € {n,n — 1}. As n > 2 by hypothesis, we obtain a
contradiction. ([l
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Lemma 3.1 shows that the mapping X — P(X) is a bijection from the set of all nonempty subsets of V (P) to V(¥).
A very special case of Lemma 3.1 is the fact that v € V(P) — © € V(¥) is a graph embedding of P into ¥ (this would
be false without the hypothesis n > 2: if P had length 2 then its ‘medium’ vertex would lie in Z and so it would not
correspond to a vertex in ¥).

Making use of the former remark, we fix some more notation. Let z € V(¥). We let supp(z) be the subset J of I,
such that x = P({a; | i € J}), further let m(z) = min(supp(z)), M(z) = max(supp(x)), A(z) = M(z) — m(x) and
w(x) = (M(z) +m(x))/2. If A(x) is even, we let ((x) = Gy (s), otherwise ((x) = Gy (z)—1/2 Gu(z)+1/2-

Lemma 3.2. Let z,y be two connected vertices of ¥.
(i) If x ~ y then one of the following holds:

(a) u(z) = p(y);
(b) |p(x) = u(y)| = 1/2 and {A(z), A(y)} = {0,1};
(¢) |u(x) — u(y)| =1 and AM(z) = M(y) =0 (i.e., x = @ and y = U for some adjacent vertices u, v of P).
(i) dy(x,y) = |u(x) — u(y)|; equality holds if and only if either x =y or x = @ and y = ¥ for some vertices u, v of P.

Proof. Let I = supp(x) and J = supp(y). Note that |i — j| = da(a;,a;) for all (4,5) € I x J and let £ = max{|i — j| |
(i,7) € I x J}. In order to prove (i), assume x ~ y, hence x # y and £ > 0. If £ > 1 we deduce from Lemma 2.1 that
there are at least two different pairs (4, j) € I xJ such that |[i—j| = £. The only possible such pairs are (m(z), M(y)) and
(M(x),m(y)); also, at least one of I and J has more than one element. Thus we obtain M (y)—m(x) = £ = M(x)—m(y)
and hence pu(x) = p(y). Therefore we may assume ¢ = 1. Then |u(z) — pu(y)| < 1 and A(z), A(y) < 2. Without loss of
generality, assume A\(x) = A(y). f A(z) =2then I = {i—1,i+ 1} or I = {i — 1,4,7 + 1} where i = u(x), and y = a;.
Then p(x) = p(y) in this case as well. If A(z) = 1 then I = {i,7 + 1}, for some i € I, and = # y implies that J is
either {i} or {i + 1}. If A(z) = 0 then I = {u(x)} and J = {u(y)}, now = ~ y gives |u(z) — p(y)| = 1. This proves (i).
Part (ii) follows easily from (i) and from the graph embedding of P in ¥ noted earlier. d

An immediate consequence of the last claim in Lemma 3.2 is:
Corollary 3.3. P is isometrically embedded in V.

Lemma 3.4. Let x € V(¥) and assume A(z) > 1. Then there exists y € V(¥) such that x ~ y, m(x) < m(y) <
M(y) < M(z) and p(y) = p(@).

Proof. Let A = Ax), m = m(z) and M = M (x). Also consider two subgroups of G, namely H = {(a; | m <i< M)Z
and K = H{aps); note that z € K/Z. Fix g € x. We know that K’ = [am, K] = {{am,a;] | m <i < M) hasrank A—1,
by the definition of §(P), hence |K/Ck(g)| < 2*~1. On the other hand H/Z has rank A, by Lemma 3.1. It follows
that Z < Cr(g). Let y be a nontrivial element of Cy(g)/Z. Then M (y) < M because y € H/Z. Also u(y) = u(x) by
Lemma 3.2 (i) and, as a consequence, m(y) > m. O

In the next proofs we will use the fact that, for all 2,y € V/(¥), the condition p(z) = u(y) is equivalent to ¢(z) = ((y)
and implies A\(z) =2 A(y). For the meaning of the 6 symbol, see Section 2.

Lemma 3.5. Every x € V(W) is connected to ((x) in ¥, and dy (z,((x)) < [Mx)/2] — Ox@)¢0,2)-

Proof. The proof is by induction on A = A(x). A direct check shows that x and ((z) are connected and dg(z,((x)) =

[A/2] = Or¢(0,2) if A < 4, because if 0 < X\ < 4 then & = @;¢a;4 for some i € I, and c € {a;11,...,a;4x-1) < Ca({(x)),

and also [a;a;1x,((z)] = 1. Now assume A > 4. By Lemma 3.4 and the observation following it, = is adjacent

to a vertex y of ¥ such that ((y) = {(x) and A(y) = X\ — 2k for some positive integer k. Since A > 4 we have

IMW)/2] = Orpyggo.23 = [N2] =k — Ox(y)¢q0,2) < [A/2] — 2. Therefore, by induction hypothesis, we have dy (,((z)) <

L+du(y,C(y) < 1+ [AY)/2] = Oxgfo2y < [A/2] = 1 = [A/2] — Oxg(0,2), as required. O
)

0
Lemma 3.6. Let x,y € V(¥). Then {(x) and ((y) are connected and:

(i) either ((z) = ((y) or dw(C(x),C(y)) = [[n(x) = wWI] + Or@)a)=a15
(ii) if () > p(y), then du(((2),((y)) = M(x) —m(y) — [A(x)/2] = [A(y)/2]-
Proof. If M(xz) and A(y) are even, (i) follows from Corollary 3.3. If, say, A(z) is even and A(y) is odd, we have
C(y) = aj—1a; where i = p(y) + 1/2. If p(y) < p(x), then dy(¢(z),a;) = p(x) —i. Since a; ~ ((y) we obtain
dy(C(2),¢(y)) < plz)—i+1=pulx)—pnly) +1/2 = [u(x) — u(y)]. Now Lemma 3.2 (ii) gives the equality in (i), since
w(¢(x)) = p(z) and pu(¢(y)) = u(y). The remaining cases where A(z) #5 A(y) are treated similarly. Finally, assume
that both A(x) and A(y) are odd. Without loss of generality, again assume pu(y) < p(z) and let i = p(y) + 1/2. If
¢(x) # ((y) then u(y) < p(x) and i < p(x). Then dy({(x),a;) = p(x) — u(y) by the previous case and (i) follows from
Lemma 3.2 (ii) because \(x) # 0.

(ii) is an alternative formulation of (i). Indeed, u(z)—pu(y) = (M (z)—A(z)/2) —(m(y)+ A(y)/2), hence, on assuming
w(x) > p(y), the second equation in (i) can be rewritten as

12162, = | M(a) = mt) = XA g,y = M) - aly) -

and clearly [A(2)/2] + [A(y)/2] = [(A(x) + A(©))/2] = Ox@)a@)=1- O

+ Or(@)Aw)=21

{/\(ﬂf) -2F /\(y)J
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Lemma 3.7. V¥ is connected and for all x,y € V(¥) such that pu(x) > u(y), we have
dw(f,y) < M(Jf) - m(y) - (02<)\(z)520 + 02<)\(y)520) < M(I) - m(y)

Proof. ¥ is connected by Lemmas 3.5 and 3.6, or by [2]. Let 2,y € V(%) and assume p(z) = p(y). Then dg(x,y)
( —

<
dy(z,¢(x)) +dw(C(2),((y) + dw(((y),y). Even in the case p(x) = p(y) it holds M (z) —m(y) — [Mx)/2] — [A(y)/2] =
0=dy({(z),¢(y)), hence Lemmas 3.5 and 3.6 give:

dy(z,y) < M(x) —m(y) + (P(;)} - V(;)J - 9/\(w)¢{0,2}> + G)\(Qy)] - {)\(Qy)J - 9A(y)¢{0,2})

and the result follows from the fact that [A/2] — |A/2] — Oxg(0,2) = Or=01 — Orgfo,2y = —fa<r=,0 <Oforall A eN. O
We have essentially proved the assertion made in the main theorem in the case of paths.
Theorem 3.8. Let P be a path of (finite) length n > 2. Then XG(P) is connected and has diameter n.

Proof. Lemma 3.7 shows that KXG(P) is connected and diam(XG(P)) < n, while diam(KXG(P)) = n by Corollary 3.3.
O

4. PROOF OF THE MAIN THEOREM

Let A be a connected graph of finite diameter n > 2. Let a,b € V(A) such that da(a,b) = n and fix a path P
of length n joining ¢ and b. Let H = §(P), G = §(A) and I' = K(G). Since P is isometrically embedded in A,
Lemma 2.2 shows that the inclusion V(P) — V/(A) induces a monomorphism ¢: H — G, and, furthermore, a
graph embedding o of ¥ := X(H) = XG(P) into I'. We use ¢ to identify H with the subgroup (V(P)) of G.
Now, since diam(P) = n = diam(A) we have H' = G’, and Lemma 3.1 implies that H/Z(H) has rank n + 1 and
Z(H) = G' = H n Z(G); then o defines a bijection from V(¥) to HZ(G)/Z(G) ~ {Z(G)}. If g € G~ Z(G), then
brg(g) < tk(G') = n — 1, hence |H/Cy(g)] < 2"~ ! < |H/Z(H)| and Cy(g) € Z(G). This means that g is adjacent
(in I') to some vertex of the image of ¥ under o. Since the latter graph is connected (by Theorem 3.8) we have proved:

Lemma 4.1. [I' is connected.
Our next aim will be that of showing that the diameter of I" is at most n.

Lemma 4.2. In the notation introduced in this section, let r = rk(G/Z(G)). Then
(i) r=n+1,andr =n+1ifand only if G = HZ(G);
(ii) if r > 2(n — 1) then diam(I") = 2.

Proof. (i) is an immediate consequence of Lemma 3.1, which yields tk(HZ(G)/Z(G)) = n + 1. Next, let g,h € G.
Since |G'| = 27! we have brg(g), brg(h) < n—1 and so tk (G/Cq({g,h})) < 2(n —1). Now assume r > 2(n — 1).
Then Z(G) < Cq({g,h}) and there exists z € Cq({g,h}) ~ Z(G); as a consequence, in I', we have § ~ T ~ h and so
dr(g,h) < 2. This completes the proof. O

Lemma 4.3. Still in same notation, if n € {3,4} then diam(I") < n.

Proof. We may assume diam(I") > 2. If G = HZ(G) then I' ~ X(H) = ¥ by Lemma 2.2, hence diam(I") = n by
Theorem 3.8. So we may assume HZ(G) < G. In view of Lemma 4.2 this leaves us with just one possibility: n = 4 and
tk(G/Z(G)) = 6, which also yields |G/HZ(G)| = 2. For all g € G we have brg(g) < rk(G’) = 3. The vertex ag of P
at distance 2 from a (and b) satisfies [H, az] = {[a, a2]) and hence brg(az) < bryz(g)(az) +1 < 2. As a consequence,
for all g € G \ Z(G) we have Z(G) < Ci({g, az}) and it follows that dr(g,az) < 2. Therefore diam(I") < 4. O

Proposition 4.4. Let A be a connected graph of finite diameter n > 2. Then diam(XS(A)) < n.

Proof. In view of Lemma 4.3 we may assume n > 4. We still use the notation introduced at the beginning of this
section. With reference to vertices v of ¥, we define m(v), M(v) and A(v) as in the previous section, and we also
extend this notation to vertices of I" in the image of o by letting m(v?) = m(v), M (v”) = M(v) and A(v7) = A(v) for
all ve V(). Let H, = Z(H)XV(P) ~{a}) and H, = Z(H)XV(P) ~ {b}); both are maximal subgroups of H. Since
|G| = 2771 for all g € G \ Z(G) we have |H/Cy(g)| < 2" 1; it follows that Z(H) < Cy,(g) and Z(H) < Cp,(g).

Arguing by contradiction, assume diam(XG(A)) > n and fix r,s € G \ Z(G) such that dp(7,5) > n. Let X
(resp. Y) be the set of nontrivial cosets in Cy(r)Z(G)/Z(G) (vesp. Cu(s)Z(G)/Z(G)). Then dpr(z,y) > n — 2 for
all z € X and y € Y. Keeping in mind that Z(H) = H n Z(G), the concluding remark in the previous paragraph
shows that there exist z,, 2, € X and y,, yp € Y such that m(xz,), m(ys) > 0 and M (xp), M (ys) < n. If p(zp) = p(ya)
then Lemma 3.7 yields (with a slight abuse of notation) dp(zp,y.) < dy(xg ,yS ) < M(xp) —m(ys) <n —2, a
contradiction. Therefore

p(@y) < p(ya)  and, similarly,  u(ys) < p(@a);

furthermore, still by looking at dr(xy, y,) and dr(ys, z,) and using Lemma 3.7 again, we also see that M (z,), M (y,) €
{n,n—1} and m(zp), m(ys) € {0, 1}. Next, since also dr(zq,y,) and dr(zp, yp) are greater than n — 2, the same lemma
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makes sure that one of (M (z4),m(ya)) and (M (y,), m(z4)) is (n, 1), while one of (M (zy), m(ys)) and (M (ys), m(z))
is (n —1,0), and also that each of A(z,), AMap), AM(y,) and A(yp) is either 0 or 2 or an odd integer.

As a first case, assume n = M(x,) = M(y,). Since one of m(z,) and m(y,) is 1, one of A\(x,) and A(y,) is n — 1.
As n > 4, this implies that n — 1 is odd, so n is even. If 0 = m(xp) = m(yp), then n = M(zq.xp) = M(yayp) and
0 = m(xzqxp) = m(yayp), hence A(z,zp) = AM(Yays) = n is even and greater than 2, and so dr(x,zp, yays) < n — 2 by
Lemma 3.7, a contradiction. Otherwise, without loss of generality, m(zp) = 0 and m(y,) = 1, but in this case the
above constraints give M(yp) =n—1and 2 <n —2 = A(y) =2 0, again a contradiction.

Therefore M(z,) and M(y,) are not both n, say M(z,) = n and M(y,) = n — 1. It follows: m(y,) = 1 and
2 <n—2= Aya), hence n is odd. As n —1 < dr(zp,ya) < M(ya) — m(zp), we also have m(zp) = 0. Now
M(xzp) = A(xp) is either odd or less than 3, then M(zp) < m — 1. As a consequence, M(yy) = n — 1 and so
M (yayp) < n — 1. This leads to the final contradiction dr(xp, y.ys) < n — 1. Now the proof is complete. O

To complete the proof of the main theorem we only need to deal with the case of connected graphs of infinite
diameter. The following lemma settles the special case of those graphs which, even after the reduction suggested by
Lemma 2.3, are not locally finite.

Lemma 4.5. Assume that A is a connected graph with a vertex a of infinite degree such that da(a,x) > 1 for at
least one x € V(A). Also assume P(Y) ¢ Z(G(A)) for all Y < V(A) such that |Y| = 2. Then XG(A) is connected
(more precisely, d(a,v) < 2 for all vertices v of XG(A), hence diam(KXG(A)) < 4).

Proof. Let v € V(KXG(A)); then v = P(X) for some finite subset X of V(A). By hypothesis N := N¥(a) = {z €
V(A) | da(a,x) < 1} is infinite, while {da(z,u) | v € N and « € X} is finite because X is finite. Then there exist
b,c € N such that b # ¢ and da (b, z) = da(c,z) for all z € X. Let Y = {b,c}, and note that P(Y) and a are vertices
of XG(A) by hypothesis. Lemma 2.1 shows that, in KXG(A), we have v = P(X) ~ P(Y) ~ a. Thus v is connected to @
and dxg(a)(v,a) < 2. The result follows. O

It is well-known ([1, Proposition 8.2.1]) that every infinite, locally finite connected graph A has a ray, i.e., a
connected subgraph in which one vertex has degree 1 and all remaining vertices have degree 2; the vertex of degree 1
is called the endvertex of the ray. For each i € N a ray has exactly one vertex at distance 4 from its endvertex. Let’s
say that a vertex a and a ray R with endvertex rg of a connected graph A are close iff R has a vertex r such that
da(a,r) < dg(ro,r).

Lemma 4.6. Let A be an infinite, locally finite connected graph, and let X be a finite subset of V(A). Then A has
an isometrically embedded ray which is close to all vertices in X .

Proof. Let R be a ray in A constructed as in the proof of [1, Proposition 8.2.1], and let ry be its endvertex. The
construction actually shows dg(rg,7) = da(rg,r) for all r € V(R), and it easily follows that R is isometrically
embedded in A. Now, among all isometrically embedded rays in A choose one, call it R, such that the set C of all
vertices in X close to R has maximal cardinality. Arguing by contradiction, assume that there exist some a € X \ C.
Let ro be the endvertex of R and, more generally, for all i € N let r; be the vertex of R such that dg(ro,r;) = 4. For
all v € V(A) and i € N, let v; = i — da(v,7;). The sequence (v,)en is increasing and assumes nonnegative values
iff v is close to X. Therefore there exists j € N such that ¢ =20 for all ¢ € C and a; = a;; for all 7 € N, hence
da(c,r;) < jfor all ce C and da(a,7;4i) = k + ¢ for all i € N, where k = da(a, ;). This latter property shows the
following: if P is a path of length % joining a to r;, then substituting P for the path joining rop and 7; in R produces
a new ray S with endvertex a which is isometrically embedded in A; more explicitly, for all ¢ € N, the vertex of S
at distance 7 from a is the vertex of P with the same property if i < k and r;4;_ otherwise. For all c € C' we have
da(e,rj) < j <k =da(a,r;), hence ¢ is close to S, but S is also trivially close to a. This contradicts the maximality
of |C|, and this contradiction gives C' = X, thus proving the lemma. O

Lemma 4.7. Let A be a connected graph of infinite diameter. Then XG(A) is connected.

Proof. As usual, let G = §(A), Z = Z(G) and I' = KXG(A). Since diam(A) is infinite a ¢ Z for all a € V(A). At the
expense of replacing A with the subgraph A, referred to in Lemma 2.3, we may assume P(Y) ¢ Z for all subsets Y~ of
A such that |Y| = 2. By Lemma 4.5 we may also assume that A is locally finite.

If a,b € V(A), then @ and b are connected in I', because the mapping a ~— @ defines a graph embedding from A
to I'. Therefore, to complete the proof it will be enough to show that every vertex of I" is connected to a for some
ae€V(A).

Let v e V(I'). Then v = P(X) for some finite, nonempty subset X of V(A). By Lemma 4.6, A has an isometrically
embedded ray R close to every vertex in X. For all i € N let r; be the vertex of R at distance ¢ from the endvertex
of R (which is therefore 7). Since R is close to the vertices of X there exists j € N such that da(z,r;) < j for all
x € X; we may also assume j > 2. Let ¢ be the diameter of X u {r; | j = i € N} (as a metric subspace of V(A))
and let X7 :=X u{r;|j+¢>ieN}. Forall ze€ X and i € N we have da(x,7j4+;) < da(x,7j) +i<j+i. AsR
is isometrically embedded in A, it follows that the diameter of X; is j + £. Let H be the subgroup (X;) of G and
K ={r;|j+{>ieN) < H; note that v = hZ for some h € H. Then rk (H/Cy(h)) <rtk(H') = j 4+ ¢ —1. On the



ON A CONSTRUCTION BY GIUDICI AND PARKER ON COMMUTING GRAPHS OF GROUPS 7

other hand KZ/Z has rank j + £ + 1 by Lemmas 2.2 and 3.1. It follows that Cx(h) £ Z and so, as a consequence of
Theorem 3.8, the vertex v is connected to 7y in I". As observed in the previous paragraph, this is enough to draw the
conclusion that I" is connected. O

In view of Propositions 2.4 and 4.4 and Theorem 3.8 this result completes the proof of the main theorem.

5. FURTHER REMARKS AND EXAMPLES

We collect here some examples of diameter computation and add some extra information supplementing the main
result of this paper. Some of the proofs make use of the following simple (and quite possibly known) lemma.

Lemma 5.1. Let p be a prime and G a p-group. Assume that |G/Z(G)| > p* and G has two elements u, v of breadth 1
such that one of the following holds:

(i) [u,v] #1;

(ii) Cg(u) # Ce(v) and [G,u] = [G,v] < Z(G).

Then X(G) is connected of diameter at most 3.

Proof. In either case Cg(u) # Ce(v). Both Cg(u) and Cg(v) have index p in G, hence they are normal and H :=
Ce({u,v}) = Cq(u) n Ce(v) < G; also G'GP < H and G/H is elementary abelian of rank 2, hence Z(G) < H.
In case (i) let z = w and y = v, in case (ii) choose x € Cg(u) \ Cg(v) and y € Cg(v) \ Cg(u); in either case let
T = {y,z,zy,zy*, ..., 2zy?~}. For all g € G there exists t, € T such that g € H{t,).

Assume (i). Then [H,T] = 1 and so t € Z(H(t)) for all t € T. We claim that Z(G) < Cge(g) for all t € T
and g € G. Indeed, assume that, for some choice of ¢ and g, we have Z(G) = Cpy(g). Since t, € Z(H(t,)) and
T nZ(G) = @, we have ty; € Cg(g) ~ H(t). But |G/H{t)| = p, hence Cg(g) = Z(G){ty), so that g € Z(G){ty). Then
Ca(g) = Ca(ty) = H, yielding the contradiction H < Z(G). This establishes our claim. Now let a,b € G. We have just
proved that there exists ¢ € C,y(a) N Z(G). Asc,be H{ty) and t, € Z(H(tp)), we see that [a,c] = 1 = [c, tp] = [ts, D]
and the result follows in this case.

Now assume (ii) and, as we may, [u,v] = 1. Then u,v € Z(H). For all t € T we shall find an element h(t) €
(H n Z(H{))) ~ Z(G). If t = y then we can let h(t) = v. Otherwise t = zy® for some integer i and (ii) gives
[v,7] = [u,y]’ for some integer j not divisible by p; choose k € Z such that jk =, —i, then [uv®,t] = [u,y] [v,z]* = 1,
so we can let h(t) = wv*. For all a,b € G \ Z(G) we have [a,h(t,)] = 1 = [h(ta), h(ts)] = [h(ts),b]. The lemma
follows. O

In applying this lemma is can be useful to note that if G = G(A) for a connected graph A and u,v € V(A) \ Z(G),
then brg(u) + 1 is the eccentricity of u in A, and brg(u) = brg(v) implies [G,u] = [G,v]. This follows from the
fact that, for all w € V(A), if D,, = {da(w,2) | z € V(A)} ~ {0,1}, that is the set of all integers greater than 1 and
not exceeding the eccentricity of w, then a basis for [G,w] is the set {¢; | i € D, }, where, for each i € D, ¢; is a
commutator [z, y] where z and y are vertices of A at distance i; recall that ¢; depends only on ¢ by definition of G(A).

Remark 5.2. Let G be the class-2 nilpotent group with generators a, b, ¢ subject to the extra relations 1 = a? = b2 =
c? = [b,c]. Then |G| = 25 and |G/Z(G)| = 23, and both b and ¢ have breadth 1 in G, but X(G) is not connected since
the vertex aZ(G) is isolated.

On the other hand, it can be worth noting that if G is a p-group with an element w of breadth 1 and X(G) is
connected (or at least has no isolated vertices), then diam(K(G)) < 4. Indeed, every g € G \ Z(G) must satisfy
Z(G) < Cg(g) n Cg(u), otherwise C(9)/Z(G) would have order p, hence Cg(g) = {(¢)Z(G) and ¢Z(G) would be
isolated in K(G); therefore uZ(G) has eccentricity 2 in X(G). The case when diam(X(G)) = 4 actually occurs for the
group G(P) where P is a path of length 4, which is a finite 2-group of class 2 with an element of breadth 1.

If A is a finite connected graph it is possible that diam(XG(A)) is much smaller than diam(A). We provide a few
examples of this behaviour.

Proposition 5.3. If A is a cycle on more than 3 vertices, then diam(XG(A)) = 2.

Proof. Let n = |[V(A)|, G = §(A) and I' = XG(A). Then diam(A) = v := |n/2], so that brg(g) < 1k(G') =v -1
for all g € G. It will be enough to show that rk (G/Z(G)) > 2(v — 1), since in this case Z(G) < C¢({g,h}) and so
dr(g,h) <2 forall g,he G\ Z(G).

Let X € V(A) and assume P(X) € Z(G). If n is even, that is, n = 2, we claim that X = &. For, let a € X. There
exists exactly one vertex a’ of A such that da(a,a’) = v, and no vertex of A except a has distance v from o’. Since
v > 1 this contradicts Lemma 2.1 if this latter is applied to X and {a’}. Then Z(G) = G’ if n is even, and this proves
the result in this case since rk(G/G’) = n. Now assume that n is odd, that is, n = 2v + 1. Let again a € X. Then
there exist exactly two vertices b1,bs in A at distance v from a. There are exactly two vertices of A at distance v
from by, namely a and a vertex a; adjacent to a. On applying Lemma 2.1 to X and {b}, since a € X we deduce
a1 € X. Also, a and the vertex as adjacent to a and different from a; are the only two vertices of A at distance v
from by, therefore ay € X. We have shown that every vertex of A which is adjacent to an element of X is in X as well.
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Therefore either X = & or X = V(A), and so |Z(G)/G’| < 2 (as a matter of fact, equality holds here). Therefore
rk (G/Z(G)) = n — 1 = 2v; this completes the proof. O

In the next example we consider a class of starlike trees. In a way, this example could be considered more interesting,
given that the embeddings of subtrees in trees are always isometric. For all positive integers p > 2 and d > 1, we let
¥, a be the finite tree in which one vertex r (the root) has degree p, all remaining vertices have degree 1 or 2 and
those of degree 1 (the leaves) have distance d from r. In other words, ¥, 4 is the union of p paths of length d which
have one endpoint (r) and (pairwise) no other vertices in common. Of course, diam(3, 4) = 2d.

Proposition 5.4. For all integers d > 1 we have diam (XG(33,4)) = 3 and diam (XG(2,,4)) = 2 for all integers p > 3.

Proof. Let ¥ = ¥, 4 and I' = KG(X). For each integer p > 2 let L be the set of all leaves in 3; for all a € L let
B, (the a-branch) be the path in ¥ joining a to the root r, and let o’ be the vertex of B, adjacent to a. Next, let
L'={d |acL}.

Let X € V(X). If, in G := §(X), some a € L is centralised by P(X), then it follows from Lemma 2.1 that
X nV(B,) € {a,d’} and for each i € {1,2,...,d} the number of the leaves b € L \ {a} such that the vertex of By at
distance i from r lies in X is even. Now assume P(X) € Z(G). From the fact that P(X) centralises all leaves in ¥ it
follows that X < LU L'. Also, for all a € L the number of leaves in X \ {a} is even; then either L € X and p is odd or
L n X = @. In the former case P(X) would not centralise r, therefore X < L’. By a similar argument either X = L’
and p is odd or X = @. In the former case [P(X),r] = 1 implies d = 2; conversely, P(L’) € Z(G) if p is odd and d = 2.
We have shown that either Z(G) = G’, in which case rk(G/Z(G)) = |[V(Z)| = 1 + dp, or p is odd and d = 2, in which
case Z(G) = G'(P(L')) and rk(G/Z(G)) = 2p. On the other hand, rk(G’) = diam(X) — 1 =2d — 1. If p > 3 then we
have rk(G/Z(G)) > 21k(G’) and as in the proof of Proposition 5.3 we deduce diam(I") = 2 in this case, as required.

From now on we let p = 3. Let a, b and ¢ be the three leaves in ¥. The 3-cycle (abc) extends to an automorphism 7
of ¥ permuting the three branches. Let X < V(X) be such that P(X) € Ca({a,br}). Let X, := Bo,nX, X} := Byn X
and X, := B, n X. The description of Cg(a) in the previous paragraph shows that r ¢ X, X, € {a,d'} and X. = X].
Also, X, u X, is the set of all vertices in X at distance greater than d from either r or b, namely from b, then
Lemma 2.1 and [br, P(X)] = 1 imply P(X, u X.) € C(b). So, by the previous paragraph again, X, = X7. Therefore
X =X" < Lulin other words X € {&, L, L', L u L'}. Tt follows that P(X) commutes with b and hence with 7.
As in the previous paragraph [P(X),r] = 1 implies L & X, hence either X = @ or d = 2 and X = L'. In both cases
P(X) € Z(G). Therefore Cg({a,br}) = Z(G), so that dr(a,7b) > 2 and diam(I") > 3.

If d = 2 then r and P(L) are two noncommuting elements of breadth 1 in G; therefore diam(I") = 3 by Lemma 5.1.
Now assume d > 2; then Z(G) = G’. The automorphism 7 of ¥ induces an automorphism ¢ of G, of order 3, acting
trivially on G’. Call symmetric the elements of G which are fixed by ¢. If s is one such element, then brg(s) < d — 1,
because if B is any of the three branches of ¥ and v € V/(B), then s = uu?u?” for some u € (V(B)) and [v, ufu?’] = 1,
hence [v,s] = [v,u] € (V(B)) and (V(B)) = (V(B,;)) for any other branch B;. Now let g,h € G~ Z(G). Then
s := gg¥g¥ is symmetric and commutes with g, since lg,97] = [g,g‘/’]“’2 = [g*"2,g]. But brg(h) < tk(G') = 2d — 1,
hence brg(h) + brg(s) < (2d — 1)+ (d— 1) < 1+ 3d = 1k(G/Z(G)) and Z(G) < Cg({h,s}), so that dr(5,h) < 2 and
dr(g,h) < 3. We conclude that diam(I") = 3 in this case as well; now the proof is complete. O

It is easily seen that if A is an infinite connected graph, then diam(XG(A)) may well be infinite. This is for instance
the case when A is a ray:

Proposition 5.5. Assume that A is a ray. Then A is isometrically embedded in KG(A), hence diam (KG(A)) is
infinite.

Proof. Let G := G(A) and I' = KG(A), and let a,b e V(A). Also let n = da(a,b) and m = dr(a,b). Fix a path Q in I"
of length m joining @ and b. There are a finite subset X of V(A) such that each vertex in @ belongs to (X)Z(G)/Z(G)
and a path P in A of length greater than 2 such that X < V(P). Of course a,b € X and n = dp(a,b). Up to the
identification of XG(P) with a subgraph of I', Q may be viewed as a path of minimal length joining @ and b in XG(P),
hence Corollary 3.3 yields m = dxg(p)(a, b) = dp(a,b) = n. a

Remark 5.6. Assume that A is a connected graph, and let G = G(A). If, after the reduction suggested by Lemma 2.3,
|V(A)] is ‘much bigger’ than diam(A), then it is often the case that KXG(A) is connected and diam (KG(A)) = 2. For
instance, this is the case when V(A) is uncountable and P(S) ¢ Z(G) for all 2-element subsets S of V(A). For,
if XG(A) is not connected or diam (XG(A)) > 2 then there are finite nonempty subsets X,Y of V(A) such that
Cc({g,h}) = Z(G), where g = P(X) and h = P(Y). Since V(A) is uncountable there exist uncountably many pairs
(a,b) of vertices of A such that a # b but da(a,z) = da(b,z) for all z € X Y, and so abe Cg({g,h}) = Z(G).

By the same argument, diam(KG(A)) = 2 if the condition that V' (A) is uncountable is replaced by requiring that A
is infinite but diam(A) is finite (which implies, by itself, that diam (XG(A)) is finite, according to the main theorem).

In either case the hypothesis on the two-element subsets cannot be disposed of. For instance, the graph 3 obtained
by joining a ray R with a (disjoint) complete graph K of any uncountable cardinality, and adding edges from each
vertex of K to the endvertex of R is an example of an uncountable connected graph such that XG(X) ~ KXG(R) has
infinite diameter.
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The final result in this paper is a refinement of the main theorem in the case of graphs of small diameter. The
proof of Lemma 4.3 shows that if A is a connected graph of diameter 3 not only diam(XG(A)) < 3 but equality here
is only attained in the obvious case, that is when, up to identification, G(A) = G(P)Z(G(A)) for a path P of maximal
length in A. We are going to show that the same is true for graphs of diameter 4, 5 or 6. It might even be the case
that this strengthened form of the main theorem actually holds for connected graph of arbitrary finite diameter.

To start with our proof we state two extended versions of Lemmas 3.1 and 4.2.

Lemma 5.7. Let A be a connected graph containing an isometrically embedded path P of length n > 3. Let x be a
vertex of A at distance 1 from P and assume that X is a nonempty subset of V(P) u {z} such that P(X) € Z(5(A)).
Then z € X and either |X| = 2 or n = 4 and the following hold: X is the set whose elements are x and the two
vertices of P adjacent to the endvertices a and b of P, the only vertex of P adjacent to x is the one at distance 2
from a (and b) and the subgraph of A induced by V (P) u {z} is isometrically embedded in A.

Proof. x € X because of Lemma 3.1, and | X| > 1 because x cannot be adjacent to both a and b. For all i € {0,1,...,n}
let a; be the vertex of P at distance ¢ from a. Let d = da(a,z). Since [P(X),a] = 1, Lemma 2.1 shows that
(XnV(P))~{a,a1} is empty if d = 1 and is {aq} if d > 1. A similar remark applies to b and a,,_1 in place of @ and ay;
this also shows that | X n{a,a1}| < 1, and | X n {b,a,,—1}| < 1. It follows that either |X| = 2 or X has three elements,
namely x, ag and a,_g, where d’ = da(b,x), and in this latter case d,d’ > n — 1. Assume |X| = 3, and let f and ¢
respectively be the least and the largest 7 such that a; ~z. Thenn—-1<d< f+1landn—1<d <n-—/{+1, hence
n—2<f<f<2 Sincen>3weobtainn =4, f={¢=2andd=d = 3. Therefore X = {x,a1,a3}. It is easily
seen that the information collected also implies the remaining properties required; now the proof is complete. O

The case |X| = 3 in the previous lemma can actually occur, it does for instance in the graph X3 o discussed in
Proposition 5.4. It is plain that the condition |X| = 3 uniquely determines the subgraph induced by V(P) u {z} up
to isomorphism.

Lemma 5.8. In the notation of Lemma 4.2, let g € G\ Z(G). If dlam I" > 4 then r = rk(G/Z(G)) < bra(g

)+
Proof. Let h € G\ Z(G). Then brg(h) < n—1. If r > brg(g) +n—1 then Z(G) < Ca(g) nCq(h), hence dr(h,g) <
The result follows. D

n—

Proposition 5.9. Let A be a connected graph of diameter n € {3,4,5,6}, and let P be a path of length n in A joining
two vertices whose distance in A is n. Then diam (KXG(A)) = n if and only if G := §(A) = HZ(G), where H is the
subgroup of G generated by the vertices of P, and so KXG(A) ~ KG(P).

Proof. P is isometrically embedded in A, hence Lemma 2.2 (i) gives H ~ §(P). By Lemma 2.2 (ii), it G = HZ(G)
then KG(A) = K(G) is isomorphic to K(H) ~ XG(P) and so has diameter n by Theorem 3.8.

Conversely, assume diam(KG(A)) = n; we have to show that G = HZ(G). The vertices in P are pairwise not
equivalent with respect to the equivalence relation p defined on V(A) as in the paragraph preceding Lemma 2.3. As
a consequence, the subgraph A, defined there can be chosen such that it contains P as a subgraph. Now we have
two isometric embeddings: P — A, and A, — A; according to Lemma 2.2 they induce group monomorphisms
a: K(P) — Go := K(A,) and : Gy — G. Lemma 2.3 gives diam(A,) = n and G = G,Z(G), where G, = im f3.
Note that Hy = im« is the subgroup of Gy generated by V(P); moreover H = Hg If Go = HoZ(Gyp), then, on
taking images under 3, we have G, = HZ(G,) and hence G = HZ(G), because G = G,Z(G) and so Z(G,) < Z(G).
This means that, in order to complete our proof, we may substitute A, for A. Thus we may (and shall) assume
P(X) ¢ Z(G) for all subsets X of V(A) such that |X| = 2, since, by construction, A, satisfies the corresponding
property. As n > 2 we also have v ¢ Z(G) for all v e V(A).

Arguing by contradiction, assume HZ(G) < G. Let a and b be the endvertices of P and, as usual in this paper,
for each i € N such that ¢ < n let a; be the vertex of P at distance i from a. Let r = rk(G/Z(G)). By Lemma 4.2 we
have n +1 <r <2(n—1). Then n > 3.

Assume n = 4, then the same inequalities yield r = 6. Lemma 3.1 gives tk(H Z(G)Z(G)) = 5, hence |G/HZ(G)| = 2.
Choose z € V(A) N\ HZ(G) at minimum distance d from P and let K = H{z). As G’ = H' < H, we have K < G}
moreover G = KZ(G), because HZ(G) is maximal, and rk(K/G’) = 6, hence Z(K) = KnZ(G) = G'. Lemma 5.7 and
our assumptions show that if y € V(A) n HZ(G) (that is, P(Y u {y}) € Z(G) for some Y < V(P)) and da(y, P) =1
then ao is the only vertex of P adjacent to y. Suppose d > 1. By the previous remark, as is a vertex of each path
joining « to a vertex of P, hence d = da(x,as), moreover, if @ is a path of length d from x to as then the subgraph
¥ of A induced by V(P) u V(Q) is isometrically embedded in A. Let y be the vertex of @ adjacent to ag. Then
Lemma 5.7 also gives g := ajasy € Z(G), hence 1 = [z, g] = [z,y] so that d = 2 and X is isomorphic to the graph s o
of Proposition 5.4. But G = (V(X2))Z(G), hence XG(X) ~ KG(A) and we obtain the contradiction diam(KG(A)) = 3.
Therefore d = 1.

Assume 2 ~ az. Then brg(az) = 1 (note that brg(g) = bri(g) for all g € K). Let o = da(z,a) and 8 = da(z,b);
then o, 8 < 3. If o, 8 < 2 then brg(z) = 1 and [z, G] = [az2, G]; then Lemma 5.1 implies Cg(z) = Cg(az2), whence
we obtain the contradiction zas € Z(G). Then, without loss of generality, 5 = 3, hence b € Cg(zay). If @ < 3 then
[za1, G] = [az2,G] (note that za; ¢ Z(G) by our assumptions), but b ¢ Cg(az), so Lemma 5.1 yields a contradiction
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again. If, finally, & = 3 then the subgraph induced by V(P) u {z} is isometrically embedded in A, and zaqa3 € Z(G),
so ¢ € HZ(G), yet another contradiction. Therefore 2 # ay. This also shows that all vertices of A adjacent to ag lie
in HZ(G).

Next we assume that no vertex of A outside P is adjacent to either of a; and a3z. Then, without loss of generality
z ~ a, and x cannot be adjacent to any other vertex of P. If there exists y € V(A) such that © ~ y ~ ay then
y ¢ V(P), and y € HZ(G) by the previous paragraph, hence yajaz € Z(G) by Lemma 5.7; this is impossible because
[z,a1a3] # 1. Then da(z,a2) = 3. Next, da(z,a3) = 4, because da(x,b) > 2 and a3 has degree 2 in A. Since
da(x,b) < 4 it is now clear that there exists y € V(A) \ V(P) such that y ~ b. But G = KZ(G) = H{y)Z(G): the
latter equality follows from the fact that otherwise, by Lemma 5.7, as would have to be the only vertex of A adjacent
to y. Then xyP(S) € Z(G) for some S < V(P). This is certainly false because z is the only vertex in V(P) u {z, y}
at distance 4 from as.

Collecting the information obtained thus far (and invoking Lemma 5.7 again) we see that we may assume, without
loss of generality, © ~ a;. Then da(z,as2) = 2 and so bra(ag) = 1. Since 1 # [z,a2] = [za1, az], Lemma 5.1 gives
brg(z) # 1 # brg(zay). Let 0 = da(x,a3) and 7 = da(z,b). If 0 < 2, either 7 < 2 (and so brg(xz) = 1) or 0 = 2
and 7 = 3 (and so brg(za;) = 1). Therefore 0 = 3. If 7 = 4 then brg(za) = 1 and b € Cg(xza) \ Cg(az), which is
again excluded by Lemma 5.1 and the remark following it. Then 7 < 3, and so y ~ b for some y € V(A) N\ V(P). As
before Lemma 5.7 gives g := xzyP(S) € Z(G) for some S < V(P); but [as,g] = 1 implies a € S, which is excluded by
[b,9] = 1. This contradiction completes the proof in the case n = 4.

Now we tackle the cases n = 5 and n = 6; the argument is largely based on locating C' := C¢g(a3). Since bry(as) = 2,
Lemma 3.1 yields rk (C n HZ(G)/Z(G)) = n — 1. Then r = brg(as) + s + n — 1, where s = rk (C/C' n HZ(G)). On
the other hand Lemma 5.8 gives r < brg(as) + n — 1; therefore s = 0, that is, C < HZ(G). If n = 5, after exchanging
the roles of a and b, the same argument also gives Cg(az2) < HZ(G). Let x be any vertex of A at distance 1 from P.
By Lemma 5.7, x ¢ HZ(G). If n = 5, it is easily checked that there is some v € V(P) such that one of ay and a3
has the same distance from v and = and so centralises vx. This gives Cg(az2)Cq(as) £ HZ(G), a contradiction. Then
n = 6. Now, since & # ag, the same argument (applied to az only) excludes the possibility that x is adjacent to
any vertex in V(P) \ {a,b}. Then for all i € {1,2,3,4,5}, a; has degree 2 in A and we may assume x ~ a. If b has
degree 1, then da(z,b) = 7, a contradiction, hence b ~ y for some y € V \ V(P). Also, da(x,a3) = 4 = da(y,as3),
hence zy € Cg(as) < HZ(G). Then, once again, g := zyP(S) € Z(G) for some S < V(P), but, for instance, such a g
cannot centralise a1, because da(y,a) = 5 and so da(y,a;) = 6. Now the proof is complete. O

As a closing remark, we note that even in the case n = 6 the argument in the last paragraph of the proof does only
use the assumption that HZ(G) < G and diam(XG(A)) > 4. Therefore it actually shows that if A is a connected
graph of diameter 6, then XG(A) cannot have diameter 5.
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