Extra: some 2-groups with s-breadth 1

GIOVANNI CUTOLO, HOWARD SMITH AND JAMES WIEGOLD

This note adds some bits of information to our paper On finite p-groups with subgroups of breadth 1 , Bull. Aus. Math. Soc., 82 (2010), pp. 84-98. There, in the remarks following Lemma 2.8, we make a couple of unproven statements describing the groups for which 'case (iii)' occurs. Here we prove these statements.

First, suppose that G is a group as in Lemma 2.8, with an involution a contained in a nonabelian subgroup $H=\langle a, b\rangle$. Further suppose that $C:=C_{G}(H)$ is not a Dedekind group. Lemma 2.8 and its proof provide the following information. $H=V \rtimes\langle b\rangle$, where $V=\left\langle a, a^{b}\right\rangle \simeq V_{4}$, the Klein four-group, and b has order 8 . Moreover, $|C / Z(C)|=4$. If $g \in C \backslash Z(C)$ then g must have order 4 and either $g^{2}=u:=a a^{b}$ (if $\langle g\rangle \nless C$) or $g^{2}=u b^{4}$ is the generator of C^{\prime} (if $\langle g\rangle \triangleleft C$). Theorem B yields $|G / Z(G)| \leq 16$. But $Z(G) \leq Z(C)$ and $|H C / Z(C)|=|H / Z(H)||C / Z(C)|=16$, therefore $Z(G)=Z(C)$ and $G=H C$.

We have $C=\langle c, d\rangle Z(C)$, for some noncommuting elements c, d (of order 4). Also, $b^{2} \in Z(C)$. Since $\left(c b^{2}\right)^{2}=c^{2} b^{4} \neq c^{2}$ one of $\langle c\rangle$ and $\left\langle c b^{2}\right\rangle$ is normal in C and the other isn't. The same holds for $\langle d\rangle$ and $\left\langle d b^{2}\right\rangle$. So we may assume $\langle c\rangle \nexists C$ and $\langle d\rangle \triangleleft C$. Let $K=\langle c, d\rangle$, hence $K=\langle d\rangle \rtimes\langle c\rangle$ is the nonabelian semidirect product of two cyclic groups of order 4 , and $C=K Z(C)$. As $\exp C=4=\circ\left(b^{2}\right)$, we also have $Z(C)=\left\langle b^{2}\right\rangle \times E_{0}$ for some $E_{0} \leq C$. If E_{0} has an element e of order 4 then $c, c b^{2}$ and $c e$ are three elements of $C \backslash Z(C)$ with different squares, which cannot exist. Therefore $E_{0}^{2}=1$. Now $Z(C) \cap(H K)=\langle u\rangle \times\left\langle b^{2}\right\rangle$, and there is no loss of generality in assuming $u \in E_{0}$. Then $\langle u\rangle$ has a complement E in E_{0}, and it follows that $G=H C=H K \times E$. Thus the structure of G is almost completely described, the only parameter which is not prescribed being the rank of E. In fact H and K are described, $[H, K]=1$ and the amalgamation in $H \cap K$ is also given by Lemma 2.8: $c^{2}=a a^{b}$ and $d^{2}=a a^{b} b^{4}$.

Conversely, now we shall prove that a group G with this structure has subgroup breadth 1. First we describe the elements of order 2 in G. Let $g=h k e \in G$, where $h \in H, k \in K$ and $e \in E$. Then $g^{2}=1$ if and only if $h^{2} k^{2}=1$. Since $\exp K=4$ this condition means $h^{2}=k^{2}$. It is easy to check that the sets of all squares in H and K are $S(H)=\left\langle b^{2}\right\rangle \cup\left\{a a^{b} b^{2}, a a^{b} b^{-2}\right\}$ and $S(K)=\left\{1, c^{2}, d^{2}\right\}$ respectively, and $S(H) \cap S(K)=\{1\}$. Therefore, if $g^{2}=1$ then $h^{2}=k^{2}=1$ and $k \in H$ because $\Omega_{1}(K) \leq H$. It follows that $\Omega_{1}(G)=\Omega_{1}(H) \times E$. Now $\Omega_{1}(H)=\left\langle a, a^{b}, b^{4}\right\rangle$ where $b^{4} \in Z(G)$ and $V_{4} \simeq\left\langle a, a^{b}\right\rangle \triangleleft G$, hence $C_{G}\left(\Omega_{1}(G)\right)=C_{G}\left(\left\langle a, a^{b}\right\rangle\right)$ has index 2 in G. Therefore

$$
\begin{equation*}
\text { if } U \leq G \text { and } \exp U \leq 2 \text { then } \operatorname{sbr}_{G}(U) \leq 1 \tag{1}
\end{equation*}
$$

Now suppose, by contradiction, that U is a subgroup of G whose s-breadth in G is greater than 1 . We may choose U minimal with respect to this property; hence we cannot have $U=U_{1} U_{G}$ for any $U_{1}<U$, because otherwise $N_{G}\left(U_{1}\right) \leq N_{G}(U)$ and $\operatorname{sbr}_{G}\left(U_{1}\right) \geq \operatorname{sbr}_{G}(U)$. Therefore

$$
\begin{equation*}
U_{G} \leq \Phi(U)=U^{2} \tag{2}
\end{equation*}
$$

Also, $\exp U>2$, by (1), so U contains an element u of order 4. Thus u^{2} is a square and an involution. We have $u^{2}=h^{2} k^{2}$ for some $h \in H$ and $k \in K$. Since $K^{4}=1$ also h^{2} must have order 2 at most. The above description of $S(H)$ and $S(K)$ yields $h^{2} \in\left\langle b^{4}\right\rangle$ and $u^{2} \in\left\{b^{4}, c^{2}, d^{2}\right\}$, since $d^{2}=b^{4} c^{2}$.
$Z(H)=\left\langle a a^{b}, b^{2}\right\rangle$ and $Z(K)=\left\langle c^{2}, d^{2}\right\rangle$ have index 4 in H and K respectively. Hence, if N is one of $H^{\prime}=\left\langle c^{2}\right\rangle$ and $K^{\prime}=\left\langle d^{2}\right\rangle$, and $\bar{G}=G / N$ then $|\bar{G} / Z(\bar{G})|=4$, so $\operatorname{sbr}(\bar{G}) \leq 1$. This shows that neither c^{2} nor d^{2} is contained in U. By the previous paragraph $b^{4}=u^{2} \in U$.

Now let bars denote images modulo $\left\langle b^{4}\right\rangle$. Note that \bar{G} is a central product $\bar{H}(\bar{K} \bar{E})$, where $\bar{K} \bar{E}$ is hamiltonian and $\bar{H} \cap(\bar{K} \bar{E})=\bar{H}^{\prime}=\bar{K}^{\prime}=\bar{G}^{\prime}$. Then $\bar{U} \cap \bar{K} \bar{E} \triangleleft \bar{G}$, but $b^{4} \in U \cap K E$, hence $U \cap K E \leq U^{2}$ by (2). So $U \cap K E \leq G^{2} \cap K E=K^{\prime}$. Clearly $\bar{G}^{\prime} \not \leq \bar{U}$; it follows that $\bar{K} \cap \bar{U}=1$, therefore $\bar{U} \cap \bar{K} \bar{E}=1$, so \bar{U} is embedded in $\bar{G} / \bar{K} \bar{E} \simeq \mathfrak{C}_{4} \times \mathfrak{C}_{2}$. Hence $\bar{U}=\langle\bar{x}, \bar{y}\rangle$, where $\bar{x}^{2}=1$ and $[\bar{x}, \bar{y}]=1$.

We can compute the involutions in \bar{G} as we did for G above. If $h \in H$ and $k \in K$ are such that $\bar{h}^{2}=\bar{k}^{2} \neq 1$ then k^{2} is one of h^{2} and $h^{2} b^{4}=\left(h b^{2}\right)^{2}$, but we already know that neither can happen. Hence $\bar{h}^{2}=\bar{k}^{2}$ if and only if $\bar{h}^{2}=\bar{k}^{2}=1$. It follows that $\Omega_{1}(\bar{G})=\Omega_{1}(\bar{H}) \bar{E}$, and $C:=C_{\bar{G}}\left(\Omega_{1}(\bar{G})\right)=\Omega_{1}(\bar{H}) \bar{K} \bar{E}=\left\langle\bar{a}, \bar{b}^{2}\right\rangle \times \bar{K} \times \bar{E}$ is a hamiltonian group and is maximal in \bar{G}. Also note that $\left|\Omega_{1}(\bar{G}) Z(\bar{G}) / Z(\bar{G})\right|=2$.

Going back to $\bar{U}=\langle\bar{x}, \bar{y}\rangle$, assume first that $\bar{x} \in Z(\bar{G})$. In this case $C_{\bar{G}}(\bar{U})=C_{\bar{G}}(\bar{y})$. But $\left|\bar{G}^{\prime}\right|=2$, hence this latter centralizer has index 2 at most in G, and we have a contradiction (alternatively, we could have used (2) and the fact that $\bar{x} \notin \bar{U}^{2}$ to obtain a contradiction). Thus $\bar{x} \notin Z(\bar{G})$, so $\Omega_{1}(\bar{G})=\langle\bar{x}\rangle \Omega_{1}(Z(\bar{G}))$ and $C_{\bar{G}}(\bar{x})=C$, hence $\bar{U} \leq C$. As C is hamiltonian and maximal in \bar{G} we conclude that $\operatorname{sbr}_{\bar{G}}(\bar{U}) \leq 1$. As $b^{4} \in U$, this is a contradiction, and the proof is complete.

