1. The Tikhonov-Regularized (TR) formulation

The TR problem can be described as following:

\[u(\lambda) = \text{argmin}_u \{ \|Hu - v\|^2_R + \lambda \|u - u^M\|^2_B \} \]

where \(\| \cdot \|_R \) and \(\| \cdot \|_B \) denote the weighted norms with respect to the error covariance matrices \(B \) and \(R \) and \(\lambda \) is the regularization parameter.

2. The decomposed TR formulation

Let \(\Omega \in \mathbb{R}^3 \) be the domain decomposed into a sequence of overlapping sub-domains \(\Omega_i \in \mathbb{R}^3 \), such that:

\[\Omega = \bigcup_{i=1}^{p} \Omega_i \]

The decomposed TR formulation:

\[u_i^{DA} = \text{argmin}_u \{ J(\Omega_i) + O(\Omega_i) \} \]

3. Performance Analysis – Scaleup factor

If \(p \in N \) and \(p > 1 \), the algorithm associated to the decomposition given is:

\[A(\Omega, p) := (A(\Omega_1), A(\Omega_2), \ldots, A(\Omega_p)) \]

Let \(p_1, p_2 \in N \) and \(p_1 < p_2 \). Let \(T(A(\omega, p_i)) \) denote the time complexity of \(A(\omega, p_i) \), \(i = 1, 2, \forall i \neq j \) we define the (relative) scale-up factor of \(A(\omega, p_2) \), in going from \(p_1 \) to \(p_2 \), the following ratio:

\[S_{p_2, p_1}(N) = \frac{T(A(\Omega, p_2))}{T(A(\Omega, p_1))(p_2/p_1)T(A(\Omega, p_2))} \]

4. Case Study: Data Assimilation problem

Let \(t \in [0,T] \) denote the time variable. Let \(u^{true}(t, x) \) be the evolution state of a predictive system governed by the mathematical model \(M \) with \(u^{true}(t_0, x), t_0 = 0 \) as initial condition. Here we consider a 3D shallow water model. Let \(v(t, x) = H(u^{true}(t, x)) \) denote the observations mapping, where \(H \) is a given nonlinear operator which includes transformations and grid interpolations.

5. Results

We consider two hybrid architectures: HA1 is a 288 CPU-multicores, HA2 is a GPU+CPU architecture.

\[
\begin{array}{c|c|c|c|c|c}
\text{N} & \text{p} & \text{pproc} & \text{T}_{\text{flip}}(N) & \text{T}_{\text{nproc}}(N) & \text{S}_{\text{nproc}} \\
\hline
10^6 & 1 & 2 & 1 & 1 & 1 \\
10^6 & 2 & 4 & 0.044 & 0.019 & 2.3 \\
10^6 & 8 & 4 & 0.025 & 0.023 & 1.09 \\
10^6 & 4 & 8 & 0.025 & 0.025 & 1.09 \\
10^6 & 16 & 8 & 0.025 & 0.025 & 1.09 \\
\hline
\end{array}
\]

Values of execution time of algorithm running on GPU for a problem size \(O(10^6) \), \(\lambda = 1 \), \(\alpha = 1 \), thus the above analysis validates the experimental results.

6. Discussion

We now discuss scalability results shown in the tables. To this end, we introduce

\[
S_{\text{loc}}^{\text{nproc}} = \frac{T_{\text{flip}}(N/p) + \alpha T_{\text{nproc}}(N/p)}{T_{\text{nproc}}(N/p)}
\]

which denotes the speed up of the (local) algorithm \(A(D_N(\Omega), N/p) \) for solving the local problem on subdomain \(D_N(\Omega) \). Let us express the measured scale up factor in terms of \(S_{\text{loc}}^{\text{nproc}} \). We have:

\[
S_{\text{loc}}^{\text{nproc}} = \alpha S_{\text{loc}}^{\text{nproc}} + \frac{s_{\text{loc}}}{s_{\text{nproc}}} + \frac{\alpha}{1 + \alpha} \]

Finally, it is worth noting that in our experiments, on HA1, local DA problems are sequentially solved, then \(S_{\text{nproc}} = 1 \) and \(\alpha > 1 \), thus the above analysis validates the experimental results.