On finite p-groups with subgroups of breadth 1 — Corrigendum

GIOVANNI CUTOLO, HOWARD SMITH AND JAMES WIEGOLD

Lemma 2.8 as published is not correct, in that some conclusions drawn in it require the hypothesis that the subgroup C is not abelian. A correct version of the lemma is the following:

Lemma 2.8. Let G be a finite 2-group of s-breadth 1, and assume that G has no dihedral subgroup of order eight. Let a be a noncentral involution in G and let $b \in G \setminus C_G(a)$. If $H = \langle a, b \rangle$ and $C = C_G(H)$ then $|C/Z(C)| \leq 4$ and b^2 is not a square in C. Moreover, $V := \langle a, a^b \rangle$ is noncyclic of order four and:

- (i) if C is not abelian then $H = V \rtimes \langle b \rangle$, $\langle b^2 \rangle \triangleleft G$ and all elements of $C \smallsetminus Z(C)$ have order four;
- (ii) if C is hamiltonian then b has order four and $C' = H' = \langle aa^b \rangle$;
- (iii) if C is not a Dedekind group then b has order eight and $C' = \langle aa^b b^4 \rangle$.

The proof is as in the paper, but a reference to Corollary 2.4 must be anticipated, in order to show that if a normalises $\langle b \rangle$ then C is abelian. The argument is as follows. Suppose that a normalises $\langle b \rangle$. Then [a, b] is a square in $\langle b \rangle$, hence in H. By Corollary 2.4, this implies that C is a Dedekind group. As remarked in the first lines of the proof, $[a, b^2] = 1$ (because a has breadth 1) and so $b^2 \in Z(C)$. Now, $H = \langle b \rangle \rtimes \langle a \rangle$ and b cannot have order 4, otherwise $\langle a, b \rangle \simeq D_8$. Therefore b^2 is an element of Z(C) of order greater than 2, and it follows that C is abelian. The conclusion is that if C is not abelian then $\langle b \rangle \neq \langle b \rangle^a$; as in the proof in the paper this means that $\langle b \rangle_G = \langle b^2 \rangle$, hence $\langle b^2 \rangle \triangleleft G$. Once this has been observed, the proof goes exactly as in the paper.

The proof of Lemma 2.9 needs a corresponding little fix. Namely, in the first paragraph, the reduction to the case when C is not abelian must precede, and not follow, the choice of the element $x \in N_{C_a}(\langle b \rangle)$, so a portion of text preceding the phrase "Suppose first that C is abelian" must be moved after this reduction has been made. Explicitly, the following change gives the desired result:

- replace "Moreover $a \notin N_G(\langle b \rangle)$, so there exists $x \in N_{C_a}(\langle b \rangle) \smallsetminus C_b$; note that $G = C\langle a, b, x \rangle$. Also note that since $[b, x] \in \langle b \rangle$ while $u = aa^b \notin \langle b \rangle$ and |G'| = 4 we must have $[b, x] = b_0$ and $G' = \langle u \rangle \times \langle b_0 \rangle$, where b_0 generates the socle of $\langle b \rangle$ " with "There exists $x \in C_a \smallsetminus \langle a \rangle C$; note that $G = C\langle a, b, x \rangle$ "
- after "we may assume that C is not abelian." add "Then $a \notin N_G(\langle b \rangle)$, so we may assume that x has been chosen in $N_G(\langle b \rangle)$. Then, since $[b, x] \in \langle b \rangle$ while $u = aa^b \notin \langle b \rangle$ and |G'| = 4 we must have $[b, x] = b_0$ and $G' = \langle u \rangle \times \langle b_0 \rangle$, where b_0 generates the socle of $\langle b \rangle$."