Designs and graph decompositions over finite fields

Marco Buratti (joint work with Anamari Nakic)

University of Perugia buratti@dmi.unipg.it

A 2- (v, K, λ) design over the finite field \mathbb{F}_q is a collection S of subspaces of the vector space \mathbb{F}_q^v with dimensions from the set K and the property that any 2-dimensional subspace of \mathbb{F}_q^v is contained in exactly λ members of S. Of course it can be also viewed as a collection \overline{S} of subspaces of the projective space $\mathrm{PG}(v-1,q)$ with dimensions from $\{k-1 \mid k \in K\}$ such that any two distinct points belong to exactly λ members of \overline{S} . It is trivial when $K = \{2\}$. When $K = \{k\}$ is a singleton, one simply writes "k" rather than " $\{k\}$ ".

To construct these designs seems to be quite hard. Indeed, in spite of the fact that the topic received a considerable amount of attention over the years, the well-celebrated 2-(13, 3, 1) design over \mathbb{F}_2 recently obtained by Braun et al. [1] with the use of the Kramer-Mesner method is the only non-trivial example having $\lambda = 1$ known at this moment. Also, for $\lambda > 1$ only few theoretical constructions are known. Among them, we have the existence of a 2-(v, 3, 7) design over \mathbb{F}_2 for any $v \equiv \pm 1 \pmod{6}$ obtained by Thomas [2].

In the first part of my talk I will show how we used difference methods in order to extend Thomas result to the case $v \equiv 3 \pmod{6}$ and to multiple dimension sizes.

In the second part, starting from the very well-known remark that a classic 2- (v, k, λ) design can be viewed as a decomposition of the λ -fold of the complete graph of order v into cliques of size k, I will propose the new notion of a graph decomposition over a finite field presenting several concrete constructions such as a decomposition of the complete graph on the points of PG(6, 2) into heptagons each of which has vertex-set coinciding with the point-set of a plane.

Bibliography

- M. BRAUN, T. ETZION, P.R.J. OSTERGARD, A. VARDY, A. WASSERMANN, Existence of q-analogs of Steiner Systems, Forum of Mathematics, Pi, 4 (2017).
- [2] S. THOMAS, Designs over finite fields, Geom. Dedicata, 93 (1987), 237–242.