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Locally finite groups all of whose subgroups
are boundedly finite over their cores

G. CUTOLO, E.I. KHUKHRO, J.C. LENNOX, S. RINAURO, H. SMITH AND J. WIEGOLD

ABSTRACT. For n a positive integer, a group G is called core-n if H/Hg has order at most n for every subgroup H
of G (where Hg is the normal core of H, the largest normal subgroup of G contained in H). It is proved that
a locally finite core-n group G has an abelian subgroup whose index in G is bounded in terms of n.

1. INTRODUCTION

Given a positive integer n, a group G is called core-n if H/H¢ has order at most n for every subgroup H of G.
Here Hg denotes the normal core of H, the largest normal subgroup of G contained in H. Our main result is
as follows.

Theorem 1. Every locally finite core-n group G has an abelian subgroup whose index in G is bounded in terms
of n.

By the Mal’cev Local Theorem, it is sufficient to prove the theorem assuming the group G to be finite. A
further argument [10] reduces the proof to the case where G is a finite p-group. In view of this reduction, it
is natural to reformulate Theorem 1 for finite core-p* p-groups, since the function bounding the index of an
abelian subgroup then involves p and k naturally.

Theorem 2. Let p be a prime and let G be a finite core-p* p-group, where k is a positive integer. Then G has
an abelian subgroup of index at most p’*) | where

FB) = k(k+ (k/2+ D) (k+ D)2k + 1)) (k+ V(K2 +k+2)—1)  if p£2

and
fR)y=k+D)(k+F2+D)k+1D)CE+1))((E+ 1)K +k+2)+1  if p=2.

The first step in proving Theorem 2 is the following result, which is also interesting in its own right.

Theorem 3. Let G be a finite core-p* p-group, where k is some positive integer.

(a) If p # 2, then the nilpotency class of G is at most (k + 1)(k% + k + 2).
(b) If p=2, then G has a subgroup of index 2 whose nilpotency class is at most (k + 1)(k* + k +2) + 1.

The upper bounds obtained in Theorems 1 and 2 may well be far from the truth. It might be interesting,
if very difficult, to find best possible bounds. We have succeeded in doing this for finite core-p p-groups for p
odd, in which case the bound is p?, and we have an ‘almost’ best possible bound for (arbitrary) core-2 2-groups;
these results appear in [2]. Theorem 1 complements the result of [1], where it is proved that if all subgroups of a
locally finite group are finite over their cores, then the group is abelian-by-finite (there is no function bounding
the index of an abelian subgroup there, but also no restriction on the orders |H/H¢| in the hypothesis). These
results can also be viewed as duals of B. H. Neumanns theorem [7], stating: groups in which all subgroups
are of finite index in their normal closures are finite-by-abelian. Some other results and discussion of further
problems relating to groups all of whose subgroups are finite over their cores can be found in [1, 2, 3, 5, 6, 9,
10]. Our final remark is that (unlike in B. H. Neumanns theorem) one has to impose some finiteness condition
on a core-finite group (even for core-p groups). Indeed, the Tarski p-groups, constructed by A. Yu. Ol'shanskii
[8] for sufficiently large p, are core-p but not abelian-by-finite.

1. THE NILPOTENCY CLASS OF FINITE CORE-p* p-GROUPS

We begin by establishing some notation and making some elementary observations. We denote by [A4, ,, B] the
commutator subgroup

...[A,B],...,B.
——

m
Throughout this section, in which we prove Theorem 3, G will denote a finite core-p* p-group, where k € N and
p is an arbitrary prime unless otherwise stated. Since <gpk> is normal in G for all g € G, it follows easily that
[G”k,G’] = 1 (and hence, incidentally, that GP" has class at most 2). Writing B = GP" NG’ and A = BP* , we
1



2 G. CUTOLO, E.I. KHUKHRO, J.C. LENNOX, S. RINAURO, H. SMITH AND J. WIEGOLD

see that B is abelian and that all subgroups of A are therefore G-invariant. Since G/Cg(A) is abelian and of
exponent at most p¥, it is clear that the following lemma ought to be of some use to us.

Lemma 1.1. Let p be a prime and let (a) be a cyclic group of order p*, and suppose that I is a p-subgroup of
Aut {a) having exponent at most p*.
(i) If p is odd, then {(a) has a I'-central series of length at most k + 1.
(ii) Ifp = 2, then {(a) has a I'1-central series of length at most k + 2, where I is a subgroup of index at most 2
in I

Proof. For t = 1 the result is immediate, so we shall assume that ¢ > 2. Let « denote the automorphism
given by a® = a'P. If p is odd, then « generates the Sylow p-subgroup of Aut (a) and has order p'~!, so that
Ir= <apk> for some A such that A+ x > ¢ — 1. Since (1 + p)pA =1 (mod p™1), we see that I" acts trivially on
each of the factors <apm+1)>/<ap<i+1>(k+l)>, i > 0. Since (k+ 1)(A+1) > t, part (i) of the lemma now follows.
For p = 2, we note that () has index at most 2 in Aut (a) and, setting It = I" N («), we have that I} = <a2k>

for some A satisfying A + k >t — 2. Part (ii) is then proved as above. a

Our next lemma will enable us to deal with the factor B/A and will also be of use in bounding the class of

G/Gr" .

Lemma 1.2. If E is a normal abelian section of G of exponent p' (I > 1), then E has a G-central series of
length at most I(k + 1).

Proof. Clearly, we may assume that [ = 1, and we may as well assume that E is a (normal) subgroup of G. Then
E = (ENZ(Q)) x F for some F and, by the core-p* property, F has order at most p* (since every nontrivial
normal subgroup of G intersects Z(G) nontrivially). It follows easily that [E, ;1G] = 1, as required. O

Lemma 1.3. G/GP" has nilpotency class at most k + k(k + 1).

Proof. We may assume that GP" = 1. Let U be a maximal normal abelian subgroup of G and let C' = C(U/U?P).
Then C stabilizes the series

U>UP>0" >...>U" =1
and, since U = C(U), we deduce that C'/U has class at most k — 1 (see [4, Theorem 1.C.1]) and hence that
C has derived length at most k. Applying Lemma 1.2 to the factors of the derived series of C' we see that
C < Zy2(k41)(G). Further, G/C is isomorphic to a group of automorphisms of U = U/UP and, by Lemma 1.2,
U, k+1(G/C)] = 1, which gives G/C of class at most k. The result follows. O

Now we complete the proof of Theorem 3. With the notation as previously established, all we need to do
is to provide the bounds obtained in our lemmas. For p odd, we use the facts that [G’ ka, A] =1 and every
subgroup of A is G-invariant, then apply Lemma 1.1 to show that [A, ;1G] = 1 (we remind the reader that
A= (G NG)"). By Lemma 1.2, [B, 41)G] < A, while [G*",G] < G*" NG’ = B. Finally, we apply
Lemma 1.3 and deduce that G has class at most

k+1)+k(k+1D)+1+Ek+E(E+1)=(k+1)(k*+k+2),

thus proving Theorem 3(a).

For p = 2, we again have that G/A has class at most (k + 1)(k* + k + 1). Write I' = G/Cg(A), and let G4
be the pre-image of the subgroup I} of index at most 2 in I" which centralizes a series of length at most k + 2
in A—the existence of I7 is, of course, guaranteed by Lemma 1.1, as [G’sz,A] = 1. Clearly, this subgroup I}
satisfies our requirements, and the proof of Theorem 3 is complete.

2. AN ABELIAN SUBGROUP OF BOUNDED INDEX

Here we prove Theorems 1 and 2. For given m, the property that a group contains an abelian subgroup of index
at most m can be written as a universal formula of predicate calculus. Hence, by the Mal’cev Local Theorem,
it suffices to prove Theorem 1 for finite groups (see, for example, [4, Proposition 1.K.2]).

Next we show that Theorem 1 follows from Theorem 2. Let G be a group satisfying the hypothesis of
Theorem 1. By the well-known result of Dedekind and Baer, if every subgroup of a group is normal, then the
group has an abelian subgroup of index at most 2. If p is a prime greater than n, then every p-subgroup of G
is normal in G, and so the Sylow p-subgroup of G is abelian. Suppose that P is a Sylow p-subgroup of G for
some prime p < n. Then P is core-p* for some k such that p* < n and so, by Theorem 2, P has a G-invariant
abelian subgroup of index bounded in terms of p*. Since G is the product of its Sylow p-subgroups (over all p),
the result now follows easily.

Now we prove Theorem 2. Applying Theorem 3 and an easy induction argument, we are left to prove the
following proposition on p-groups of nilpotency class 2.
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Proposition 2.1. Let p be a prime and let G be a finite core-p* p-group of nilpotency class 2. Then G has an
abelian subgroup of index at most p/*) where

FB) =k(k+ (k/2+ 1) (k+ 1)(2k+1))  if p#2,

and
fE)y=Fk+1D(k+k/2+1D)(k+1)(2k+1)) if p=2.

Proof. We recall first some formulae that hold in any nilpotent group F' of class 2; they will be used usually
without reference:

[ab, ¢] = [a, d][b, ],
[@™,b] = [a,b]™ = [a,b™], m € N.

In particular, the exponents of F//Z(F and of F’ are the same. Another consequence is that [h, F| and F/Cg(h)
are isomorphic groups for every h € F. a

Lemma 2.1. Let H be a finite core-p* p-group of nilpotency class 2. Then H/Z(H) (and H') is of exponent
at most p* if p # 2, and at most 2K+ if p = 2.

Proof. We consider the case p # 2 first. We have to prove that every commutator is of order at most p*. Thus,
without loss of generality, we may assume that H = (a,b), and that Z(H) is cyclic. By induction, supposing
the opposite, we may assume that [a, b] has order pF+1.
Now, as [a,b]pk+1 =1, both a®*"" and v»""" are central, so without loss of generality, since Z (H) is cyclic,
we have a?” = """ for some A € N. Thus
(a,b_A)karl _ apk+1b_)\pk+1 [b, a]_Apk+1(pk+1_l)/2 —1,

" = 1. So, with a; := ab~*, we have G = (ay,b), where a’fkﬂ = 1. By the core-p*

since p is odd and [b, a]?
k k

property, (a] ) is a normal subgroup of H, so a] € Z(H), since it is of order at most p. Thus [ay, bPt =1, a
contradiction, since [aq,b] = [a, b].

Let now p = 2. Similarly, we have to prove that every commutator is of order at most 2**! and we may

k k
assume H = (a,b), Z(H) is cyclic and [a, b] has order 2542, Again, o =" so
(abfz\)2k+2 _ [b, a]f)\2k+1(2k+271)'

Hence, as above, without loss of generality, we may assume A = 1 (else a; := ab™* has order < 2¥+2 so ale
is central and [a1,b] = [a, b] has order < 2F+1  a contradiction). So, replacing ab~* by a, we have

ok+2 _ [b, a]

and a has order precisely 2843, But (a2") is a normal subgroup of G, so [a2",b] = a2" for some e. But [a,b]2"

has order 4, so a?" has order 4, so € = 20, where ¢ is odd, whence [a, b]Qk = a%2""" . But then [a‘mk“,b] =1,s0
[a b]52k+1 2k+l
)

2k+1

=1 and hence |[a, b] =1, a contradiction that completes the proof. (]

We fix the notation kg = k if p is odd, and kg = k+1 if p = 2 ,s0 that p*° is an upper bound for the exponent
of G/Z(G) and of G', by Lemma 2.1.

We proceed with the proof of Proposition 2.1. We may assume the rank of G/Z(G) to be greater than k,
since otherwise the index of Z(G) is at most p*o*. Hence the rank of G/®(G) is also at least k + 1.

Choose the largest possible N and a set of elements {z; | i = 1,..., N} satisfying the following conditions:

(1) the x; are linearly independent modulo the Frattini subgroup ®(G);
(2) [zi,zj]=1foralli,j=1,...,N;
(3) the rank of [z;, G] (which is equal to the rank of G/Cg(z;)) is not greater than (k/2+ 1)(k + 1).

To show that sets satisfying (1)—(3) do exist, take k + 1 elements by,...,bx41 linearly independent mod-
ulo ®(G), and generate a subgroup B = (by,...,bg+1). Note that B has rank at most (k/2+ 1)(k + 1) (that is,
each of its subgroups can be generated by (k/2+1)(k+1) elements). Since |B : Bg| < p*, we have Bg £ ®(G).
Take 21 € Bg \ ®(G). Then {z1} clearly satisfies (1) and (2). The rank of [z1,G] is at most (k/2 + 1)(k + 1)
since [z1,G] < Bg < B.

Let X be an abelian normal subgroup containing the (maximal) set {z; | ¢ = 1,...,N} and Z(G) (for
example, take ({z; |i=1,...,N},Z(G))). We shall prove that X is a desired abelian subgroup of index at
most, pFo(k+(k/2+1D)(R+1)(2k+1) in G, Since the exponent of G/Z(G), and hence of G/X, is at most p*°, we need
only prove that the rank of the abelian group G/X is at most k + (k/2 4+ 1)(k + 1)(2k 4+ 1). The latter rank
obviously coincides with that of G/ X®(G), since X > Z(G) > G'.

N
Lemma 2.2. The rank of( N Cg(xi))(b(G)/X(I’(G)) is at most k.
i=1
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Proof. Otherwise, we could pick k + 1 elements by,...,bgy1 in ﬂf\il C¢(z;) which are linearly independent
modulo X®(G). Again, for B = (by,...,bg4+1), there is xny41 € Bg ~ X®(G). Then the set {i =1,...,N} U
{zn41} would also satisfy (1)—(3), contrary to the maximality of N. We have (1) by the choice of the b; linearly
independent modulo X ®(G); we have (2), since zy41 € B < ﬂi\il Cg(z;); and (3) holds for zx41 by the same
argument as for z; above. O

N
Corollary. It suffices to show that the rank of G/ (| Ca(x;) is at most (k/2 + 1)(k + 1)(2k + 1).
i=1

Proof. Note that the ranks of G/ ﬂfil Ca(w;) and G/ ( ﬂil Cc(z;))®(G) are the same. In the series
N
G> () Calz)®(G) > X(G),
i=1

the rank of the second factor is at most k, by Lemma 2.2. If the Corollary holds true, then the rank of the first
factor is at most (k/2+1)(k+1)(2k+1), and hence the rank of G/ X ®(G) is at most k+ (k/2+1)(k+1)(2k+1),
as required. 0

Now choose the smallest M for which there is a subset {g; | j =1,...,M} C{x; |i=1,..., N} such that

M N
() Calgj) = [ Cala),
j=1 i=1
and fix the corresponding subset {g; | j=1,...,M}.
The rank of G/Cg(g;) is at most (k/2 4 1)(k + 1) for every j, by condition (3), being actually the rank of
one of the G/Cg(x;). By the Corollary above, it suffices to prove that M < 2k + 1. For then the rank of

N M
G/ ﬂ Ca(z) =G/ ﬂ Cc(g;)

is at most 2k + 1 times (k/2 4 1)(k + 1), as required.
By the minimality of M, we have Cg(g;) # ﬂ#j Cea(g) for every j = 1,...,M. So we choose h; €
M Calg) ~ Calgj), for every j =1,..., M. Then [g;, ] # 1 and [g;,h;] =1 for all j #1, j,l=1,..., M.
We shall need the following elementary lemma.

Lemma 2.3. Suppose that A is a finite abelian p-group of rank m and that B is a subgroup of A, and let r be
the rank of B. Then there is a subgroup A; of A such that Ay N B =1 and the rank of A; AP /AP ism —r.

Proof. Taking Q;(B) instead of B, we may assume B to be of exponent p. Applying then induction on r, we
are left with the case where B = (b) is cyclic of order p. Write A as the direct product of cyclics (a;), and let
b = afw, where af; # 1 and w is a group word in the a;, j # 9. Then we can take A1 =[], (a;). O

We introduce the subgroup K = ([gx,he] |k =1,...,M). Let r be the rank of K. We shall prove the
required inequality M < 2k 4 1 in two steps, in the following lemmas.

Lemma 2.4. We have M <k +r.
Proof. Suppose that M > k + r + 1. Consider the abelian group
A= <gk | 1,...,M>.

The rank of A is M, since the g; are linearly independent, even modulo ®(G) which contains A,,.
Set D = AN K, the rank of D being at most . By Lemma 2.3, there is a subgroup H of A that intersects D
(and hence K) trivially, such that the rank of HAP /AP is > M —r > k+1. Then Hg % AP, since |H : Hg| < p*.
Pick an element u € Hg \ AP. Since the g; are linearly independent modulo ®(G), there are s and o # 0
(mod p) such that v = g% - w, where w € (g; | i # s). Now [u, hs] = [gs, hs]* is a nontrivial element of K that
does not belong to H and hence does not belong to the normal subgroup Hg containing u, a contradiction. [J

Lemma 2.5. We haver <k + 1.

Proof. Suppose that r > k + 2. In order to get a contradiction, we actually reduce the situation to that in the
proof of Lemma 2.4 with » = 1, for some section of G. (Note that the core-p* property is inherited by both
subgroups and homomorphic images.)

First we factor out KP. The rank of the image of K in G/KP remains the same, and the images of the g
remain linearly independent modulo the Frattini subgroup, since K? < ®(QG).
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Now we choose a subset {g;, | s = 1,...,7} such that the commutators [g;,,h;.], s = 1,...,r, are linearly
independent, that is, generate a subgroup of rank r. Then we glue these commutators to one cyclic subgroup,
by factoring out the subgroup

A= (lgjhi] - lgj hg )T s # ¢t st =1,r).
Again, the images of the g;, in G/KPA remain linearly independent modulo the Frattini subgroup. Now the

argument from the proof of Lemma 2.4 can be applied to the image of the subgroup (g;.,h;, | s,t =1,...,r) in
G/KPA, to arrive at a contradiction. O

By the remarks above, the proof of Proposition 2.1, and hence those of Theorems 1 and 2, is now complete.
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