On finite p-groups with subgroups of breadth 1 Corrigendum

GIOVANNI CUTOLO, HOWARD SMITH AND JAMES WIEGOLD

Lemma 2.8 as published is not correct, in that some conclusions drawn in it require the hypothesis that the subgroup C is not abelian. A correct version of the lemma is the following:

Lemma 2.8. Let G be a finite 2-group of s-breadth 1, and assume that G has no dihedral subgroup of order eight. Let a be a noncentral involution in G and let $b \in G \backslash C_{G}(a)$. If $H=\langle a, b\rangle$ and $C=C_{G}(H)$ then $|C / Z(C)| \leq 4$ and b^{2} is not a square in C. Moreover, $V:=\left\langle a, a^{b}\right\rangle$ is noncyclic of order four and:
(i) if C is not abelian then $H=V \rtimes\langle b\rangle,\left\langle b^{2}\right\rangle \triangleleft G$ and all elements of $C \backslash Z(C)$ have order four;
(ii) if C is hamiltonian then b has order four and $C^{\prime}=H^{\prime}=\left\langle a a^{b}\right\rangle$;
(iii) if C is not a Dedekind group then b has order eight and $C^{\prime}=\left\langle a a^{b} b^{4}\right\rangle$.

The proof is as in the paper, but a reference to Corollary 2.4 must be anticipated, in order to show that if a normalises $\langle b\rangle$ then C is abelian. The argument is as follows. Suppose that a normalises $\langle b\rangle$. Then $[a, b]$ is a square in $\langle b\rangle$, hence in H. By Corollary 2.4, this implies that C is a Dedekind group. As remarked in the first lines of the proof, $\left[a, b^{2}\right]=1$ (because a has breadth 1) and so $b^{2} \in Z(C)$. Now, $H=\langle b\rangle \rtimes\langle a\rangle$ and b cannot have order 4 , otherwise $\langle a, b\rangle \simeq D_{8}$. Therefore b^{2} is an element of $Z(C)$ of order greater than 2 , and it follows that C is abelian. The conclusion is that if C is not abelian then $\langle b\rangle \neq\langle b\rangle^{a}$; as in the proof in the paper this means that $\langle b\rangle_{G}=\left\langle b^{2}\right\rangle$, hence $\left\langle b^{2}\right\rangle \triangleleft G$. Once this has been observed, the proof goes exactly as in the paper.

The proof of Lemma 2.9 needs a corresponding little fix. Namely, in the first paragraph, the reduction to the case when C is not abelian must precede, and not follow, the choice of the element $x \in N_{C_{a}}(\langle b\rangle)$, so a portion of text preceding the phrase "Suppose first that C is abelian" must be moved after this reduction has been made. Explicitly, the following change gives the desired result:

- replace "Moreover $a \notin N_{G}(\langle b\rangle)$, so there exists $x \in N_{C_{a}}(\langle b\rangle) \backslash C_{b}$; note that $G=C\langle a, b, x\rangle$. Also note that since $[b, x] \in\langle b\rangle$ while $u=a a^{b} \notin\langle b\rangle$ and $\left|G^{\prime}\right|=4$ we must have $[b, x]=b_{0}$ and $G^{\prime}=\langle u\rangle \times\left\langle b_{0}\right\rangle$, where b_{0} generates the socle of $\langle b\rangle$ " with "There exists $x \in C_{a} \backslash\langle a\rangle C$; note that $G=C\langle a, b, x\rangle$ "
- after "we may assume that C is not abelian." add "Then $a \notin N_{G}(\langle b\rangle)$, so we may assume that x has been chosen in $N_{G}(\langle b\rangle)$. Then, since $[b, x] \in\langle b\rangle$ while $u=a a^{b} \notin\langle b\rangle$ and $\left|G^{\prime}\right|=4$ we must have $[b, x]=b_{0}$ and $G^{\prime}=\langle u\rangle \times\left\langle b_{0}\right\rangle$, where b_{0} generates the socle of $\langle b\rangle$."

