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This note adds some bits of information to our paper On finite p-groups with subgroups of breadth 1, Bull. Aus.
Math. Soc., 82 (2010), pp. 84–98. There, in the remarks following Lemma 2.8, we make a couple of unproven
statements describing the groups for which ‘case (iii)’ occurs. Here we prove these statements.

First, suppose that G is a group as in Lemma 2.8, with an involution a contained in a nonabelian sub-
group H = ⟨a, b⟩. Further suppose that C := CG(H) is not a Dedekind group. Lemma 2.8 and its proof provide
the following information. H = V o ⟨b⟩, where V = ⟨a, ab⟩ ≃ V4, the Klein four-group, and b has order 8.
Moreover, |C/Z(C)| = 4. If g ∈ C r Z(C) then g must have order 4 and either g2 = u := aab (if ⟨g⟩ 6 C)
or g2 = ub4 is the generator of C ′ (if ⟨g⟩ ▹ C). Theorem B yields |G/Z(G)| ≤ 16. But Z(G) ≤ Z(C) and
|HC/Z(C)| = |H/Z(H)| |C/Z(C)| = 16, therefore Z(G) = Z(C) and G = HC.

We have C = ⟨c, d⟩Z(C), for some noncommuting elements c, d (of order 4). Also, b2 ∈ Z(C). Since
(cb2)2 = c2b4 ̸= c2 one of ⟨c⟩ and ⟨cb2⟩ is normal in C and the other isn’t. The same holds for ⟨d⟩ and ⟨db2⟩. So
we may assume ⟨c⟩ 6 C and ⟨d⟩ ▹ C. Let K = ⟨c, d⟩, hence K = ⟨d⟩o ⟨c⟩ is the nonabelian semidirect product
of two cyclic groups of order 4, and C = KZ(C). As expC = 4 = ◦(b2), we also have Z(C) = ⟨b2⟩ × E0 for
some E0 ≤ C. If E0 has an element e of order 4 then c, cb2 and ce are three elements of CrZ(C) with different
squares, which cannot exist. Therefore E2

0 = 1. Now Z(C)∩(HK) = ⟨u⟩×⟨b2⟩, and there is no loss of generality
in assuming u ∈ E0. Then ⟨u⟩ has a complement E in E0, and it follows that G = HC = HK × E. Thus
the structure of G is almost completely described, the only parameter which is not prescribed being the rank
of E. In fact H and K are described, [H,K] = 1 and the amalgamation in H ∩K is also given by Lemma 2.8:
c2 = aab and d2 = aabb4.

Conversely, now we shall prove that a group G with this structure has subgroup breadth 1. First we describe
the elements of order 2 in G. Let g = hke ∈ G, where h ∈ H, k ∈ K and e ∈ E. Then g2 = 1 if and only
if h2k2 = 1. Since expK = 4 this condition means h2 = k2. It is easy to check that the sets of all squares
in H and K are S(H) = ⟨b2⟩ ∪ {aabb2, aabb−2} and S(K) = {1, c2, d2} respectively, and S(H) ∩ S(K) = {1}.
Therefore, if g2 = 1 then h2 = k2 = 1 and k ∈ H because Ω1(K) ≤ H. It follows that Ω1(G) = Ω1(H) × E.
Now Ω1(H) = ⟨a, ab, b4⟩ where b4 ∈ Z(G) and V4 ≃ ⟨a, ab⟩ ▹ G, hence CG(Ω1(G)) = CG(⟨a, ab⟩) has index 2
in G. Therefore

if U ≤ G and expU ≤ 2 then sbrG(U) ≤ 1. (1)

Now suppose, by contradiction, that U is a subgroup of G whose s-breadth in G is greater than 1. We may
choose U minimal with respect to this property; hence we cannot have U = U1UG for any U1 < U , because
otherwise NG(U1) ≤ NG(U) and sbrG(U1) ≥ sbrG(U). Therefore

UG ≤ Φ(U) = U2. (2)

Also, expU > 2, by (1), so U contains an element u of order 4. Thus u2 is a square and an involution. We have
u2 = h2k2 for some h ∈ H and k ∈ K. Since K4 = 1 also h2 must have order 2 at most. The above description
of S(H) and S(K) yields h2 ∈ ⟨b4⟩ and u2 ∈ {b4, c2, d2}, since d2 = b4c2.

Z(H) = ⟨aab, b2⟩ and Z(K) = ⟨c2, d2⟩ have index 4 in H and K respectively. Hence, if N is one of H ′ = ⟨c2⟩
and K ′ = ⟨d2⟩, and ¯̄G = G/N then | ¯̄G/Z( ¯̄G)| = 4, so sbr( ¯̄G) ≤ 1. This shows that neither c2 nor d2 is contained
in U . By the previous paragraph b4 = u2 ∈ U .

Now let bars denote images modulo ⟨b4⟩. Note that ¯̄G is a central product ¯̄H( ¯̄K ¯̄E), where ¯̄K ¯̄E is hamiltonian
and ¯̄H ∩ ( ¯̄K ¯̄E) = ¯̄H ′ = ¯̄K ′ = ¯̄G′. Then ¯̄U ∩ ¯̄K ¯̄E ▹ ¯̄G, but b4 ∈ U ∩ KE, hence U ∩ KE ≤ U2 by (2). So
U ∩KE ≤ G2 ∩KE = K ′. Clearly ¯̄G′ � ¯̄U ; it follows that ¯̄K ∩ ¯̄U = 1, therefore ¯̄U ∩ ¯̄K ¯̄E = 1, so ¯̄U is embedded
in ¯̄G/ ¯̄K ¯̄E ≃ C4 × C2. Hence ¯̄U = ⟨x̄, ȳ⟩, where x̄2 = 1 and [x̄, ȳ] = 1.

We can compute the involutions in ¯̄G as we did for G above. If h ∈ H and k ∈ K are such that h̄2 = k̄2 ̸= 1
then k2 is one of h2 and h2b4 = (hb2)2, but we already know that neither can happen. Hence h̄2 = k̄2 if and
only if h̄2 = k̄2 = 1. It follows that Ω1( ¯̄G) = Ω1( ¯̄H) ¯̄E, and C := CḠ(Ω1( ¯̄G)) = Ω1( ¯̄H) ¯̄K ¯̄E = ⟨ā, b̄2⟩ × ¯̄K × ¯̄E is
a hamiltonian group and is maximal in ¯̄G. Also note that |Ω1( ¯̄G)Z( ¯̄G)/Z( ¯̄G)| = 2.

Going back to ¯̄U = ⟨x̄, ȳ⟩, assume first that ¯̄x ∈ Z( ¯̄G). In this case CḠ( ¯̄U) = CḠ(ȳ). But | ¯̄G′| = 2, hence this
latter centralizer has index 2 at most in G, and we have a contradiction (alternatively, we could have used (2)
and the fact that x̄ /∈ ¯̄U2 to obtain a contradiction). Thus ¯̄x /∈ Z( ¯̄G), so Ω1( ¯̄G) = ⟨x̄⟩Ω1(Z( ¯̄G)) and CḠ(x̄) = C,
hence ¯̄U ≤ C. As C is hamiltonian and maximal in ¯̄G we conclude that sbrḠ( ¯̄U) ≤ 1. As b4 ∈ U , this is a
contradiction, and the proof is complete.

1


