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1 Introduction

Question: are Fourier series unique?
To be precise: let (an), (bn) be sequences of complex numbers such that

∞∑
n=−∞

aneint =
∞∑

n=−∞
bneint (1)

for all t ∈ [0, 2π), with both series converging; does it follows that an = bn for all n? Cantor (1870)
showed that the answer is affirmative and he went on to ask: what happens if you only know (1) for
all t lying outside some small exceptional set E? He showed that the answer is again affirmative for
countable closed sets E. (This was later extended by W. H. Young (1909) to arbitrary countable sets.)
It was through this work that Cantor came to create what we now know as infinite set theory.

We shall leave the Fourier series question here . A reference which continues that story is:
Alexander S. Kechris and Alain Louveau, Descriptive set theory and the structure of sets of uniqueness,
(Cambridge University Press, LMS Lecture Note Series 128, 1987) ISBN 0-521-35811-6 367pp.

We shall be sketching a development of set theory from the axioms of Zermelo and Fraenkel. We
assume that everyone understands what is meant by the word ‘set’ (actually it holds the record for
the word with the most meanings listed in the Oxford English Dictionary — 464 entries! ). Cantor’s
definition (1895) of the word set (= Menge) was as follows.

‘Unter einer “Menge” verstehen wir jede Zusammenfassung M von bestimmten wohlun-
terschiedenen Objecten m unsrer Anschauung oder unseres Denkens (welche die “Elemente”
von M gennant werden) zu einen Ganzen.’

Roughly,

‘By a “class” we understand a combination (summary) M of definite, well-distinguished
objects m of our intuition or of our thought (which are called “elements” of M) into one
whole.’
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But E. T. Bell comments helpfully that

‘No two of a dozen mathematicians and scientists bilingual in English and German agreed
on the meaning of this definition; two said it was meaningless. This definition is one source
of trouble in the foundations of mathematics.’

We shall modestly take the view that set theory encompasses all of mathematics. But, set of what?
Sets of sets, of course! The only things which exist in our universe are sets. We shall see that this is
not as stupid as it sounds.

Our theory then is about certain undefined objects called ‘sets’ between any two of which a certain
relation, denoted ∈ and called ‘membership’ may or may not hold. We now present the axioms.

2 The axioms of Zermelo–Fraenkel set theory

To formally develop ZF set theory, one must start with formal logic: the Propositional Calculus (the
study of the connectives & , ∨ (or), ¬ (not), ⇒ , ⇐⇒ ), the Predicate Calculus (∀xP (x),
∃xP (x)), the Predicate Calculus with Equality (distinguished predicate E(x, y) written x = y). The
theory ZF is developed from the Predicate Calculus with Equality by adding the distinguished binary
predicate ∈. The variables are thought of as sets and x ∈ y is to mean ‘x is a member of y’. In this
informal introduction to the formal theory, we shall assume that the reader has a vague notion of what
the axioms and theorems of the Predicate Calculus with Equality should be, based on his/her long
experience of reasoning with statements involving the logical notions mentioned above. We shall state
the axioms precisely, but we shall not attempt full formal proofs.

We write x �∈ y as an abbreviation for ¬(x ∈ y).
We write ∃! to mean ‘there exists a unique. . . ’, i.e. ∃!xQ(x) is an abbreviation for

(∃xQ(x)) & ∀x∀y(Q(x) & Q(y) ⇒ x = y).

The Axiom of Extensionality
This says that a set is determined by its extension — that is, by the elements it contains.

(AE) ∀z(z ∈ x ⇐⇒ z ∈ y) ⇒ x = y.

This axiom contains free variables x, y. There is an implicit ∀x∀y applying to the whole axiom. Note
that the converse implication

x = y ⇒ ∀z(z ∈ x ⇐⇒ z ∈ y)

is a consequence of one of the axioms of our underlying logic (the Predicate Calculus with Equality);
to be precise, it is an instance of the axiom scheme

x = y ⇒ (P (x) ⇐⇒ P (y))

where P is any predicate.
The major consequence of this is that there is at most one set with no elements (the fact that

such a set exists is axiom (AN) below). An alternative would be to allow lots of such ‘atomic’ sets (or
urelemente). The earliest proofs of the independence of the Axiom of Choice (the Fraenkel–Mostowski
models) worked with a set theory allowing infinitely many urelemente.

The Subset Axiom
This is really an axiom scheme: one axiom for each predicate P (.).

(AS) ∃y∀z(z ∈ y ⇐⇒ z ∈ x & P (z));

i.e. the set
{z ∈ x : P (z)}
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exists when x exists.
This is a cut-down version of the axiom scheme we should like to have, namely that, for each

predicate P (.), the set {z : P (z)} exists; formally,

(AS′) ∃y∀z(z ∈ y ⇐⇒ P (z)).

The reason we cannot have this scheme is that it leads to a contradiction.

Russell’s Paradox
Suppose (AS′) and let P (z) ≡ (z �∈ z), so

∃y∀z(z ∈ y ⇐⇒ z �∈ z).

In particular, for z = y we get
z ∈ z ⇐⇒ z �∈ z.

which is impossible.

The restrictive nature of (AS) is apparent when one considers how often in mathematics one wishes
to define sets just by a property: ‘the set of all groups’, ‘the set of all topological spaces’, et cetera.
There can be no ‘set of all sets’, for if there were such a set V , then {x ∈ V : x �∈ x} would be a
set by (AS) and would give us Russell’s Paradox. We can get round this by saying that the object
Y = {z : P (z)} is a class, the class of all sets z such that P (z). A class differs from a set in that
although you can talk about sets being members of classes (z ∈ Y simply means P (z)), you cannot
necessarily talk of a class being a member of a set. Of course, some classes will correspond to sets, but
others (proper classes) will not. We shall, in the future use proper classes with the assumption that if
a proper class has been defined by, say, A = {x : P (x)}, then a ∈ A is simply an abbreviation for P (a).
These abbreviations must be expanded in order to reconstruct the true formulae of ZF. (The same will
be true of all definitions of new symbols.)

Here, we are expounding Zermelo–Fraenkel (ZF) set theory; an alternative axiomatization of set
theory due to von Neumann, Bernays and Gödel (NBG set theory) has classes as the objects of the
theory and a distinguished unary predicate ‘x is a set’, with axioms ensuring that only sets can be
members of classes. The other noteworthy feature of NBG set theory is that it has a finite set of axioms
and no axiom schemes. Details may be found in Gödel’s book on the consistency of the Continuum
Hypothesis 1 and in Mendelson’s textbook 2.

The Axiom of Replacement
This is again an axiom scheme. To state it succinctly, we first introduce an definition. (Notice that

definitions in an axiomatic theory are simply abbreviations.)

Definition 2.1 For a predicate P (.) we write Mx (P (x)) for ∃y∀x(P (x) ⇒ x ∈ y).

Thus Mx (P (x)) means ‘there is a set which contains every x such that P (x). By (AS) this implies
that the class {x : P (x)} is a set.

(AR) ∀x∃y∀z(P (x, z) ⇐⇒ z ∈ y) ⇒ ∀uMy (∃x(x ∈ u & P (x, y))) .

The hypothesis is that P (x, y) defines a set-valued ‘function’ F : x 	→ y = {z : P (x, z)}. (The
inverted commas around the word ‘function’ are essential: we shall later define the notion of function
and it will be a set of ordered pairs. The thing we have here is a proper class.) The conclusion is that,
given a set u, the class

⋃
x∈u F (x) is a set. (Actually, it only says that there is a set containing this

class but, as noted above, (AS) then implies that the class itself is a set.)

The Power Set Axiom
1K. Gödel, ‘The consistency of the continuum hypothesis’ (Princeton University Press, Annals of Mathematics Studies,

3, 1940) ML 3 PER 510.5
2E. Mendelson, ‘Introduction to mathematical logic’ (van Nostrand, The University Series in Undergraduate Mathe-

matics, 1963).

3



Definition 2.2 We write x ⊆ y for ∀z(z ∈ x ⇒ z ∈ y) and x ⊂ y for (x ⊆ y & x �= y).

The Power Set Axiom is then just

(AP ) ∀xMy (y ⊆ x) .

Thus, for every set x the class {y : y ⊆ x} is a set. This set is unique (by (AE)); we call it the power
set P(x) of x

The Power Set Axiom is very useful in combination with (AS): for example, if x is a set, so is
{{y} : y ∈ x} because

Mz (z ⊆ x & ∃u(u ∈ z) & ∀u∀v(u ∈ z & v ∈ z ⇒ u = v)) .

The Axiom of the Null Set
The axioms so far can be satisfied if no sets exist! We rectify this.

(AN) ∃x∀y(y �∈ x).

This set x is unique, by (AE); we call it the null set or empty set and denote it Ø.
Having brought this set into being, we have quite a number of sets derived from it. By (AP), we

have, successively,
{Ø},

{Ø, {Ø}},
{Ø, {Ø}, {{Ø}}, {Ø, {Ø}}},

et cetera , and by (AS) we have all the subsets of these. However, all of these are finite.

The Axiom of Infinity
Next, we need an axiom to say that infinite sets exist. The following axiom, which subsumes the

Axiom of the Null Set, does that.

(AI) ∃x(∃y(y ∈ x & ∀z(z �∈ y)) & ∀y(y ∈ x ⇒ ∃z(z ∈ x & ∀w(w ∈ z ⇐⇒ w ∈ y ∨ w = y)))).

A definition will help us make sense of this.

Definition 2.3 For a set x we define

S(x) := {y : y ∈ x ∨ y = x},
i.e. ,

S(x) = x ∪ {x}.
To see that S(x) is a set looks a little complicated. As it is defined as a union, we need (AR). Define
P (a, b) to be true if a = Ø and b = x or if a = {Ø} and b = {x} and false otherwise. Then apply (AR)
with u = {Ø, {Ø}} to get that x ∪ {x} is a set. Formally,

P (a, b) ≡ ((∀z(z �∈ a)) & b = x) ∨ ((∀z(z ∈ a ⇐⇒ ∀w(w �∈ z))) & (∀z(z ∈ b ⇐⇒ z = x))).

We can now state the Axiom of Infinity briefly:

(AI) ∃x(Ø ∈ x & ∀y(y ∈ x ⇒ S(y) ∈ x)).

Thus (AI) asserts the existence of a set x which contains the following as elements.

Definition 2.4 The natural numbers:

0 := Ø,

1 := S(0) = {0} = {Ø},
2 := S(1) = {0, 1} = {Ø, {Ø}},
3 := S(2) = {0, 1, 2} = {Ø, {Ø}, {Ø, {Ø}}},
4 := S(3) = {0, 1, 2, 3},

. . .
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The Axiom of Foundation or Axiom of Regularity

(AF ) ∃y(y ∈ x) ⇒ ∃y(y ∈ x & ¬∃z (z ∈ x & z ∈ y)) .

In conventional language: every non-empty set x has an element y which is disjoint from x. Equiv-
alently, it is not possible to have a non-empty set x such that each element y of x has an element z
which is also an element of x.

If, on the contrary, this were possible, we could define x1 to be any element y ∈ x and x2 = z ∈ x∩x1,
as above. This would start a sequence x1, x2, x3, . . . of elements of x with

x � x1 � x2 � x3 � . . . .

Having found such x1, . . . , xn ∈ x, we could choose xn+1 ∈ x ∩ xn and proceed by induction.
Conversely, suppose we had such a descending sequence. Then {x, x1, x2, . . .} is a set, no element of

which is disjoint from the whole set. Thus (AF) is a way of excluding such infinite descending sequences
without having to talk about sequences and hence natural numbers, functions, et cetera .

A particular consequence of this axiom is the following proposition.

Proposition 2.5 ∀x(x �∈ x).

Proof. Suppose otherwise, that we have an x with x ∈ x. Now apply (AF) to the non-empty set {x}.
It says that there is a set y ∈ {x} such that no member of y is a member of {x}. But y ∈ {x} means
y = x and so x ∈ y and x ∈ {x}; contradiction. ♦

This completes our list of the axioms of ZF. There are other axioms we shall need to add to it: the
Axiom of Choice, the Axiom of Determinateness, the Continuum Hypothesis, large cardinal axioms, the
Axiom of Constructibility, but these have always been regarded as less secure than the basic axioms.
Indeed the additional axioms we have just listed are mutually incompatible. We shall now develop as
much set theory as we can using ZF alone.

3 Development

Definitions are essentially just abbreviations. In some cases, this is straightforward. We have already
met

x ⊆ y ≡ ∀z(z ∈ x ⇒ z ∈ y).

It is a simple matter to expand out this abbreviation.
Others are more complicated: thus if A is a proper class we have to find a definition of A as {x : P (x)}

in order to expand a ∈ A as P (a). Note that if ∀x(P (x) ⇐⇒ Q(x)) then A = {x : P (x)} = {x : Q(x)}
and a ∈ A may be rendered by the equivalent formula Q(a).

Definitions of sets of the form a := {x : P (x)} rely on an existence statement Mx (P (x)) having
been proved. To expand out such an abbreviation, a formula Q(a) becomes

∀a(∀x(x ∈ a ⇐⇒ P (x)) ⇒ Q(a)).

More generally, if we define a := ιxP (x) (the x such that P (x)), having first proved that there is one
and only one x such that P (x), then Q(a) becomes

∀x(P (x) ⇒ Q(x)).

These considerations apply to our definition Ø := ιx(∀y(y �∈ x)), whose existence is guaranteed by
(AN) and uniqueness by (AE).

We use the notation {x ∈ s : P (x)} as an abbreviation for {x : x ∈ s & P (x)}. This is the safest
form of definition since it automatically produces a set by (AS).
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Definitions 3.1

{x} := {y : y = x};
{x, y} := {z : z = x ∨ z = y};⋃

x := {z : ∃y(z ∈ y & y ∈ x)};⋂
x := {z : ∀y(y ∈ x ⇒ z ∈ y)};

x ∪ y :=
⋃

{x, y} = {z : z ∈ x ∨ z ∈ y};
x ∩ y :=

⋂
{x, y} = {z : z ∈ x & z ∈ y};

x \ y := {z : z ∈ x & z �∈ y}.

Note that {x, x} = {x}.

We shall define functions by identifying the function f : x → y with its graph, which is a subset of
x × y. To define x × y we need the concept of an ordered pair.

Definition 3.2 (Kuratowski)
(x, y) := {{x}, {x, y}}.

Note that (x, x) = {{x}}.
We check the basic property of ordered pairs.

Proposition 3.3
(x, y) = (u, v) ⇐⇒ x = u & y = v.

Proof. The proof that x = u & y = v ⇒ (x, y) = (u, v) is easy, using (AE) repeatedly.
Conversely, if (x, y) = (u, v) then we have

{x} ∈ (x, y) = (u, v) = {{u}, {u, v}},

so {x} = {u} or {x} = {u, v}. Hence u ∈ {u} = {x} or u ∈ {u, v} = {x}. Therefore u = x.
Also

{x, y} ∈ (x, y) = (u, v) = {{u}, {u, v}} = {{x}, {x, v}},
so {x, y} = {x} or {x, y} = {x, v}. Hence y ∈ {x, y} = {x} or y ∈ {x, y} = {x, v}. Therefore y = x or
y = v.

Interchanging the rôles of (x, y) and (u, v), we have that v = u or v = y. Thus, either y = v, or we
have y = x and u = v, i.e. y = x = u = v.

♦

Definition 3.4 For any two sets x, y we want to define their Cartesian product, which we want to be
a set. We must use (AS) to define it as a subset. Now if u ∈ x and v ∈ y, then {u} and {u, v} are
elements of P(x ∪ y), so (u, v) ∈ P(P(x ∪ y)). We define

x × y := {(u, v) ∈ P(P(x ∪ y)) : u ∈ x & v ∈ y}.

Definition 3.5 The ternary predicate Funct(f, x, y), henceforth written f : x → y meaning ‘f is a
function from the set x into the set y’ is defined as

f ⊆ x × y & ∀u(u ∈ x ⇒ ∃v(v ∈ y & (u, v) ∈ f)) & ∀u∀v∀w((u, v) ∈ f & (u,w) ∈ f ⇒ v = w)

We call x the domain and y the codomain of f . If z ⊆ x, we write f � z for {(u, v) ∈ f : u ∈ z}, the
restriction of f to z.
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Definitions 3.6 Given a function f : x → y and u ∈ x we define f ‘u by

f ‘u := ιv((u, v) ∈ f).

Given f : x → y and u ⊆ x we define f“u by

f“u := {v ∈ y : ∃w(w ∈ u & (w, v) ∈ f)} (2)
= {f ‘w : w ∈ u}.

In conventional mathematics, both of these are denoted f(u), but in set theory, where all objects are
explicitly sets this is ambiguous. So as not to depart too far from conventional mathematical notation,
we shall generally use f(u) for f ‘u, but not for f“u.

Expressions such as (3) can be abbreviated by writing

∃w ∈ u(P (w)) for ∃w(w ∈ u & P (w)),
∀w ∈ u(P (w)) for ∀w(w ∈ u ⇒ P (w)).

We shall do this in future.

Definition 3.7 A function f : x → y is injective if

∀u1 ∈ x∀u2 ∈ x(f ‘u1 = f ‘u2 ⇒ u1 = u2). (3)

Formally, this definition is a definition of ‘f : x → y is injective’ as an abbreviation for (3), but we are
gradually dropping the rigidly formal approach.

4 Ordinals and Transfinite Induction

We have already indicated how to define the natural numbers 0,1,2,3, . . . (Definition 2.4). Starting with
0 = Ø, we defined each successive number to be the set of all the preceding ones.

Continuing in the same way, we can define

ω := {0, 1, 2, . . .}, the set of all natural numbers,
ω + 1 := ω ∪ {ω} = {0, 1, 2, . . . , ω},
ω + 2 := (ω + 1) ∪ {ω + 1} = {0, 1, 2, . . . , ω, ω + 1},

. . .

These are the infinite ordinals. We now define them more systematically.

Definition 4.1 A set x is ∈-transitive if every member of x is a subset of x. Written symbolically:

∀y∀z(z ∈ y & y ∈ x ⇒ z ∈ x).

A set x is an ordinal if x and every member of x is ∈-transitive.

Remark 4.2 Every member of an ordinal is an ordinal. (Proof: easy exercise)

Definition 4.3 For ordinals α, β we define

α < β ⇐⇒ α ∈ β

and
α ≤ β ⇐⇒ α ∈ β or α = β.
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We show that ≤ is a partial ordering of the ordinals. The ∈-transitivity of γ gives us

α < β & β < γ ⇒ α < γ,

so < is transitive. Anti-reflexivity, the fact that ¬(α < α), follows from α �∈ α (Proposition 2.5).
Transitivity plus anti-reflexivity imply antisymmetry:

α < β ⇒ ¬(β < α).

These three properties easily translate into the three axioms for the partial order ≤:

1. α ≤ α;

2. α ≤ β & β ≤ γ ⇒ α ≤ γ;

3. α ≤ β & β ≤ α ⇒ α = β.

We want to show that the ordinals are well-ordered: i.e. that they are totally ordered and that any
non-empty class of ordinals has a least. We begin by proving that any non-empty class of ordinals has
a minimal element (which is not, at this stage, known to be unique).

Proposition 4.4 For any predicate P ,

∃αP (α) ⇒ ∃µ(P (µ) & ∀β(β < µ ⇒ ¬P (β))).

Proof. Let α be any ordinal such that P (α). If ∀β(β < α ⇒ ¬P (β)), then µ = α is the desired
ordinal. If not, then

x = {β : β < α & P (β)}
is nonempty. We now use (AF):

(AF ) ∃y(y ∈ x) ⇒ ∃y (y ∈ x & ¬∃z(z ∈ x & z ∈ y)) .

Let µ be the set y given by (AF). Since y ∈ x, we know that y is an ordinal less that α. The statement
¬∃z(z ∈ x & z ∈ µ) then says that no member z of µ is in x. That is, no ordinal less than µ has
property P . ♦

Now we show that the ordering is total.

Proposition 4.5 For all ordinals α, β just one of the following holds: α < β, α = β, β < α.

Proof. Clearly at most one of α < β, α = β, β < α can hold. Let us say that α and β are comparable if
one does hold. Suppose that it is not true that every pair of ordinals are comparable. Then there is an
ordinal which does not have the property of being comparable with every other ordinal. Therefore, by
the previous proposition, there is a minimal such ordinal; call it µ. There is an ordinal not comparable
with µ, and so there is a minimal such ordinal; call it ν.

We show that ν ⊆ µ. Let α ∈ ν. Then α is an ordinal less than ν so, by the minimality of ν, we
have that α is comparable with µ. Now µ = α and µ < α both imply µ < ν, contrary to hypothesis, so
we must have α < µ, i.e. α ∈ µ.

In fact, ν ⊂ µ, since µ and ν are incomparable. Let ρ ∈ µ \ ν. Since µ is an ordinal and ρ ∈ µ, we
know that ρ is an ordinal less than µ. By the minimality of µ, every ordinal is comparable with ρ. In
particular, ρ and ν are comparable. Now ρ �∈ ν, so either ν = ρ or ν < ρ. However, since ρ < µ, either
of these implies ν < µ, contradicting the choice of ν. This final contradiction proves the result. ♦

Corollary 4.6 Every non-empty class of ordinals has a unique minimal element.

Corollary 4.7 Every ordinal is well-ordered by ∈.

Our development of the theory of ordinals has followed that of Schoenfield3. An alternative (used in
Levy’s book4) is to define ordinals as sets which are ∈-transitive and well-ordered by ∈. The above
corollary, together with Exercise 6.2 below, show that the two definitions are equivalent.

3J. R. Schoenfield, ‘Mathematical Logic’, (Addison-Wesley, 1967) §9.3.
4Azriel Levy ‘Basic Set Theory’(Springer 1979) Definition II.3.8.
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Proposition 4.8 If α, β are ordinals, then α ≤ β iff α ⊆ β.

Proof. The fact that α ≤ β ⇒ α ⊆ β follows from the ∈-transitivity of β. Conversely, if α ⊆ β
then α ≤ β, since otherwise Proposition 4.5 would imply β < α, so β ∈ α ⊆ β, which implies β ∈ β,
contrary to Proposition 2.5. ♦

The Principle of Transfinite Induction

Theorem 4.9 For any predicate P , if

∀α(∀β(β < α ⇒ P (β)) ⇒ P (α))

then ∀αP (α).

Proof. Suppose the conclusion is false. Let µ be the least ordinal such that ¬P (µ). Then
∀β(β < µ ⇒ P (β)) holds, but P (µ) fails, contradicting the hypothesis. ♦

We recall Definition 2.3 S(α) = α ∪ {α}.
Exercise 4.10 Show that if α is an ordinal, then S(α) an ordinal and it is the least ordinal greater
than α.

Exercise 4.11 Show that if α, β are ordinals with S(α) = S(β), then α = β.

Definition 4.12 We say that α is a successor ordinal if there is some ordinal β with α = S(β). If α is
neither a successor ordinal nor 0, we say that α is a limit ordinal.

We need to show that limit ordinals exist. (We have already introduced ω = {0, 1, 2, . . .}, the set of
all natural numbers, informally. Now we construct it more formally.)

Proposition 4.13 If x is a set of ordinals, then
⋃

x is an ordinal.

We recall that ⋃
x := {z : ∃y(z ∈ y & y ∈ x)}.

Proof. (Exercise) ♦
By Proposition 4.8,

⋃
x is the least ordinal µ such that α ≤ µ for all α ∈ x. We shall write

µ = sup{α : α ∈ x}.
Corollary 4.14 The class On of all ordinals is a proper class.

Proof. If On were a set, α =
⋃

On would be an ordinal greater than or equal to every ordinal. This is
impossible since α < S(α). ♦

The is the Burali–Forti paradox (1897); (it was a paradox before the distinction between sets and
proper classes was introduced).

Proposition 4.15 There is at least one limit ordinal.

Proof. We use the Axiom of Infinity:

(AI) ∃x(Ø ∈ x & ∀y(y ∈ x ⇒ S(y) ∈ x)).

Let
µ =

⋃
{α : α ∈ On & α ∈ x}.

Then µ is an ordinal and for all ordinals α ∈ x, we have α ⊆ µ and so α ≤ µ. Since 0 = Ø ∈ x we
have 1 = S(0) ∈ x and so 1 ≤ µ. If µ = S(β), then β ∈ µ, so β ∈ α ∈ x for some ordinal α; but then
S(β) = µ ≥ α > β, so µ = α. By the definition of x, we have S(α) ∈ x, so µ ≥ S(α); contradiction.
Thus µ is neither 0 nor a successor ordinal; i.e. it is a limit ordinal. ♦
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The successor form of Transfinite Induction

Theorem 4.16 For any predicate P , if

1. P (0),

2. ∀α(P (α) ⇒ P (S(α))) and

3. for every limit ordinal λ,
(∀α < λ)P (α) ⇒ P (λ),

then ∀αP (α).

Definition 4.17 The least limit ordinal is denoted ω. Its members are the natural numbers. An ordinal
is said to be finite if it is a natural number and infinite otherwise.

Proposition 4.18 The Peano axioms for arithmetic.

1. 0 ∈ ω

2. n ∈ ω ⇒ S(n) ∈ ω

3. A ⊆ ω & 0 ∈ A & (n ∈ A ⇒ S(n) ∈ A) ⇒ A = ω

4. n ∈ ω ⇒ S(n) �= 0

5. (n,m ∈ ω & S(n) = S(m)) ⇒ n = m

Definition by transfinite induction
We wish to define a ‘function’ F inductively, using a formula G which, for each ordinal α, gives

F (α) in terms of α and the values F (β) for β < α. To be more precise, we show that for each ordinal α
there is a unique function f with domain α such that for every β ∈ α we have

f(β) = G(β, f � β). (4)

Let us write P (α) for this statement. Thus

P (α) ≡ (∃!f)(D(f) = α & (∀β ∈ α)(f(β) = G(β, f � β))).

We write fα for the unique f associated with the ordinal α.
We prove P (α) by transfinite induction. Suppose α is an ordinal such that P (β) holds for all β < α.

Then if γ < β < α, the uniqueness part of the hypothesis P (γ) implies that fβ � γ = fγ . We define fα

by:

(a) if S(β) < α then fα(β) = fS(β)(β);

(b) if S(β) = α then fα(β) = G(α, fβ).

Then (a), together with our previous remark, ensures that fα is an extension of the fβ for β < α. If α
is a limit ordinal, this is enough to prove the existence part of P (α). The uniqueness assertion in P (α)
follows from the uniqueness assertion in P (β) applied to fα � β, for each β < α. If α = S(β), then (a)
and (b) together prove the existence part of P (α). The uniqueness of fα(γ) for γ < β follows as before,
and the uniqueness of fα(β) is immediate because the requirement on fα defines fα(β) in terms of the
fα(γ) for γ < β.

The following example illustrates definition by transfinite induction in a ring-theoretic context.
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Example 4.19 Definition of the Baer lower radical.
Let A be a (non-commutative) ring. We seek to define an ideal R � A such that the quotient ring

A/R has no non-zero nilpotent ideals and such that R is minimal with this property.
We start by defining R1 to be the sum of all the nilpotent ideals in A. Unfortunately, A/R1 could

contain non-zero nilpotent ideals. We therefore look at the sum of all the nilpotent ideals of A/R1. This
is R2/R1 for an ideal R2 ⊇ R1. Continuing in this way, we define R3, R4, . . ., an ascending sequence of
ideals of A. If, at any stage A/Rn has no nilpotent ideals, then we get Rn+1 = Rn and we stop and
put R = Rn. Otherwise, having defined Rn for all n ∈ ω, we define Rω =

⋃
n∈ω Rn and then carry on,

defining RS(ω) such that RS(ω)/Rω is the sum of the nilpotent ideals of A/Rω.
More formally, the definition of the Rα and R is as follows. The Rα α ∈ On are defined by:

• R0 = {0};
• RS(α) is the ideal of A containing Rα such that RS(α)/Rα is the sum of the nilpotent ideals of

A/Rα.

• for limit ordinals λ,
Rλ =

⋃
α∈λ

Rα.

Lemma 4.20 Let Rα (α ∈ On) be an increasing family of subsets of a set A. Then RS(α) = Rα for
some α ∈ On.

Proof of Lemma. Suppose RS(α) ⊃ Rα for all ordinals α. Let

R = {x ∈ A : x ∈ Rα for some ordinal α}.
Then R is a set — because it is a subclass of the set A and there is a ‘function’ F : R → On given by

F (x) = min{α : x ∈ RS(α)}.
Then F“R = On, for, given α ∈ On, there is an x ∈ RS(α) \ Rα and x �∈ Rα implies x �∈ RS(β) for
all β < α, so α = F (x). It follows that

⋃
F“R = On. However, the Axiom of Replacement tells us

that
⋃

F“R must be a set. (The above has been written in terms of a ‘function’ F rather than the
predicate P as in the formal statement of (AR), but it is a simple matter to translate into those terms.)
We therefore conclude that RS(α) = Rα for some ordinal α. ♦

Define R = Rα, (it follows that R = Rβ for all β ≥ α, but this is not needed). Then R is an ideal
such that A/R has no non-zero nilpotent ideals.

If S is another ideal of A for which A/S has no non-zero nilpotent ideals, then we show by transfinite
induction that Rβ ⊆ S for all β ≤ α. Clearly R0 ⊆ S. Now suppose Rβ ⊆ S, and consider a nilpotent
ideal N/Rβ of A/Rβ . Then there exists r such that Nr ⊆ Rβ ⊆ N ∩S. Therefore N/N ∩S is nilpotent
and so (N + S)/S, which is isomorphic to N/N ∩ S, is a nilpotent ideal of A/S, which must therefore
be trivial; i.e. N ⊆ S. Thus S/Rβ contains every nilpotent ideal of A/Rβ . Therefore S/Rβ ⊇ RS(β)/Rβ

and so S ⊇ RS(β). Finally, if λ is a limit ordinal and Rβ ⊆ S for all β < λ, then clearly Rλ ⊆ S. Hence
R = Rα ⊆ S, as desired.

5 Ordinal arithmetic

We define the basic arithmetic operations for ordinals by transfinite induction in the same way as
one would define these operations for natural numbers when developing number theory from Peano’s
axioms.

Definition 5.1 For ordinals α, β we define α + β by induction on β:

• α + 0 := α;

• α + S(β) := S(α + β);

11



• if β is a limit ordinal, α + β := sup{α + γ : γ < β}.
Thus α + 1 = S(α), and we can drop the notation S(α).

For ordinals α, β we define α.β by induction on β:

• α.0 := 0;

• α.S(β) := α.β + α;

• if β is a limit ordinal, α.β := sup{α.γ : γ < β}.
In particular, α.1 = α, α.2 = α + α.

For ordinals α, β we define αβ by induction on β:

• α0 := 1;

• αS(β) := αβ .α;

• if β is a limit ordinal, αβ := sup{αγ : γ < β}.
In particular, α1 = α, α2 = α.α.

Remark 5.2 We can now picture the ordinals thus:
0, 1, 2, . . . ω, ω+1, ω+2, . . .,ω+ω=ω.2,ω.2+1, . . . , ω.3, . . . . . .,ω.ω=ω2,. . . , ω3, . . . , ωω, . . . , ωωω

, . . . .

Proposition 5.3 The following laws hold, for ordinals α, βγ:

(α + β) + γ = α + (β + γ); (α.β).γ = α.(β.γ);

α.(β + γ) = α.β + α.γ; αβ+γ = αβ .αγ .

In general, however we have
α + β �= β + α; α.β �= β.α;

(α + β).γ �= α.γ + β.γ; (α.β)γ �= αγ .βγ .

The proofs are by transfinite induction. (Exercise.) The following examples show the failures.

Examples 5.4 (a) 1 + ω = ω �= ω + 1;

(b) 2.ω = ω �= ω.2;

(c) (ω + 1).2 = (ω + 1) + (ω + 1) = (ω + (1 + ω)) + 1 = (ω + ω) + 1 = ω.2 + 1 �= ω.2 + 1.2;

(d) (ω.2)2 = (ω.2).(ω.2) = (ω.(2.ω)).2 = (ω.ω).2 = ω2.2 �= ω2.22.

Proposition 5.5 If α ∈ On and A is a set of ordinals with supremum σ, then

(a) α + σ = sup{α + β : β ∈ A};
(b) α.σ = sup{α.β : β ∈ A};
(c) ασ = sup{αβ : β ∈ A};

Proof. These results are trivial if σ ∈ A. Otherwise, σ must be a limit ordinal, in which case they
follow from the definitions of the arithmetic operations at limit ordinals. ♦

Theorem 5.6 (Subtraction, division and taking logs.) Given ordinals α, β:

(a) β ≤ α ⇒ (∃!γ)(β + γ = α);

(b) β �= 0 ⇒ (∃!γ)(∃!δ)(β.γ + δ = α & δ < β);

(c) β �= 0, 1 & α �= 0 ⇒ (∃!γ)(∃!δ)(∃!ε)(βγ .δ + ε = α & 0 < δ < β & ε < βγ).
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In all three cases, γ ≤ α.

Proof.

(a) We first prove existence (with γ ≤ α) by transfinite induction on α, the ordinal β being thought
of as fixed. The case α = 0 can only occur when β = 0 and clearly the result holds with γ = 0.
Suppose the result holds for α; we show that it holds for S(α). If S(α) < β there is nothing to
prove. If S(α) = β, then β + 0 = S(α). If S(α) > β, then α ≥ β, so by the induction hypothesis
there exists γ such that β + γ = α and γ ≤ α. Then β + S(γ) = S(α) and S(γ) ≤ S(α).

Assuming that λ ≥ β is a limit ordinal and the result holds for all α < λ, we show that it
holds for λ. The case λ = β is trivial, as before, so suppose λ > β. Let µ = sup A where
A = {γ : β + γ < λ & γ ≤ λ}. Then µ ≤ λ and

β + µ = sup{β + γ : γ ∈ A}, by Proposition 5.5,
= sup{α : α < λ} = λ,

since every α < λ is expressible in the form α = β + γ for some γ ∈ A.

For uniqueness, we first observe that β + γ > β for all γ �= 0. (This is easily proved by TI on γ.)
If β + γ = β + δ with, say, γ < δ, then, by the existence proof above, there is an ordinal σ such
that δ = γ + σ. Then

β + δ = β + (γ + σ) = (β + γ) + σ > β + γ.

Thus β + γ = β + δ implies γ = δ and the uniqueness assertion is proved.

(b) Let γ′ be the least ordinal such that β.γ′ > α. (There certainly are ordinals with this property
since β.S(α) ≥ S(α) > α, so γ′ exists and γ′ ≤ S(α).) Clearly γ′ �= 0. Further, γ′ cannot be a
limit ordinal since if it were, then we should have

β.γ′ = sup{β.ε : ε < γ′}, by the definition of multiplication,
≤ α,

since each β.ε ≤ α.

Therefore γ′ is a successor, say γ′ = S(γ). Then γ′ ≤ S(α) implies γ ≤ α. By the minimality
of γ′,

β.γ ≤ α < β.γ′ = β.S(γ) = β.γ + β. (5)

By the first part of this theorem, α = β.γ + δ for some ordinal δ. If δ ≥ β then δ = β + ε, for
some ε, so

α = β.γ + (β + ε) = (β.γ + β) + ε ≥ β.γ + β,

contradicting (5). Therefore δ < β. The uniqueness proof is left as an exercise.

(c) Exercise. (Begin by letting γ′ be the least ordinal such that βγ′
> α. The fact that α �= 0 ensures

that γ′ �= 0. Note that δ > 0 since δ = 0 would imply α = ε < βγ , contradicting the minimality
of γ′ = S(γ).)

♦

Theorem 5.7 For β ≥ 2 every ordinal α has a unique expansion in the form

α = βγ0 .δ0 + βγ1 .δ1 + . . . + βγn−1 .δn−1,

where n ∈ ω, 0 < δi < β for all i and α ≥ γ0 > γ1 > . . . > γn−1. (The case α = 0 corresponds to
n = 0.)
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Proof. Suppose α �= 0. The proof consists of iterating the third part of Theorem 5.6. Thus, there exist
unique γ0, δ0, ε0 such that

α = βγ0 .δ0 + ε0

with γ0 ≤ α, 0 < δ0 < β and ε0 < βγ0 . Then either ε0 = 0, in which case we stop having proved the
result with n = 1, or

ε0 = βγ1 .δ1 + ε1

with 0 < δ1 < β and ε1 < βγ1 . Moreover, βγ1 ≤ βγ1 .δ1 ≤ ε0 < βγ0 and so γ1 < γ0.
Proceeding thus, we obtain a strictly decreasing sequence of ordinals

α ≥ γ0 > γ1 > . . . > γn

which stops only when εn = 0. Since we cannot have an infinite strictly decreasing sequence of ordinals,
this must happen for some n ∈ ω. The existence result follows. Uniqueness is easily deduced from the
uniqueness assertion in Theorem 5.6. ♦

Corollary 5.8 Every ordinal α has a unique expansion in the form

α = ωγ0 .a0 + ωγ1 .a1 + . . . + ωγn−1 .an−1,

where n ∈ ω, the ai are positive integers and α ≥ γ0 > γ1 > . . . > γn−1 ≥ 0.

6 Ordinals and well-ordered sets

Theorem 6.1 Every well-ordered set is order-isomorphic to a unique ordinal by a unique isomorphism.

Proof. Let (X,≤) be a well-ordered set. We define F (α) ∈ X for α ∈ On by F (α) = min(X \F“α),
i.e. F (α) is the least member of X not yet in the image of F . This defines F by transfinite induction,
up to an ordinal α such that X \ F“α = Ø, unless this never happens, in which case we have F (α)
defined for all α.

Suppose F (α) is defined for all α ∈ On. Note that each F (α) is defined to be different from all
the F (β) with β < α. Then the sets F“α (α ∈ On) form a strictly increasing family of subsets of X,
indexed by the ordinals. By Lemma 4.20, this is impossible.

Therefore, for some α, the map F : α → X is surjective. By definition, it is injective and order-
preserving. Further, if G : β → X is another order-isomorphism, then it is easy to show, by transfinite
induction on γ, that G(γ) = F (γ) for all γ < α and it follows that α = β. ♦

One result of this theorem is that we can complete the proof of the equivalence of the two common
definitions of the ordinals.

Exercise 6.2 Show that every set which is ∈-transitive and well-ordered by ∈ is an ordinal.

Another consequence of Theorem 6.1 is a more conceptual interpretation of the operations of ordinal
arithmetic.

Addition Given two disjoint totally ordered sets A,B, we define an ordering on A∪B. We define, for
a1, a2 ∈ A, b1, b2 ∈ B,

• a1 ≤ a2 in A ∪ B iff a1 ≤ a2 in A;

• b1 ≤ b2 in A ∪ B iff b1 ≤ b2 in B;

• a1 ≤ b2 in A ∪ B for all a1 ∈ A, b1 ∈ B.

If A and B are well-ordered, then so is A∪B. In particular, for ordinals α, β, let A,B be disjoint
well-ordered sets isomorphic to α, β. Then A ∪ B is isomorphic to some ordinal γ and it is easy
to see (proof by transfinite induction on β) that γ = α + β.
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Multiplication Let A, B be two totally ordered sets. On A×B, the Cartesian product, we define the
reverse-lexicographic ordering: (a1, b1) ≤ (a2, b2) iff b1 < b2 or b1 = b2 and a1 ≤ a2. Again, it is
easy to see that if α, β are ordinals, then α × β corresponds to the ordinal α.β.

Exponentiation Let A, B be two well-ordered sets, with A �= Ø, and let a0 be the smallest element
of A. We shall use the notation A ↑ B to mean the set of all those functions f : B → A for which
{b ∈ B : f(b) �= a0} is finite. (We reserve the simpler notation AB for the set of all functions
f : B → A.) We define an ordering on A ↑ B by: f1 ≤ f2 iff f1 = f2 or f1(b) < f2(b) where b is the
largest element of B for which f1(b) �= f2(b). Notice that f1(b) �= f2(b) for only finitely many b,
so we can find a greatest. If α, β are ordinals, then the ordered set α ↑ β is order-isomorphic to
the ordinal αβ ; the proof is by transfinite induction on β.

7 Cardinals

Definition 7.1 For set x, y we define

x � y ⇐⇒ ∃ bijective f : x → y

x � y ⇐⇒ ∃ injective f : x → y

Proposition 7.2 The relation � is an ‘equivalence relation’.

Proof. Obvious. ♦
Essentially, cardinal numbers are the equivalence classes, or representatives of the equivalence classes,

of �.
Let |x| denote the cardinality of x — i.e. the cardinal number associated with the equivalence class

containing x. We note that

x1 � x2 & y1 � y2 & x1 � y1 ⇒ x2 � y2,

so we can define the relation ≤ between cardinals by

|x| ≤ |y| ⇐⇒ x � y.

It is easy to see that ≤ is reflexive and transitive; the fact that it is antisymmetric is the following
famous theorem.

Theorem 7.3 (The Schröder–Bernstein Theorem.) For all sets X, Y

X � Y & Y � X ⇒ X � Y.

Proof. Let f : X → Y , g : Y → X be injective. For x ∈ X consider the following sequence of elements

g−1(x), (if x ∈ g“Y ),

f−1(g−1(x)), (if g−1(x) ∈ f“X),

g−1(f−1(g−1(x))), (if f−1(g−1(x)) ∈ g“Y ),

. . .

Let the order o(x) of x be defined as the number of such preimages which exist. Likewise we define the
order o(y) of an element y ∈ Y by considering the sequence of preimages f−1(y), g−1(f−1(y)), . . . .

Now define h : X → Y by

(1) If o(x) = ∞, then h(x) := f(x). In this case o(f(x)) = ∞. Moreover, if y ∈ Y with o(y) = ∞,
then x := f−1(y) exists and has infinite order, so y = h(x). Thus h maps the infinite order
elements of X bijectively onto the infinite order elements of Y .
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(2) If o(x) = 2n (n = 0, 1, 2, . . .), then h(x) := f(x). In this case, o(f(x)) = 2n + 1 and if y ∈ Y with
o(y) = 2n + 1, then x := f−1(y) exists with o(x) = 2n and y = h(x). Again, h maps the even
order elements of X bijectively onto the odd order elements of Y .

(3) If o(x) = 2n + 1 (n = 0, 1, 2, . . .), then h(x) := g−1(x). In this case, o(g−1(x)) = 2n and if y ∈ Y
with o(y) = 2n, then x := g(y) has o(x) = 2n + 1 and y = h(x). Thus, h maps the odd order
elements of X bijectively onto the even order elements of Y .

This completes the proof. ♦

Definition 7.4
2|X| := |P(X)|.

Theorem 7.5 (Cantor’s Theorem) For every set X,

2|X| > |X|.
Of course, it is obvious that P(X) � X, by the imbedding

x 	→ {x} : X → P(X).

The real content of Cantor’s Theorem is that

P(X) �� X.

Proof. Suppose f : X → P(X) is bijective. Let

N := {x ∈ X : x �∈ f(x)}.
Then N ∈ P(X), so N = f(n) for some n ∈ X. But then

n �∈ f(n) ⇐⇒ n ∈ N ⇐⇒ n ∈ f(n).

This contradiction completes the proof. ♦
Without a distinction between sets and proper classes, we would have

Cantor’s Paradox: let κ be the cardinality of the set of all sets; then κ is the largest cardinal; but
2κ > κ.

By following through the proof of Cantor’s Theorem with X = the set of all sets, we see that the
proof is just Russell’s Paradox in disguise.

We must now be explicit about what our cardinal numbers actually are. We do not want them to
be the equivalence classes of �, since these are proper classes. Instead, we select representatives from
these proper classes. These representatives will be ordinals, but to make this plan work (and for most
of cardinal arithmetic) we need the following statement, the truth of which we shall discuss later.

The Well-Ordering Principle.

(WO) Every set can be well-ordered.

In view of Theorem 6.1, this is equivalent to

(∀x)(∃α ∈ On)(x � α).

There may be several ordinals equivalent to a given set: for example, ω � ω + 1 by the map

0 	→ ω

n 	→ n − 1 (n = 1, 2, 3, . . .).

Definition 7.6
|x| := min{α ∈ On : x � α}.
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This definition is valid since any class of ordinals has a least.

Proposition 7.7 For all sets x, y
|x| = |y| ⇐⇒ x � y.

Proof. Obvious. ♦
We could formally define inequality between cardinals by

|x| ≤ |y| ⇐⇒ x � y. (6)

However, with cardinals defined to be ordinals, we can use ≤ with its usual ordinal meaning and prove
(6) as a proposition.

Proposition 7.8 (WO) For any sets x, y we have

|x| ≤ |y| ⇐⇒ x � y.

Proof. If |x| ≤ |y|, then |x| ⊆ |y|; let i : |x| → |y| be the inclusion map. We have f : x � |x| and
g : y � |y|, so g−1if : x → y is injective, and x � y.

Suppose h : x � y. Again, we have g : y � |y|. Let u = g“h“x ⊆ |y|. We need the following lemma.

Lemma 7.9 If u is a subset of an ordinal β, then u is a well-ordered set and is therefore order-
isomorphic to some ordinal α. Then α ≤ β.

Proof of Lemma. Exercise ♦
Continuing the proof of the proposition: we have x � u � α for some ordinal α ≤ |y|. From the

definition of |x|, we must have |x| ≤ α. Therefore |x| ≤ |y|. ♦

Proposition 7.10 If X is a non-empty set, then |X| ≤ |Y | iff there is a surjective map f : Y � X.

Proof. Since X �= Ø, there is at least one element x0 ∈ X. If |X| ≤ |Y |, then there exists g : X → Y
injective. We define f : Y � X by

f(y) :=
{

g−1(y) (y ∈ g(X))
x0 (y ∈ Y \ g(X))

Conversely, if f : Y � X is surjective, we use (WO) to well-order Y and define g : X → Y injective
by

g(x) := min{y ∈ Y : f(y) = x}.
♦

Definition 7.11 An ordinal number α is said to be a cardinal if there is a set x such that |x| = α;
equivalently, if |α| = α.

Thus, since |ω + 1| = ω as shown above, ω + 1 is not a cardinal.

Theorem 7.12 Every natural number (i.e. every n ∈ ω) is a cardinal.

Lemma 7.13 For all ordinals α, β

α + 1 � β + 1 ⇒ α � β.

Proof of Lemma. Suppose f : α + 1 → β + 1 is bijective, i.e. f : α ∪ {α} → β ∪ {β}. If f(α) = µ �= β
and f(λ) = β, say, then λ ∈ α and µ ∈ β, so we construct a bijective map g : α → β by: g(λ) = µ and
g(γ) = f(γ) (γ �= λ). ♦

Lemma 7.14
n ∈ ω ⇒ n �� n + 1.

17



Proof of Lemma. We use ordinary induction: 0 �� 1 since f : Ø → {Ø} cannot be surjective. The
induction step

n �� n + 1 ⇒ n + 1 �� n + 1 + 1

follows from the previous lemma. ♦
Proof of Theorem. Certainly, 0 is a cardinal, as it is the least ordinal α with α � Ø. Suppose

n ∈ ω is such that n + 1 is not a cardinal. Then n + 1 � m for some m ≤ n. But then n + 1 � n and
n � n + 1, so n � n + 1, contradicting Lemma 7.14. ♦

Proposition 7.15 The first limit ordinal ω is a cardinal.

Proof. If ω � n < ω then n+1 � ω � n and n � n+1, so n � n+1, contradicting Lemma 7.14 again.
♦

Definition 7.16 We write ℵ0 for ω considered as a cardinal.
Generally, we observe that the infinite cardinals form a subclass of On which is well-ordered with

initial segments which are sets. Therefore (exercise) there is an order isomorphism

On → Infinite Cardinals

which we write
α 	→ ℵα.

We write ωα for ℵα considered as an ordinal. The distinction between ωα and ℵα is non-existent in our
theory, but would appear in any variant in which cardinals were not identified with specific ordinals.
We shall retain this historic distinction, partly because itis common in the literature, but also because it
enables us to distinguish cardinal arithmetic (defined below) from ordinal arithmetic without inventing
new operation symbols. Thus ‘ℵα + ℵα = ℵα’ will signify addition of cardinals; ‘ωα + ωα = ωα.2’ will
signify ordinal addition (of the corresponding ordinals). In the terminology of computer languages,
‘ordinal’ and ‘cardinal’ are two different ‘data types’ and we are ‘overloading’ the arithmetic operation
symbols, as can be done in Ada.

The Operations of Cardinal Arithmetic

Definition 7.17 If m, n are two cardinals, m+n is defined to be the cardinality of the disjoint union
of m and n:

m + n = |(m × {0}) ∪ (n × {1})|,
where, on the right, we are thinking of m and n as ordinals and so as sets of ordinals. Thus

ℵ0 + ℵ0 = |{(n, 0) : n ∈ ω} ∪ {(n, 1) : n ∈ ω}| = ℵ0.

The product m.n is the cardinality of the Cartesian product

m.n = |m × n|.

Powers are defined by
mn = |mn|,

where, on the right hand side, we are using the notation AB , for sets A,B, to denote the set of all
functions f : A → B.

It is easy to see that for m, n ∈ ω the operations of ordinal and cardinal arithmetic coincide
and coincide with our usual notions. The distinction between infinite ordinals and cardinals becomes
dramatically apparent when we ask the following question.

How big is ω1?
The ordinal ω1 is the first ordinal with ω1 �� ω. We have already seen that ω +1 � ω, so ω1 > ω +1.
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Definition 7.18 We say that a set x is countable if |x| ≤ ℵ0 and countably infinite if |x| = ℵ0.

The following theorem is easily proved.

Theorem 7.19 (AC) Every countable union of countable sets is countable.

It follows that ω2 = ω.ω (ordinal exponentiation and multiplication) is countable, as is ω3 and,
indeed, every ωn (n ∈ ω). But then

ωω =
⋃
n∈ω

ωn

is countable. From this we obtain that ωωω

is countable (this means ω(ωω), as usual). Hence ωω...ω ,
with n nested exponents is countable for each n ∈ ω, and hence ωω. . .

, with ω nested exponents. Call
this last ordinal ω∗ (temporarily) and we can go on to prove the countability of (ω∗)∗, which is ω∗ to
the power ω∗ to the power ω∗ . . . , with ω∗ nested exponents; et cetera, et cetera, et cetera. In ordinal
terms, ω1 is BIG!

In fact, ω1 cannot be the limit of any sequence of ordinals less than ω1.

Application.
In functional analysis, a useful technique for producing counterexamples involves defining Banach

spaces Eα (α ≤ ω1) by transfinite induction: E0 := C; Eα+1 := some construction from Eα such that
Eα ⊆ Eα+1 isometrically; and, for limit ordinals λ,

Eλ :=
˜( ⋃

α<λ

Eα

)
, (completion).

Proposition 7.20
Eω1 =

⋃
α<ω1

Eα,

(no completion).

Proof. Let (xn) be a Cauchy sequence in E =
⋃

α<ω1
Eα. Then each xn ∈ Eαn

for some αn < ω1.
Now αn < ω1 implies that αn is countable. Therefore

β := sup
n∈ω

αn =
⋃
n∈ω

αn

is countable, so β < ω1. Thus xn ∈ Eβ for all n. Now Eβ is a Banach space, so xn → x ∈ Eβ ⊆ E.
Thus E is already complete. ♦

8 The Axiom of Choice

Before proceeding further with the development of cardinal arithmetic, we return to the proof of
(WE): Every set can be well-ordered.

It is now known that this cannot be proved within (ZF). We need a new axiom: Zermelo’s Axiom
of Choice (AC).

Definition 8.1 We say that a function f : x → ⋃
x is a choice function on x if f(y) ∈ y for all y ∈ x.

(AC) For every set x with Ø �∈ x there is a choice function on x.
Colloquially: given a collection x of non-empty sets it is always possible to make a simultaneous

choice of one element from each set y ∈ x.
Now in many situations, it is not necessary to invoke (AC) to get a choice function. This is partic-

ularly the case if the sets y have additional structure. For example: if the sets y are groups, we can
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simply choose f(y) as the identity element of each y; if the y are sets of ordinals, we can let f(y) be the
least element of y. The Axiom of Choice only comes into play when we need to make arbitrary choices.

Furthermore, (AC) is only needed to make infinitely many arbitrary choices simultaneously. If x =
{y}, so that we only want to make a choice f(y) from a single non-empty set y, then the fact that
y �= Ø means that (∃z)(z ∈ y) so (∃(y, z))(z ∈ y), so (∃f : x → ⋃

x)(f(y) ∈ y). A (finite) induction
argument then shows that if x is any finite set of non-empty sets, then there is a choice function on x.
However, we cannot make the step to infinite x by TI; for example, if x = {y0, y1, y2, . . .} is a sequence
of non-empty sets then there exist choice functions fn on {y0, y1, . . . , yn} for each n, i.e. the set Fn of
all such choice functions fn is non-empty, but we cannot simultaneously choose one such fn ∈ Fn for
each n without invoking (AC).

Theorem 8.2 (AC) ⇒ (WE)

Proof. It suffices to show that, given an arbitrary non-empty set a, there is a bijection from some
ordinal α onto a. Let x be the set of all non-empty subsets of a and let f : x → ⋃

x = a be a choice
function on x. We define F : On → a inductively by:

F (β) = f(a \ (F“β)),

while F“β �= a and, say, F (β) = f(a) otherwise. That is, each F (β) is chosen from the remaining
elements of a, whilst this is still possible. If F“β �= a for all β, then F (β) is defined as f(a \ (F“β))
for all ordinals β. This provides a strictly increasing family of subsets F“β (β ∈ On) of a, which is
impossible by Lemma 4.20. Therefore we must have F“β = a for some ordinal β. Choosing α to be the
least such β, we have F : α � a surjective and since

F (β) = f(a \ (F“β)) (β < α),

the function F is also injective. ♦
Given that it can be shown that (AC) is not provable in (ZF), we can show that (WE) is not provable

without (AC) by the following easy proposition.

Proposition 8.3 Using only (ZF),
(WE) ⇒ (AC).

Proof. Given a set x with Ø �∈ x, we use (WE) to well-order
⋃

x. This provides simultaneously a
well-order on each set y ∈ x. We then define the choice function on x by

f(y) := min y (y ∈ x).

♦
There are many other statements which are similarly equivalent in (ZF) to (AC). In fact there are

3 books full of them! (See the Bibliography.)
Probably the most important equivalent statement is Zorn’s Lemma. Before we state it, we need

some terminology concerning partially ordered sets (posets).

Definition 8.4 A chain in a poset is a totally ordered subset. An element x in a poset (S,≤) is an
upper bound for a subset T ⊆ S if x ≥ t for all t ∈ T . (It is not required that x be in T .) A maximal
element of a poset (S,≤) is an element s ∈ S such that for all t ∈ S, t ≥ s ⇒ t = s.

Theorem 8.5 (ZFC) (Zorn’s Lemma). Every non-empty poset in which every chain has an upper
bound has a maximal element.

Proof. Let (S,≤) be the given poset. Let f be a choice function on P(S). For every T ⊆ S, let U(T )
denote the set of strict upper bounds for T : i.e.

U(T ) := {s ∈ S : s > t (t ∈ T )}.
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We define F : On → S inductively by

F (0) := f(S),
F (α) := f(U(F“α)) (α > 0),

whilst U(F“α) �= Ø Then F is a strictly increasing function, for if α < β, then F (β) is a strict upper
bound for F“β and F (α) ∈ F“β, so F (α) < F (β). In particular, F is an injection. Therefore the
definition of F must stop at some point (otherwise F“α would be a strictly increasing family of subsets
of a set, indexed by the ordinals, contradicting Lemma 4.20. Therefore we must have U(F“α) = Ø for
some ordinal α. Now F“α is a chain in S, so it has an upper bound s ∈ S, but there is no element of S
strictly greater than s. Thus s is the desired maximal element. ♦

Theorem 8.6 Within (ZF), Zorn’s Lemma implies (AC).

Proof. Let X be a set all of whose members are non-empty. Let S be the set of all pairs (f, Y ) such
that f is a choice function on a non-empty subset Y of X. If y ∈ X, then y �= Ø, so there is a choice
function f : {y} → y. Thus (f, {y}) ∈ S, so S �= Ø. We partially order S by defining

(f1, Y1) ≤ (f2, Y2) ⇐⇒ Y1 ⊆ Y2 & f2 � Y1 = f1.

Let {(fi, Yi)}i∈I be a chain in S. Then we can define an upper bound (f, Y ) for the chain by making

Y =
⋃
i∈I

Yi

and defining f on Y by f(y) = fi(y) if y ∈ Yi. This is consistent because {(fi, Yi)}i∈I is a chain. Thus
if y ∈ Yi ∩ Yj , then either (fi, Yi) ≤ (fj , Yj) or (fi, Yi) ≥ (fj , Yj); say the former. Then fi = fj � Yi, so
fi(y) = fj(y).

Zorn’s Lemma implies that S has a maximal element (f, Y ). We show that Y = X. Suppose not;
let x ∈ X \ Y . Then x �= Ø; so there is an element ξ ∈ x. We can then define a choice function g on
Y ∪ {x} by g(y) = f(y) (y ∈ Y ); g(x) = ξ. Then (g, Y ∪ {x}) > (f, Y ), contradicting the maximality of
(f, Y ). Thus we have a choice function on X, as desired. ♦
Application: Existence of a Hamel basis.

Often it is possible to tackle a problem quite naturally using either Zorn’s Lemma or well-ordering
and transfinite recursion. Consider the following two proofs of a basic theorem in algebra.

Theorem 8.7 Every vector space has a Hamel basis.

First proof.
Let E be the given vector space. Well-order E \ {0} so that

E = {0} ∪ {xα : α < µ}

for some ordinal µ. We construct a basis (eβ)β<λ by transfinite induction: we let e0 = x0 and having
constructed eβ (β < α), we find the smallest γ with xγ �∈ span{eβ : β < α} and then let eα be this xγ .
The process continues until span{eβ : β < α} = E, at which point we have a basis.
Second proof.

Let (S,⊆) be the poset consisting of all linearly independent subsets of the given vector space E.
Then {x0} ∈ S. so S �= Ø. If (Si)i∈I is a chain in S, then

⋃
i∈I Si is an upper bound in S. By Zorn’s

Lemma, S has a maximal element B say. If B is not a basis for E, then there exists x ∈ E \ span(B).
However, this would imply that {x} ∪ B is a linearly independent set, so {x} ∪ B is an element of S
strictly above B, contradicting the maximality of B. Therefore, B must be a basis.

Weaker versions of Choice.
There are various restricted form of (AC).

Countable Choice (AC)ω: (AC) for x countable.
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Countable Choice from Sets of Reals (AC)ω(P(R)): (AC) for x countable and x ⊆ P(R).

Dependent Choice (DC)ω: given x = {y0, y1, y2, . . .} and a function d : ω × ⋃
x → ⋃

x such that
for all z ∈ yn, d(n, z) is a non-empty subset of yn+1, there is a function f : ω → ⋃

x such that
f(n) ∈ yn and f(n + 1) ∈ d(n, f(n)) for each n ∈ ω. (The (n + 1)st is dependent on the nth.)

Choice from Finite Sets (AC)(F ): (AC) with all the y ∈ x finite.

The Ultrafilter Theorem (UFT): every filter in a non-trivial Boolean algebra is contained in an
ultrafilter.

The Boolean Prime Ideal Theorem (BPIT): every ideal in a non-trivial Boolean algebra is con-
tained in a prime ideal.

The first three of these are self-explanatory; the terminology of the last two will be explained shortly.
None of these restricted forms is provable within (ZF), but they are weaker than the full form of (AC).
The conventional practice in mathematics is to assume Dependent Choice (which includes Countable
Choice) without comment, but to point out uses of (AC) where uncountably many simultaneous choices
are made.

Choice from finite sets is not usually isolated as a special case, but there is some beautiful work of
J. H. Conway et al. on the relationship between the axioms ‘(AC) for sets of n elements’ for different
values of n. Notice that choice from finite sets would be provable in (ZF) if the finite sets were to come
equipped with some structure which enabled a choice to be made—e.g. if they were finite sets of reals,
where we could choose the smallest number in each set—but this is not generally the case.

The Tale of the Millionaire’s Socks illustrates this. There once was a millionaire (actually, an
infinitely rich millionaire) who owned infinitely many pairs of shoes and socks. One day, for want of
anything better to do, he decided to try to select one of each pair of shoes and one of each pair of socks.
He selected the shoes easily enough, by just taking the left shoe in each case, but (working in (ZF)) he
was unable to simultaneously select one from each pair of socks! (Exercise for the reader: work this
into a convincing fairy tale!)

Having noted that Choice from finite sets of reals is provable within (ZF), we see that the point of
(AC)ω(P(R)) is that the sets of reals involved are not, generally, finite. Notice that even if they were
all countable, you would need to have a choice of a counting of each set before you could get a choice
function by selecting the first member of each set.

Example 8.8 The theorem which says that a function f : X → Y between two metric spaces is contin-
uous iff f(xn) → f(x) whenever xn → x requires (AC)ω in its proof. Suppose f is not continuous at x;
then there is some ε > 0 such that for each n the set Sn = {s ∈ X : d(s, x) < 1/n & d(f(s), f(x)) > ε}
is non-empty. We choose xn ∈ Sn (n = 1, 2, 3, . . .), simultaneously, to get xn → X with f(xn) →/ f(x).

Example 8.9 The theorem which says that a function f : R → R is continuous iff f(xn) → f(x)
whenever xn → x requires (AC)ω(P(R)).

Example 8.10 Baire’s Category Theorem requires Dependent Choice (DC)ω.
Baire’s Category Theorem states that in a complete metric space X the intersection of any countable

family (Gn)n∈ω of dense open sets is non-empty. In the proof, one constructs sets B(xn; δn) such that

B(xn; δn) ⊆ B(xn−1; δn−1) ∩ Gn (n = 1, 2, 3, . . .);

it follows that the sequence (xn) is Cauchy; its limit is in all the sets B(xn; δn) and hence in all the sets
Gn, as desired. Note how each (xn, δn) is chosen from a set of possible pairs which depends on the pair
(xn−1, δn−1).
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9 Cardinal Arithmetic

Proposition 9.1 For all cardinals a, b, c, d,

(a + b) + c = a + (b + c), (a.b).c = a.(b.c),
a + b = b + a, a.b = b.a,
a + 0 = a, a.1 = a,
a ≤ b ⇐⇒ (∃c)(a = b + c), a.0 = 0,

a ≤ b & c ≤ d ⇒ a + c ≤ b + d, a ≤ b & c ≤ d ⇒ a.c ≤ b.d,
a.(b + c) = a.b + a.c.

Proposition 9.2
a + 1 = a ⇐⇒ a ≥ ℵ0.

Proof. If a ≥ ℵ0 then a = |A| for some set A ⊇ {a0, a1, a2, . . .}. If b �∈ A, then A ∪ {b} � A by the
bijection

b 	→ a0

ai 	→ ai+1 (i = 0, 1, 2, . . .)
a 	→ a (a ∈ A \ {a0, a1, a2, . . .}).

♦

Corollary 9.3 For every ordinal α, the ordinal ωα is a limit ordinal.

Corollary 9.4 For every ordinal α and every n ∈ ω,

ωα + n = ωα.

Proof. by (finite) induction on n. ♦

Proposition 9.5 For all ordinals α,

(i) ℵα + ℵα = ℵα,

(ii) ℵα.ℵα = ℵα.

Proof.

(i) We construct a bijection
f : (ωα × {0}) ∪ (ωα × {1}) → ωα

as follows. If β is an ordinal whose base ω expansion is

β = ωγ1b1 + . . . + ωγnbn + bn+1,

where γ1 > γ2 > . . . > γn ≥ 1 and b1, . . . , bn ∈ ω \ {0}, bn+1 ∈ ω, then we define

f(β, 0) = ωγ1b1 + . . . + ωγnbn + 2bn+1,

f(β, 1) = ωγ1b1 + . . . + ωγnbn + 2bn+1 + 1.

Note that because ωα is a limit ordinal,

β < ωα ⇒ f(β, 0), f(β, 1) < ωα.
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(ii) We prove that ωα × ωα � ωα by induction on α. For α = 0, the fact that ω × ω � ω is easily
proved. Suppose the result is known for all ordinals less than α. To show that ωα × ωα � ωα, we
define an ordering � on ωα × ωα by
(α, β) � (γ, δ) ⇐⇒

(max{α, β} < max{γ, δ}) ∨ ((max{α, β} = max{γ, δ}) & (α < γ ∨ (α = γ & β < δ))) .

It is easily checked that � is a well-ordering of ωα × ωα, so there is an order isomorphism

F : (µ,<) → (ωα × ωα, �),

for some ordinal µ. Then
µ

F→ ωα × ωα
π1→ ωα

is surjective, so |µ| ≥ ℵα, so µ ≥ ωα. On the other hand, if ν < µ then

F“ν = {(β, γ) ∈ ωα × ωα : (β, γ) � (δ, ε) = F (ν)}
⊆ max{δ + 1, ε + 1} × max{δ + 1, ε + 1}
� max{δ + 1, ε + 1} < ωα,

by the induction hypothesis, since max{δ + 1, ε + 1} ≺ ωα. Therefore F“ν ≺ ωα, so ν < ωα.
Therefore µ = ωα and the result is proven.

♦

Corollary 9.6
ℵα + ℵβ = max{ℵα,ℵβ} = ℵα.ℵβ .

Proof. We have

max{ℵα,ℵβ} ≤ ℵα + ℵβ ≤ max{ℵα,ℵβ} + max{ℵα,ℵβ} = max{ℵα,ℵβ}

and the equality follows from the Schröder-Bernstein Theorem. The proof that ℵα.ℵβ = max{ℵα,ℵβ}
is similar. ♦

Corollary 9.7 For every ordinal α and every n ∈ ω,

n.ℵα = ℵα.

Proof. by induction on n. ♦
Next, we consider cardinal exponentiation.

Proposition 9.8 For cardinals a, b, c, d,

ab + c = ab.ac,
(
ab

)
c = ab.c,

(a.b) c = ac.bc, 1a = 1,

0a = 0 (a �= 0), 00 = 1,

a1 = a, a2 = a.a,

a ≤ b & c ≤ d ⇒ ac ≤ bd.

Proposition 9.9 For every ordinal α and every n ∈ ω,

ℵα
n = ℵα.
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Proof. by induction on n using Corollary 9.6. ♦
For any set x, subsets y of x can be identified with their characteristic functions

χy(t) =
{

0 (t ∈ x \ y)
1 (t ∈ y),

hence
|P(x)| = 2|x|.

Thus Cantor’s Theorem tells us that
2n > n

for every cardinal n.
This brings us to a famous conjecture.

The Generalized Continuum Hypothesis (GCH)
For every infinite cardinal n, there is no cardinal m with n < m < 2n. With (AC), this becomes

2ℵα = ℵα+1.

A special case of this is:
The Continuum Hypothesis (CH)

There is no cardinal m with ℵ0 < m < 2ℵ0. Again, with (AC) this becomes

2ℵ0 = ℵ1.

Put in less set-theoretic terms: for every subset S ⊆ R, either S is countable or S � R. The problem
of proving (CH) was stated as the first of his famous list of 23 problems by Hilbert in 1900. He also
mentioned under the same heading the problem of whether the reals can be well-ordered. He even seems
to entertain the possibility of a constructive proof of the latter. The idea that these problems might be
independent of (ZF) was inconceivable.

In fact, both (GCH) and (CH) are consistent with (ZF) and independent of (ZFC). Here, (ZFC)
denotes (ZF) + (AC). The consistency result: if (ZF) is consistent, then so is (ZFC) + (GCH) was
proved by Gödel (1940). The independence result: if (ZF) is consistent, then so is (ZFC) + ¬(GCH)
was proved by Cohen (1963). Note that by Gödel’s Incompleteness Theorem, if (ZF) is consistent then
we cannot prove that it is consistent within (ZF). If (ZF) is not consistent, we can prove anything in it.

10 Applications and non-applications of the Continuum Hy-
pothesis

Whilst it is often conventient to visualise a world in which (CH) holds, it is generally desirable to
prove results without using it, if possible. We regard it in the same way as (AC), but with even more
suspicion. Very often it is sufficient to work with the cardinal c = |R|. The following exercise shows
just a few of the many sets encountered in routine analysis whose cardinality is c.

Exercise 10.1 We write c for the cardinal |R|. Without using either (AC) or (CH), show that the
following sets have cardinality c:

1. any non-trivial open, closed or half-open interval of R;

2. the irrationals;

3. the set 2N of all infinite sequences of zeros and ones;

4. the set NN of all infinite sequences of positive integers;

5. the set of all open subsets of R; (hint: every open subset of R is a countable union of open intervals
with rational end-points).
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Corollary 10.2
c = 2ℵ0.

Proof. The cardinal 2ℵ0 is the cardinality of the set 2N of the exercise. ♦
The following is an example of the use of transfinite induction up to cardinality c. In what follows,

we use the word ‘circle’ to mean a circle of radius 1 in some plane in R3.

Theorem 10.3 There is a family {Cα}α<c of disjoint circles (of radius 1) in R3 whose union is the
whole of R3.

Lemma 10.4 Let ω ≤ α < c.

1. Given a family {Cξ}ξ<α of circles, there is a point p ∈ R3 disjoint from all of them.

2. For any such point p, there is a circle C passing through p that is disjoint from each of the circles
Cξ.

Proof of Lemma. Let Pξ denote the plane containing Cξ (ξ < α). The set of all planes in R3 has
cardinality c > α, so there must be at least one plane P not containing any of the circles Cξ. Each of the
Cξ meets this plane in at most two points, so the set P ∩⋃

ξ<α Cξ has cardinality at most 2|α| = |α| < c.
Therefore there are points in P not belonging to any of the circles Cξ, ξ < α.

Given such a point p, the set of all planes through p has cardinality c > α. Therefore there is a
plane P through the point p that does not contain any of the circles Cξ.

For each n, since Cξ is not contained in P it must meet P in at most two points aξ, bξ. Now for
each point x ∈ P \ {p} there are at most two circles (of radius 1) in the plane P passing through both p
and x. Therefore, there are at most 4|α| = |α| < c circles in P passing through p that contain some of
the points aξ, bξ (ξ < α).

There are c circles (of radius 1) in P passing through p. Therefore, there must be circles in P passing
through p and missing all the points aξ, bξ (ξ < α), and consequently disjoint from all the circles Cξ

(ξ < α). ♦
Proof of Theorem. We well-order R3: let {pα}α<c be an enumeration of R3. We construct, by

transfinite induction, a family {Cα}α<c of disjoint circles such that pα ∈ ⋃
ξ≤α Cξ for all α < c. This

will be the desired family.
Suppose Cξ (ξ < α) have been found such that pβ ∈ ⋃

ξ≤β Cξ for all β < α. Let β be the least
ordinal such that pβ �∈ ⋃

ξ<α Cξ. There must be such an ordinal by the first part of the lemma. By the
induction hypothesis, we must have β ≥ α, for if β < α then

pβ ∈
⋃
ξ≤β

Cξ ⊆
⋃
ξ<α

Cξ.

We define Cα to be the circle C given by the lemma when p = pβ . Then either pα ∈ ⋃
ξ<α Cξ or

pα = pβ ∈ Cα, so the induction step is proved.
(Note that the choice of Cα is to some extent arbitrary and so this proof involves making infinitely

many arbitrary choices, which requires another application of (AC) in addition to that used to well-order
R3.) ♦

Sometimes, one comes across theorems in everyday mathematics which do depend on (CH). Here is
one such.

Theorem 10.5 (AC) For a set A ⊆ R2 and x, y ∈ R, we define

Ay = {x ∈ R : (x, y) ∈ A} Ax = {y ∈ R : (x, y) ∈ A}.

Then (CH) is equivalent to the existence of a set A ⊆ R2 such that Ay and (R2 \A)x are both countable,
for every x, y ∈ R.

Proof.

26



1. Suppose (CH); so c = ℵ1. Thus we can write R = {xα : α < ω1}. Let A = {(xα, xβ) : α ≤ β}.
Given y ∈ R, we have y = xα for some α < ω1. Then Ay = {xβ : β ≤ α}. Since α < ω1, it follows
that Ay is countable.

Given x ∈ R, we have x = xα for some α < ω1; and (R2 \ A)x = {xβ : β < α}. Again, since
α < ω1, this set is countable.

2. Let A ⊆ R2 be as described and suppose (CH) fails, so ℵ1 < c. We well-order R as {xα : α < c}
and let X =

⋃
α<ω1

Axα . By assumption, each Axα is countable, so |X| ≤ ℵ1 < c. It follows
that we can find some x ∈ R \ X. Then, for every α < ω1, we have x �∈ Axα , so (x, xα) �∈ A, so
xα ∈ (R \ A)x. Thus |(R \ A)x| ≥ ℵ1, contrary to hypothesis.

♦
Another more significant example of an application of (CH) is the solution by Garth Dales and Jean

Esterle of Kaplansky’s Problem.
Consider the algebra A = C[0, 1] of all continuous complex-valued functions on [0, 1]. This is an

associative algebra under pointwise multiplication, scalar multiplication and addition. It is a normed
algebra in the norm

‖f‖ = sup{|f(t)| : 0 ≤ t ≤ 1};
that is, the function f 	→ ‖f‖ : A → R+ satisfies

1. ‖f‖ = 0 ⇒ f = 0 (f ∈ A),

2. ‖f + g‖ ≤ ‖f‖ + ‖g‖ (f, g ∈ A),

3. ‖λf‖ = |λ| ‖f‖ (λ ∈ C, f ∈ A),

4. ‖fg‖ ≤ ‖f‖ ‖g‖ (f, g ∈ A).

This norm is complete (every Cauchy sequence in A has a limit in A) and it may be shown that
every complete algebra norm |.| on A is equivalent to ‖.‖ in the sense that there exist constants c, C > 0
such that

c‖f‖ ≤ |f | ≤ C‖f‖ (f ∈ A).

Kaplansky’s Problem was whether every algebra norm on A is equivalent to ‖.‖; equivalently, does there
exist an incomplete algebra norm on A? Dales and Esterle showed that, assuming (CH), there does
exist an incomplete algebra norm on A. Solovay then showed that this result is not provable in (ZFC)
alone: there is a model of (ZFC) in which there is no incomplete algebra norm on A. Details of the
independence result, using Woodin’s simplification of Solovay’s proof, may be found in the book:

H. G. Dales and W. H. Woodin, ‘An Introduction to Independence for Analysts’, (Cam-
bridge University Press, LMS Lecture Note Series no.115, 1987).

11 Cardinal exponentiation: Cofinality, Regular and Singular
Cardinals

One might wonder whether all expressions of the form ℵα
ℵβ are determined once the continuum

function ℵα 	→ 2ℵα is known. The answer is positive if (GCH) holds, but negative in general. Under a
technical assumption (that the existence of a supercompact cardinal is consistent with (ZFC)), Magidor5

proved that (ZFC) is consistent with either of the scenarios:

(i) 2ℵ0 = ℵ1, 2ℵn = ℵω+2 (n ≤ ω), 2ℵα = ℵα+2 (α > ω), ℵω
ℵ0 = ℵω+1;

(ii) as (i) but ℵω
ℵ0 = ℵω+2.

5M. Magidor ‘On the singular cardinals problem I’ Israel J. Math., 28 (1977), 1–31.
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We now investigate the function (α, β) 	→ ℵα
ℵβ . In this discussion, we shall assume (ZFC), but not

(GCH) unless explicitly stated.

Proposition 11.1 If a, b are cardinals such that b is infinite and 2 ≤ a ≤ 2b, then ab = 2b.

Proof.
2b ≤ ab ≤

(
2b

)
b = 2b.b = 2b.

♦

Corollary 11.2 (i)
ℵα

ℵβ = 2ℵβ (ℵα ≤ ℵβ);

(ii)
ℵα

ℵβ ≤ 2ℵα (ℵα ≥ ℵβ).

Proof. (i) is from the previous proposition and (ii) follows from (i):

ℵα
ℵβ ≤ ℵα

ℵα = 2ℵα.

♦
To proceed any further, we need an important new concept.

Definition 11.3 Let α, β be limit ordinals; we say that α is of cofinality β and write cf (α) = β if
there is a family of ordinals {µγ}γ<β with µγ < α (γ < β) and supγ µγ = α and β is the least ordinal
for which such a family exists.

It is easy to see that in this situation the family {µγ}γ<β can be chosen to be increasing.
Properties of cofinality:

(i) cf (α) ≤ α, since α = supγ<α γ is one expression of α as a sup of strictly smaller ordinals;

(ii) cf (cf (α)) = cf (α);

(iii) cf (α) ≤ |α|, since if f : |α| � α then α = supγ<|α| f(γ) is one expression of α as a sup of strictly
smaller ordinals;

(iv) if cf (α) = α then α is a cardinal, (by (iii));

(v) cf (α) is a cardinal, (by (ii) and (iv)).

Examples 11.4 (i) cf (ωω) = ω, since ωω = supn∈ω ωn, (or by property (iii) above).

(ii) cf (ωω) = ω, since ωω = supn∈ω ωn, which shows that the converse of property (iv) is false.

The following proposition generalizes Example (ii).

Proposition 11.5 If α is a limit ordinal, then cf (ωα) = cf (α).

Proof. If β = cf (α), we have α = supγ<β µγ for some µγ < α (γ < β). Then

ωα = sup
γ<β

ωµγ
,

so cf (ωα) ≤ cf (α).
Conversely, if β = cf (ωα) and ωα = supγ<β µγ for some µγ < α (γ < β), then we can write

α = supγ<β νγ , where νγ is such that |µγ | = ωνγ
. ♦

Definition 11.6 We say that an infinite cardinal a is regular if cf (a) = a and singular if cf (a) < a.
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Examples 11.7 ℵ0 is regular, ℵω is singular.

Proposition 11.8 ℵα+1 is regular, for all α.

Lemma 11.9 If ℵα,ℵβ are cardinals and {Aδ}δ<ωβ
is a family of sets with |Aδ| ≤ ℵα (δ < ωβ), then∣∣∣∣∣∣

⋃
δ<ωβ

Aδ

∣∣∣∣∣∣ ≤ ℵα.ℵβ

Proof of Lemma. The fact that |Aδ| ≤ ℵα implies that there is a surjection fδ : ωα → Aδ for each δ.
Putting these together, we construct a surjection

(γ, δ) 	→ fδ(γ) : ωα × ωβ →
⋃

δ<ωβ

Aδ,

whence the result. ♦
Proof. of Proposition 11.8.
Suppose the proposition is false, that cf (ℵα+1) = ℵβ with β ≤ α. Then

ωα+1 =
⋃

δ<ωβ

µδ

with µδ ≤ ωα (δ < ωβ). The lemma then gives

|ωα+1| ≤ ℵα.ℵβ = ℵα,

which is a contradiction. ♦

Lemma 11.10 (Zermelo) If Aγ , Bγ (γ < ωβ) are sets with |Aγ | < |Bγ | (γ < ωβ), then∣∣∣∣∣
⋃
γ

Aγ

∣∣∣∣∣ <

∣∣∣∣∣
∏
γ

Bγ

∣∣∣∣∣ .

Proof. The conclusion certainly holds with a ≤ in place of <; the point of this lemma is that the
inequality is strict. Suppose otherwise; then there is a surjection

f :
⋃
γ

Aγ →
∏
γ

Bγ .

Let
Cγ := πγ (f“Aγ) (γ < ωβ),

where πγ is the projection onto the γth factor of the infinite product. Then |Cγ | ≤ |Aγ | < |Bγ |, so
Bγ \ Cγ �= Ø. Choose yγ ∈ Bγ \ Cγ for each γ < ωβ , so that we get an element

y = (yγ)γ<ωβ
∈

∏
γ<ωβ

Bγ .

Then, since f is surjective, y = f(x) for some x ∈ ⋃
γ Aγ . Then x is in some Aδ, so

y = f(x) ∈ f“Aδ,

so
yδ = πδ(f(x)) ∈ Cδ,

which contradicts the definition of yδ. ♦
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Theorem 11.11
ℵα

cf (ℵα) > ℵα.

Proof. If α is either 0 or a successor ordinal, then, using Proposition 11.8, we have cf (ℵα) = ℵα, so

ℵα
cf (ℵα) = ℵα

ℵα = 2ℵα > ℵα.

If α is a limit ordinal, with cf (ℵα) = ℵβ , then

ωα =
⋃

γ<ωβ

µγ ,

with µγ < ωα, so |µγ | < ℵα, for all γ < ωβ . Zermelo’s Lemma then implies

ℵα =

∣∣∣∣∣∣
⋃

γ<ωβ

µγ

∣∣∣∣∣∣ <

∣∣∣∣∣∣
∏

γ<ωβ

ωα

∣∣∣∣∣∣ ≤ ℵα
ℵβ .

♦

Corollary 11.12
cf

(
ℵβ

ℵα
)

> ℵα

Proof. Suppose otherwise, that
cf

(
ℵβ

ℵα
)

= n ≤ ℵα.

Then ℵα.n = ℵα, so
ℵβ

ℵα <
(
ℵβ

ℵα
)

n = ℵβ
(ℵα.n) = ℵβ

ℵα.

♦
We are now in a position to give a complete description of cardinal exponentiation assuming (GCH).

Theorem 11.13 If we assume (GCH), then

ℵα
ℵβ =




ℵα if ℵβ < cf (ℵα)
ℵα+1 if cf (ℵα) ≤ ℵβ ≤ ℵα

ℵβ+1 if ℵβ ≥ ℵα

Proof.

(i) Suppose ℵβ < cf (ℵα). We consider the three types of ordinal α.

(a) α = 0 is impossible since cf (ℵ0) = ℵ0.

(b) If α is a successor ordinal, say α = γ + 1, then ℵα is regular, so

ℵβ < cf (ℵα) = ℵα = ℵγ+1,

so ℵβ ≤ ℵγ . By (GCH),
2ℵγ = ℵγ+1 = ℵα,

so
ℵα

ℵβ =
(
2ℵγ

)ℵβ = 2ℵγ .ℵβ = 2ℵγ = ℵα.
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(c) Now suppose α is a limit ordinal. Clearly ℵα
ℵβ ≥ ℵα; we prove the reverse inequality.

Since ℵβ < cf (ℵα), any function f : ωβ → ωα must have sup f“ωβ < ωα; otherwise we should
be contradicting the minimality of cf (ℵα). Therefore the set A of all such functions is⋃

γ<α

Aγ ,

where Aγ is the set of all functions f : ωβ → ωγ . Thus, if γ < β, then

|Aγ | = ℵγ
ℵβ

= 2ℵβ , by Corollary 11.2(i),
= ℵβ+1, by (GCH),
< ℵα,

since β < α and α is a limit ordinal.
If γ ≥ β, then

|Aγ | = ℵγ
ℵβ

≤ 2ℵγ , by Corollary 11.2(ii),
= ℵγ+1, by (GCH),
< ℵα,

since γ < α and α is a limit ordinal.
Lemma 11.9 then gives

ℵα
ℵβ = |A| ≤ ℵα.ℵα = ℵα.

(ii) Suppose cf (ℵα) ≤ ℵβ ≤ ℵα. Then

ℵα < ℵα
cf (ℵα), by Theorem 11.11

≤ ℵα
ℵβ

≤ 2ℵα, by Corollary 11.2(ii),
= ℵα+1, by (GCH).

Since ℵα+1 is the next cardinal above ℵα, it follows that ℵα
ℵβ = ℵα+1.

(iii) If ℵβ ≥ ℵα, then Corollary (11.2)(i) gives

ℵα
ℵβ = 2ℵβ = ℵβ+1.

♦
Let us now forget (GCH) and investigate the continuum function.

Theorem 11.14 (König’s Lemma)
cf

(
2ℵα

)
> ℵα. (7)

Proof. The result follows from Corollary 11.12 with β = 0, since

ℵ0
ℵα = 2ℵα,

by Corollary 11.2(i). ♦
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This is a very important constraint on the behaviour of the continuum function ℵα 	→ 2ℵα; for
example, it tells us that 2ℵ0 cannot be ℵω. The other, rather obvious, constraint is that

α ≤ β ⇒ 2ℵα ≤ 2ℵβ . (8)

Of course we also know that 2ℵα > ℵα, but this can be viewed as consequence of (7).
Easton (1964) showed that (7) and (8) are the only statements you can make about 2ℵα for regular

cardinals ℵα. That is, if P is a function on the class of all regular cardinals ℵα into the class of all
cardinals such that

(i) cf (P (ℵα)) > ℵα and

(ii) α ≤ β ⇒ P (ℵα) ≤ P (ℵβ),

then it is consistent with (ZFC) that
2ℵα = P (ℵα)

for all regular cardinals ℵα.
The Singular Cardinals Problem asks what constraints apply to 2ℵα for singular cardinals ℵα.
Before we proceed, we need the notion of infinite sums and products of cardinals.

Definition 11.15 Let {ni}i∈I be a set of cardinals and let Ai be a set of cardinality ni, for each i.
Then the infinite sum

∑
i∈I ni is defined to be the cardinality of the disjoint union

⋃
i∈I

(Ai × {i})

and the infinite product
∏

i∈I ni is defined to be the cardinality of the cartesian product set
∏

i∈I Ai,
that is, the set of all choice functions

f : I →
⋃
i∈I

Ai

with f(i) ∈ Ai (i ∈ I).

Infinite sums and products obey the obvious generalizations of the laws in (9.1).

Exercise 11.16 1. Show that if I is infinite and ni > 0 for all i ∈ I, then∑
i∈I

ni = |I|. sup
i∈I

ni.

2. Show that
2
∑

i∈I ni =
∏
i∈I

2ni.

Definition 11.17 For α a limit ordinal, we define

2< ℵα = sup
{

2ℵβ : β < α
}

.

Note that (GCH) would imply that

2< ℵα = sup {ℵβ+1 : β < α} = ℵα.

Lemma 11.18 If α is a limit ordinal, then

2ℵα =
(
2< ℵα

)
cf (ℵα).
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Proof. Let κ = cf (ℵα) = cf (α). Then ℵα = supi<κ ℵαi
, for some αi < α (i < κ). Therefore

ℵα = max{κ,ℵα} = κ.ℵα =
∑
i<κ

ℵαi .

Then we have

2ℵα = 2
∑

i<κ ℵαi

=
∏
i<κ

2ℵαi

≤
∏
i<κ

2< ℵα

=
(
2< ℵα

)
κ

≤
(
2ℵα

)
κ

= 2ℵα.κ

= 2ℵα.

♦
The following theorem shows that there are constraints on the continuum function at singular

cardinals beyond those we have already considered. In fact, the full list of such constraints is still
unknown.

Theorem 11.19 (Bukovský6—Hechler7) Let ℵα be a singular cardinal such that the continuum func-
tion on [0,ℵα) is eventually constant; that is, there exists β < α such that

2ℵγ = 2ℵβ (β ≤ γ < α);

then
2ℵα = 2ℵβ .

Proof. Let κ = cf (α) and let γ = max{β, κ}. Then

2ℵα =
(
2< ℵα

)
κ, by the lemma,

=
(
2ℵγ

)
κ, since γ > β,

= 2ℵγ , since γ > κ,

= 2ℵβ , since γ > β.

♦
Another constraint on the continuum function is the following theorem of Silver8.

Theorem 11.20 Let ℵα be a singular cardinal with cf (α) > ω. Then ℵα cannot be the first point at
which (GCH) fails; i.e.

2ℵβ = ℵβ+1 (β < α) ⇒ 2ℵα = ℵα+1.

6L. Bukovsky, ‘The continuum problem and the powers of alephs’, Comment. Math. Univ. Carolinae, 6 (1965), 181–
197.

7S.H. Hechler, ‘Powers of singular cardinals and a strong form of the negation of the generalized continuum hypothesis’,
Z. Math. Logik Grundlagen Math., 19 (1973), 83–84.

8J. Silver, ‘On the singular cardinals problem’ (Proc. Int. Cong. Math. Vancouver (1974), 265–268
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The hypothesis cf (α) > ω is needed, since Magidor9 proved (assuming that there is a huge cardinal
larger than a supercompact cardinal) that (ZFC) is consistent with the scenario: 2ℵn = ℵn+1 (n < ω),
but 2ℵω = ℵω+2.

Finally, in this chapter, we remark that it is possible for (GCH) to fail everywhere: more precisely,
Woodin10 has shown that (if there is a supercompact cardinal) there is a model of (ZFC) in which

2ℵα = ℵα+2 (α ∈ On).

12 Large Cardinals

One way to construct a fairly large cardinal is to ask: can you have ℵα = α? The answer is ‘yes’. To
construct such an α, define a sequence of cardinals αn by:

α0 = ℵ0, αn+1 = ℵαn
(n ∈ ω).

Then α = supn∈ω αn satisfies ℵα = α. However, in one sense at least, this α is small; it is a singular
cardinal with cf (α) = ω.

12.1 Inaccessible cardinals

Let us recall the definitions of regular and singular cardinals and add some closely related definitions.

Definitions 12.1 A cardinal ℵα is said to be:

1. regular if cf (ℵα) = ℵα;

2. singular if cf (ℵα) < ℵα;

3. a (weak) limit cardinal if α is a limit ordinal; equivalently if

ℵβ+1 < ℵα (β < α).

4. a strong limit cardinal if
2ℵβ < ℵα (β < α).

Clearly, every strong limit cardinal is a weak limit cardinal and, if (GCH) holds, then ‘weak limit’
and ‘strong limit’ are synonymous.

The standard example (the smallest example) of a singular cardinal is ℵω; the standard (and small-
est) example of a weak limit cardinal is also ℵω. In fact, we have shown (Proposition 11.8) that all
singular cardinals are weak limit cardinals. The converse implication is questionable.

Definitions 12.2 An uncountable cardinal is said to be:

1. weakly inaccessible if it is a regular weak limit cardinal;

2. (strongly) inaccessible if it is a regular strong limit cardinal.

Again, ‘strong’ implies ‘weak’ and they are equivalent if (GCH) holds.
The idea here is that there are two ways of getting a large cardinal a from cardinals b < a. One

is by taking limits of transfinite sequences of length < a of cardinals < a; this gives access to singular
cardinals. The other is by going up to the next largest cardinal (in the weak case) or from a to 2a (in
the strong case); this gives access to the non-limit cardinals. Cardinals which are not ‘accessible’ from
below by either of these methods are called ‘inaccessible’.

The example with which we started this section, the smallest α with ℵα = α is not inaccessible (it
is singular); but it is true that every inaccessible has that property.

9M. Magidor, ‘On the singular cardinals problem II’ Ann. of Math., 106 (1977), 517–547.
10see M. Foreman and H. Woodin, ‘The generalized continuum hypothesis can fail everywhere’, Ann.Math., 133 (1991),

1–35; MR 91k:03130
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Proposition 12.3 If ℵκ is weakly inaccessible, then ℵκ = κ.

Proof.

ℵκ = cf (ℵκ) , since ℵκ is regular,
= cf (κ) , since κ is a limit ordinal,
≤ κ

≤ ℵκ.

Therefore κ = ℵκ. ♦

Theorem 12.4 (GCH) A limit cardinal κ is inaccessible if and only if
∑

λ<κ κλ = κ.

Proof. Suppose κ is inaccessible. If λ < κ, then λ < cf (κ), since κ is regular, so κλ = κ by
Theorem 11.13(i). Therefore ∑

λ<κ

κλ =
∑
λ<κ

κ = κ.κ = κ.

(Actually, with more care, the above can be proved without (GCH).)
Conversely, suppose κ is a limit cardinal which is not inaccessible and therefore, by (GCH), not

weakly inaccessible. Then κ must be singular, so cf (κ) < κ, so

∑
λ<κ

κλ ≥ κcf (κ) > κ.

♦
Thus inaccessibles are characterized, among limit cardinals, as the fixed points of a certain ‘func-

tion’ f from cardinals to cardinals. Other types of large cardinal are similarly defined as fixed points
of suitable functions.

12.2 The Cumulative Hierarchy

Definition 12.5 We define the cumulative hierarchy of sets Vα (α ∈ On) by transfinite induction:

V0 = Ø,

Vα+1 = P(Vα),

Vµ =
⋃

α<µ

Vα for µ a limit ordinal.

In fact, all sets occur somewhere in this hierarchy. In our presentation, this is a consequence of the
Axiom of Foundation (AF), but one could present it as an alternative axiom, in place of (AF).

Proposition 12.6
V =

⋃
α∈On

Vα.

Proof. Let x ∈ V \ ⋃
α∈On Vα. We shall define another such set y with y ⊆ ⋃

α∈On Vα. If
x ⊆ ⋃

α∈On Vα, then we set y := x. Otherwise we proceed as follows.
We form the ∈-transitive closure t of x by setting t0 := x, then tn+1 :=

⋃
tn (meaning

⋃
u∈tn

u)
(n ∈ ω), and finally

t :=
⋃
n∈ω

tn.

Then t is a set and it is the smallest ∈-transitive set containing x.
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Let s = t\⋃
α∈On Vα. This is a set, by the Axiom of Subsets, since t is a set. and since x �⊆ ⋃

α∈On Vα,
it is non-empty. By (AF), there is a y ∈ s such that y ∩ s = Ø. By the construction of t, we have y ⊆ t;
therefore

y \
⋃

α∈On

Vα = y ∩ s = Ø,

i.e.
y ⊆

⋃
α∈On

Vα.

By the definition of s, we have y �∈ ⋃
α∈On Vα.

(If we had stated (AF) in the form ‘every non-empty class has an element which is disjoint from it’
then we should have achieved this stage more quickly by applying (AF) to V \⋃

α∈On Vα directly; what
we have done above is essentially to prove the class form. We used the set form in our axiomatization
because (ZF) does not, formally, allow class variables.)

Setting yα = y ∩ Vα (α ∈ On) we have

y =
⋃

α∈On

yα.

This is the situation described in Lemma 4.20. The conclusion is that the transfinite sequence (yα) is
eventually constant; that is, y ⊆ Vβ for some ordinal β. Then y ∈ Vβ+1, contradicting y �∈ ⋃

α∈On Vα.
This completes the proof. ♦

Lemma 12.7 Let κ be the first inaccessible cardinal. Then |Vα| < κ (α < κ), and |Vκ| = κ.

Proof. We prove |Vα| < κ by induction on α. It is certainly true for V0 = Ø. If |Vα| = n < κ then
Vα+1| = 2n < κ since κ is a strong limit cardinal. If α is a limit ordinal and |Vβ | < κ for all β < α,
then

|Vα| = sup
β<α

|Vβ | ≤ κ,

but we cannot have κ = supβ<α |Vβ |, since this would imply cf (κ) ≤ α < κ, contradicting the regularity
of κ. This completes the induction proof of our first assertion.

For the second assertion, since
Vκ =

⋃
α<κ

Vα

we have
|Vκ| ≤ κ.κ = κ,

by Lemma 11.9. Conversely, since |Vα+1 \ Vα+1| ≥ 1 (α < κ), we have |Vκ| ≥ κ. ♦

12.3 Models of set theory

Let L be a language; that is, a finite set of distinguished predicates. For example, the language of set
theory consists just of the distinguished binary predicate ∈, the language of ring theory has two binary
predicates + and ‘.’. A theory is a set of sentences in the predicate calculus with equality and the
distinguished predicates of the language. By a sentence we mean a well-formed formula; roughly,
this means a string of symbols which makes sense — formally, there is an obvious inductive definition
which may be found in any text on mathematical logic.

Definition 12.8 A model for a language L is a set M equipped with a relation PM corresponding to
each of the predicates P of the language. (Usually we omit the superscript.)

A model M is a model for the theory T if whenever each of the sentences is interpreted in the
model M, using the relations PM for the predicates P , the sentence is found to be true. We write
M � T and say ‘M satisfies T ’.
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The notion of interpretation of a sentence in a model is again something which we take as obvious,
but which can be defined formally by induction on the length of the sentence. The formal definition can
be found in any text on mathematical logic covers some model theory. It is easiest to think in terms
of examples. If T is consists of the axioms for associative rings, in the language of ring theory, then a
‘model of T ’ is just a ring.

A model of set theory is, therefore, a pair M = (M, E) consisting of a class M (we vary the
definition used for models of algebraic theories to allow M to be a proper class) and a binary relation E
on M corresponding to the binary predicate ∈. We can consider some special kinds of models of set
theory.

Definition 12.9 A model M = (M, E) of set theory is an ∈-model if E =∈ ∩M2, that is, the elements
of M are sets (of course — the model is built inside the usual universe of sets) and the relation E that
represents ∈ when the language is interpreted in M is just the membership relation ∈ restricted to M .
For ∈-models, we can just speak of ‘the model M ’.

An ∈-model M is said to be transitive if M is an ∈-transitive class; that is, x ∈ y ∈ M ⇒ x ∈ M .

Let us call expressions of the form (∃x ∈ X) and (∀x ∈ X) restricted quantifiers. We shall say
that a formula φ is a restricted formula if it contains no quantifiers other than restricted quantifiers.

Lemma 12.10 If M is a transitive model and φ is a restricted formula, then for all x1, . . . , xn ∈ M ,

M � φ(x1, . . . , xn) if and only if φ(x1, . . . , xn). (9)

Proof. The proof is by induction on the length of the formula φ. We suppose that (9) holds for all
formulae of length strictly smaller than φ and prove it for φ.

If φ is an ‘atomic formula’, i.e. a formula x = y or x ∈ y, then (9) holds. If φ is of the form ¬ψ,
ψ&χ, ψ∨χ or ψ ⇒ χ, where ψ and χ are shorter formulae, then (9) holds for ψ and χ by the induction
hypothesis, and therefore (9) holds for φ.

The crucial part of the proof concerns the case when φ(X, y, . . .) is of the form (∃x ∈ X)ψ(x,X, y, . . .)
or (∀x ∈ X)ψ(x,X, y, . . .). Again, ψ is a shorter formula, so (9) holds for ψ. We prove the first of these
cases and leave the second as an exercise. (Alternatively, one can use the rule ‘∀ ≡ ¬∃¬’ to dispense
with universal restricted quantifiers.)

The statement M � φ(X, y, . . .), is then

M � ∃x(x ∈ X & ψ(x,X, y, . . .)).

By the induction hypothesis on ψ, this is equivalent to

(∃x ∈ M)(x ∈ X & M � ψ(x,X, y, . . .)). (10)

Clearly (10) implies
(∃x ∈ M)(x ∈ X & ψ(x,X, y, . . .)),

so (∃x ∈ X)ψ(x,X, y, . . .), i.e. φ(X, y, . . .). Conversely, suppose φ(X, y, . . .), i.e. (∃x ∈ X)ψ(x,X, y, . . .).
Here, X, y, . . . ∈ M , but we do not necessarily have x ∈ M . However, since M is transitive and
x ∈ X ∈ M , we do have x ∈ M , so (10) follows. ♦
Corollary 12.11 Every transitive model satisfies the Axiom of Extensionality and the Axiom of Foun-
dation.

We rewrite (AE) and (AF) as restricted formulae:

(AE) ∀z(z ∈ x ⇐⇒ z ∈ y) ⇒ x = y

becomes
((∀z ∈ x)(z ∈ y) & (∀z ∈ y)(z ∈ x)) ⇒ x = y;

and

(AF ) ∃y(y ∈ x) ⇒ ∃y(y ∈ x & ¬∃z (z ∈ x & z ∈ y))

becomes
(∃y ∈ x)(y = y) ⇒ (∃y ∈ x)(∀z ∈ x)(z �∈ y).
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12.4 Independence of the existence of inaccessibles

Theorem 12.12 (ZFC) If κ is the first inaccessible cardinal, then Vκ is a transisitve ∈-model for
ZFC+(there is no inaccessible cardinals).

Proof. We write M = Vκ. First we observe that Vκ is transitive: it is easy to prove by transfinite
induction that Vα is transitive for all ordinals α. It then follows from Corollary 12.11 that M �
(AE) + (AF ).

We must show that M satisfies the remaining axioms of (ZFC).

(AS) ∃y∀z(z ∈ y ⇐⇒ z ∈ x & P (z));

Given x ∈ M , the axiom (AS) provides a set y; we have to show that y ∈ M . Now x ∈ M implies
x ∈ Vα for some α < κ. Since Vα is transitive, every z ∈ x is a member of Vα. Therefore y ⊆ Vα, so
y ∈ Vα+1 ⊆ M . Thus M � (AS).

(AR) ∀x∃y∀z(P (x, z) ⇐⇒ z ∈ y) ⇒ ∀uMy (∃x(x ∈ u & P (x, y))) .

Suppose that
M � ∀x∃y∀z(P (x, z) ⇐⇒ z ∈ y).

Let
F = {(x, y) ∈ M × M : y = {z ∈ M : P (x, z)}} .

Then F : M → M is a function. To show

M � ∀uMy ((∃x ∈ u)P (x, y)))

it suffices to show that if u ∈ M then F“u ∈ M ; (using the transitivity of M again). If u ∈ M , then
u ∈ Vα for some α < κ, so u ⊆ Vα (since Vα is transitive), so |u| ≤ |Vα| < κ, by Lemma 12.7. Then
|F“u| ≤ |u| < κ. Each s ∈ F“u is a member of some Vαs with αs < κ. We cannot have sups αs = κ,
since that would be to express κ as the sup of |F“u| < κ smaller ordinals. Therefore sups αs = α < κ.
Thus s ∈ Vα (s ∈ F“u). This means that F“u ⊆ Vα, so F“u ∈ Vα+1, so F“u ∈ M , as desired.

(AP ) ∀xMy (y ⊆ x) .

The Power Set Axiom is satisfied in M ; essentially, because x ∈ M implies x ∈ Vα for some α < κ
and so P(x) ∈ Vα+1 ⊆ M . However, this argument disguises a subtlety: we need to check that, for
x ∈ M , P(x) within the model means the same as P(x) in V .

For this, we need to know is that, for x, y ∈ M ,

(M � y ⊆ x) ⇐⇒ y ⊆ x.

The point here is that M � y ⊆ x means that for every u ∈ M , if u ∈ y then u ∈ x, whereas y ⊆ x
in V means that the same is true for all u ∈ V . The fact that these two are equivalent comes from the
transitivity of M , since

u ∈ y ⊆ x ∈ M ⇒ u ∈ x ∈ M ⇒ u ∈ M.

We could skip the the Null Set Axiom

(AN) ∃x∀y(y �∈ x),

as it was superseded by the Axiom of Infinity. However, we may as well observe that M satisfies (AN),
since all this involves is noting that the null set Ø of V is a member of M and consequently forms the
null set for M .
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(AI) ∃x(Ø ∈ x & ∀y(y ∈ x ⇒ S(y) ∈ x)).

We have just noted that Ø is the same in M and V . It is easy to see that

S(x) = ιy(z ∈ y ⇐⇒ (z ∈ x ∨ z = x))

satisfies S(x) ∈ M whenever x ∈ M and that

M � [S(x) = ιy(z ∈ y ⇐⇒ (z ∈ x ∨ z = x))];

in other words, S(x) in V is the same as S(x) interpreted in the model M . An example of an x proving
(AI) is the ordinal ω. Since ω ∈ M , it follows that M � (AI).

We can proceed in this fashion, showing the ideas of ‘f being a function’ and f ‘x are interpreted
in the same way in M as in V . We must show that M � (AC), assuming the Axiom of Choice (AC)
holds in V . Given a set x ∈ M , we need only show that the choice function f on x produced by (AC)
in V belongs to M . Now if x, y ∈ V α then all ξ ∈ x and η ∈ y are in Vα, so unordered pairs {ξ, η} are
in Vα+1, ordered pairs (ξ, η) are in Vα+2, and functions f : x → y are in Vα+3. In particular, if x ∈ Vα,
then

⋃
x ∈ Vα and so any choice function on x is in Vα+3. Thus M � (AC).

Working further through the definitions of (ZFC), it can easily be shown that:

1. M � α ∈ On iff α ∈ On;

2. M � α is a cardinal iff α is a cardinal;

3. M � α is a regular cardinal iff α is a regular cardinal;

4. M � α is an inaccessible cardinal iff α is an inaccessible cardinal.

Therefore, since κ is the least inaccessible cardinal and M = Vκ, we have

M � there is no inaccessible cardinal.

♦

Remark 12.13 In view of what we have observed about the power set operation in M , it is clear that
if we assume (GCH) in V , then M � (GCH).

13 Constructibility

In this section we shall describe briefly Gödel’s model which showed the relative consistency of (AC)
and (GCH). Another view is that we describe a version of set theory in which the sets which exist are
those which we can describe. In the construction of the Cumulative Hierarchy, we put into Vα+1 all the
subsets of Vα, whether they were in any sense describable or not. Now we shall be more careful!

Definition 13.1 Given a set X we denote by LX the language of set theory with a constant x for each
x ∈ X.

We shall say that a set Y is an X-definable subset of X if, for some formula φ of LX with one free
variable,

Y = {x ∈ X : X � φ(x)},
where � has the obvious meaning.

We write Def(X) for the set of all X-definable subsets of X.
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Definition 13.2 We define the constructible hierarchy Lα (α ∈ On) by induction on α:

L0 = Ø;
Lα+1 = Def(Lα);

Lλ =
⋃

α<λ

Lα for limit ordinals λ.

We write
L =

⋃
α∈On

Lα,

which is a proper class.

Lemma 13.3 (i) For all α < β we have Lα ⊆ Lβ and Lα ∈ Lβ.

(ii) For all α the set Lα is ∈-transitive. Hence the class L is ∈-transitive, and so L � (AE)+(AF).

(iii) For all α we have α ∈ Lα+1. Hence On ⊆ L.

Proof. The proofs are similar to those for the cumulative hierarchy (Vα). ♦

Theorem 13.4 Gödel11 The class L is a transitive model for (ZFC) +(CH). Consequently, if (ZF) is
consistent then so is (ZFC).

Proof. We do not have time for a full proof, for which we refer to Keith Devlin’s book Constructibil-
ity12 or Aspects of Constructibility13. A key point of difference from the proof with Vκ is that L � (AC).
This is shown by showing L � (WO), where (WO) is the statement ‘every set can be well-ordered’,
which is equivalent to (AC). The idea, essentially, is that L has a well-ordered grading

⋃
Lα and on

each of the Lα one defines a well-order using transfinite induction, the ordering on Lα+1 being formed
from that on Lα using the fact that each element of Lα+1 is a definable subset of Lα and so corresponds
to a formlua φ(x, x1, . . . , xn). The proof that L � (GCH) is more complicated. ♦

The constructible hierarchy, introduced for these independence proofs, has considerable interest in
its own right. It gives us a new axiom, the Axiom of Constructibility, which needs no abbreviation
as it is just

V = L,

that is: every set is constructible. Thus what Gödel showed was that L is a model for (ZF)+(V = L)
and that

(V = L) ⇒ (AC) & (GCH).

The Axiom of Constructibility has other consequences.

Definition 13.5 We say that a abelian group G is a W-group if Ext(G, Z) = 0; that is, if whenever H
is an abelian group with a subgroup K ≡ Z such that H/K ≡ G, we must have H = K ⊕ M with
M ≡ G.

Every free abelian group is a W-group; the Whitehead Problem (1951) asks whether every W-
group is free. Stein showed, in 1951, that every countable W-group is free. In 1975, Shelah solved the
Whitehead problem positively — assuming V = L. For further details we refer to Keith Devlin’s book
The Axiom of Constructibility: a guide for the mathematician14.

11Kurt Gödel, The Consistency of the Axiom of Choice and of the Generalized Continuum-Hypothesis with the Axioms
of Set Theory, (Princeton University Press, Annals of Math. Studies 3, 1940).

12Springer, Perspectives in Mathematical Logic, 1984
13Springer, Lecture Notes in Math. 354, 1973
14Springer, Lecture Notes in Math. 617, 1977
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14 Appendix: weak forms of (AC)

To describe the Ultrafilter Theorem and the Boolean Prime Ideal Theorem we need some definitions.

Definition 14.1 A Boolean algebra is a set B with binary operations ∨ and ∧, a unary operation
x 	→ x and distinguished elements (0-ary operations) 0 and 1, satisfying the following axioms:

a ∨ a = a a ∧ a = a
a ∨ b = b ∨ a a ∧ b = b ∧ a

(a ∨ b) ∨ c = a ∨ (b ∨ c) (a ∧ b) ∧ c = a ∧ (b ∧ c)
a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

a ∨ a = 1 a ∧ a = 0
a ∨ 0 = a a ∧ 1 = a.

We say B is non-trivial if 0 �= 1.

Definition 14.2 In a Boolean algebra B we introduce a relation ≤ by:

a ≤ b ⇐⇒ a ∨ b = b.

Proposition 14.3 In a Boolean algebra B:

1. ≤ is a partial order;

2. a ≤ b ⇐⇒ a ∧ b = a;

3. a ∧ b = inf{a, b} and a ∨ b = sup{a, b} in the sense of the partial order ≤;

4. 0 = inf B; 1 = sup B;

5. a ≤ b ⇒ a ∨ c ≤ b ∨ c and a ≤ b ⇒ a ∧ c ≤ b ∧ c;

6. a ∨ b = 1 ⇐⇒ a ≥ b and a ∧ b = 0 ⇐⇒ a ≤ b; hence

a = b ⇐⇒ a ∧ b = 0 & a ∨ b = 1;

7. 0 = 1 and 1 = 0;

8. a = a;

9. a ∧ b = a ∨ b and a ∨ b = a ∧ b;

10. a ≤ b ⇐⇒ b ≤ a.

Definition 14.4 We say that a non-empty subset I of a Boolean algebra B is an ideal if:

(a) a, b ∈ I ⇒ a ∨ b ∈ I;

(b) a ∈ I & b ≤ a ⇒ b ∈ I;

(c) 1 �∈ I.

We say that a non-empty subset F of a Boolean algebra B is an filter if:

(a) a, b ∈ F ⇒ a ∧ b ∈ F ;

(b) a ∈ F & b ≥ a ⇒ b ∈ F ;

(c) 0 �∈ F .

Examples 14.5 Given a ∈ B with a �= 1, the set Ia = {x ∈ B : x ≤ a} is an ideal, called the principal
ideal generated by a. Given a ∈ B with a �= 0, the set Fa = {x ∈ B : x ≥ a} is a filter, called the
principal filter generated by a.
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Proposition 14.6 For an ideal I of a Boolean algebra B the following are equivalent:

(a) for all a ∈ B, either a ∈ I or a ∈ I;

(b) I is maximal in the set of all ideals of B, ordered by inclusion.

(c) if a ∧ b ∈ I then at least one of a, b is in I;

Some authors write + for ∨ and . for ∧ which makes the term ‘ideal’ natural in analogy with ring
theory (though it makes the existence of two distributive laws look odd!). Continuing this analogy, we
say that I is a prime ideal if it satisfies the conditions of this theorem.

Proof.

(a) ⇒ (b) Notice that, for any ideal I we can never have both a ∈ I and a ∈ I. The fact that
(a) ⇒ (b) follows immediately.

(b) ⇒ (c) Suppose I is maximal and a ∧ b ∈ I with neither a nor b belonging to I. Let

J = {x ∈ B : x ≤ a ∨ y for some y ∈ I}.
Then it is easy to check that J satisfies the first two conditions for being an ideal: first, if
x1, x2 ∈ J , then x1 ≤ a ∨ y1, x2 ≤ a ∨ y2, with y1, y2 ∈ I, so

x1 ∨ x2 ≤ (a ∨ y1) ∨ (a ∨ y2) = a ∨ (y1 ∨ y2)

and y1 ∨ y2 ∈ I, so x1 ∨ x2 ∈ J ; secondly, if z ≤ x and x ∈ J with, say, x ≤ a ∨ y and y ∈ I, then
z ≤ a ∨ y and so z ∈ J . Now J properly contains I and I is a maximal ideal, so we must have
1 ∈ J . Therefore 1 ≤ a ∨ x for some x ∈ I, so 1 = a ∨ x. Likewise 1 = b ∨ y for some y ∈ I. It
follows that

1 = (a ∨ x) ∧ (b ∨ y) = (a ∧ b) ∨ (a ∧ y) ∨ (x ∧ (b ∨ y)) ∈ I,

since a ∧ b ∈ I, by hypothesis,

a ∧ y ≤ y ∈ I ⇒ a ∧ y ∈ I

and
x ∧ (b ∨ y) ≤ x ∈ I ⇒ x ∧ (b ∨ y) ∈ I.

This contradiction proves (c).

(c) ⇒ (a) This implication is immediate because a ∧ a = 0 ∈ I.

♦
Clearly the definition of ‘filter’ is dual to that of ‘ideal’, so the set I := {x ∈ B : x ∈ I} is a filter if

and only if I is an ideal. Thus we have the following dual proposition.

Proposition 14.7 For an filter F of a Boolean algebra B the following are equivalent:

(a) for all a ∈ B, either a ∈ F or a ∈ F ;

(b) F is maximal in the set of all filters of B, ordered by inclusion.

(c) if a ∨ b ∈ F then at least one of a, b is in F ;

Definition 14.8 We say that F is an ultrafilter if the equivalent conditions of this proposition hold.

It is now easy to see that (BPIT) and (UFT) are just dual statements. The proof of either, by
applying Zorn’s Lemma to the set of all ideals/filters ordered by inclusion, is straightforward.

To illustrate the use of (UFT), it is convenient to refer to the filter approach to general topology.
The term ‘filter’ here will refer to a filter in the Boolean algebra P(X) of subsets of the given topological
space X.
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Definition 14.9 Given a point x ∈ X, we write Nx for the neighbourhood filter of x, that is, the
set of all neighbourhoods of x. We say that a filter F converges to a point x ∈ X if F ⊇ Nx.

Theorem 14.10 (a) (ZF) A topological space is Hausdorff if and only if no filter converges to
more than one point.

(b) (ZF)+(UFT) A topological space is compact if and only if every ultrafilter converges.

(c) (ZF) A function f : X → Y is continuous if and only if f(F) → f(x) whenever F → x.

Proof. The proofs of (a) and (c) are straightforward; we prove (b).
Suppose that X is compact and that U is an ultrafilter on X. Let U be the set of all closures of

members of U . Then, since U has the finite intersection property, so does U . Since X is compact, there
exists a point x ∈ ⋂U . Therefore, for every neighbourhood N of x, X \N �∈ U . Since U is an ultrafilter
X \ N �∈ U implies N ∈ U . Thus U → x. We have only used (ZF).

For the converse, suppose that every ultrafilter on X converges. Let C be a family of closed subsets
of X with the finite intersection property. Let

F = {Y ⊆ X : Y ⊇ F1 ∩ . . . ∩ Fn for some F1, . . . Fn ∈ C}.
Then F is a filter on X. Using (UFT), let U be an ultrafilter containing F . Then U converges; say
U → x. For every neighbourhood N of x, N ∈ U , so N ∩F �= Ø for every F ∈ U and, in particular, for
every F ∈ C. Since the sets in C are closed, this implies x ∈ ⋂ C. ♦
Application: Tychonoff’s Product Theorem

The Axiom of Choice inevitably plays a rôle in the discussion of infinite product spaces. After all, it
is equivalent to the statement that every Cartesian product of a family of non-empty sets is non-empty.
We shall now prove that it is equivalent to the famous theorem of Tychonoff that every product of
compact spaces is compact.

We recall the definition of the product topology. Given a family {Xi}i∈I of topological spaces, let
X =

∏
i∈I Xi denote the Cartesian product and πi : X → Xi (i ∈ I) the coordinate projections. The

product topology on X is the weakest topology making all the maps πi continuous. In terms of filters
it is the topology such that F → x in X iff πi(F) → πi(x) for each i ∈ I.

Theorem 14.11 Tychonoff’s Product Theorem In (ZF)+(AC), every product of compact spaces is
compact.
In (ZF)+(UFT), every product of compact Hausdorff spaces is compact.

Proof. With the notation above, we have to show that if all the Xi are compact then every ultrafilter U
in X converges. If U is an ultrafilter in X, then each filter πi(U) is an ultrafilter and therefore converges,
say πi(U) → xi. If all the Xi are Hausdorff, then the limits xi are unique. Otherwise, we use (AC) to
choose, for each i ∈ I, a limit point xi of πi(U). Let x = (xi)i∈I . Then U → x, by the definition of the
product topology. ♦

Theorem 14.12 (Kelley) Tychonoff’s Product Theorem implies (AC), within (ZF).

Proof. Assume Tychonoff’s Product Theorem. Let x be a set on which we wish to have a choice
function. For each y ∈ x, define the topological space Sy = y ∪ {py}, where py �∈ y, with the topology
in which a set G ⊆ Sy is open iff either

(i) G ⊆ {py} or

(ii) Sy \ G is finite.

It is easy to see that this is a compact (and T1) topology on Sy. Tychonoff’s Theorem then implies
that the product space X =

∏
y∈x Sy is compact.

In X we consider the family of closed sets Fy = π−1
y (y). This family has the finite intersection

property: to show Fy1 ∩ . . . ∩ Fyn
�= Ø we choose si ∈ y (1 ≤ i ≤ n), and define x ∈ Fy1 ∩ . . . ∩ Fyn

by

πy(x) =
{

si (y = yi, 1 ≤ i ≤ n)
py otherwise.

43



X is compact, there exists z ∈ ⋂
y∈x Fy. Then πy(z) ∈ y (y ∈ x); that is, y 	→ πy(z) is a choice function

on x. ♦
Actually, we have proved slightly more than stated: Tychonoff’s Theorem for T1-spaces implies

(AC). It can be shown that Tychonoff’s Theorem for Hausdorff spaces implies (UFT).
Theorem 14.12 is typical of many proofs that statements in ordinary mathematics are equivalent to

(AC) or to one of its weaker forms.
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