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Groups with finite outer automizers

GIOVANNI CUTOLO

Abstract. We describe generalised soluble or nilpotent groups G in which, for all H ≤ G, the group of outer

automorphisms induced on H by elements of G via conjugation (that is, the factor NG(H)/HCG(H)) is finite.

It turns out that such groups are abelian-by-finite; the nilpotent ones are centre-by-finite. Also groups in which
the same condition is imposed on abelian subgroups only are considered.

1. Introduction

Roughly speaking, this article is concerned with groups of automorphisms that subgroups of a group induce
on other subgroups by conjugation. If G is a group and H ≤ G, the automizer of H in G is the group
AutGH := NG(H)/CG(H), obviously embeddable in AutH. Several articles in the literature have considered
groups in which restrictions are imposed on the automizers of (some or all) subgroups. Mostly, the interest has
been focused on groups with ‘small’ ([4, 5, 9]; also see [15]) or with ‘large’ ([3, 7, 10, 13]) automizers, where
the automizer of H in G is called small when NG(H) = HCG(H), that is, when only inner automorphisms are
induced on H by NG(H), and ‘large’ when every automorphism of H is induced by some element of NG(H),
or, in a weaker sense, when NG(H)/CG(H) ' AutH.

By discussing the embedding of a subgroup H in a group G, or more specifically in NG(H), it can be useful to
disregard inner automorphisms of H and, rather than on AutGH, focus on the group of outer automorphisms
induced by NG(H) on H, that is, the image of the coupling of the natural extension H ↪→ NG(H)� NG(H)/H.
Up to the obvious isomorphism, this group is OutGH := NG(H)/HCG(H), which we call the outer automizer
of H in G. This definition was introduced in [6].

Some important group theoretic properties can be described in terms of automizers or outer automizers. The
most striking example is probably that of p-nilpotency. Both Burnside’s and Frobenius’ well known p-nilpotency
criteria can be expressed in terms of automizers—for instance the latter can be stated by saying that, if G is a
finite group and p is a prime, G is p-nilpotent if and only if AutGH (or, equivalently, OutGH) is a p-group for
every p-subgroup H of G. Also, if P is a Sylow p-subgroup of G then the condition OutP G = 1 is equivalent
to the requirement that NG(P ) is p-nilpotent, and this latter property often has major consequences for the
structure of G: sometimes it implies the p-nilpotency of G, as in Burnside’s criterion or in its extension proved
in [1]; if it holds for all Sylow subgroups of G then G is nilpotent, see [2]. More relevant for our purposes is
the following result by Zassenhaus ([15], Theorem 7): if G is a finite group in which all abelian subgroups have
trivial (outer) automizer, then G is abelian. Note that this theorem is not hard to prove in the case when G is a
p-group, and once this has been done the full result follows from Burnside’s criterion. It is also worth remarking
that Zassenhaus’ result cannot be extended to arbitrary infinite groups. Indeed, if F is a noncyclic free group,
then all abelian subgroups of F are cyclic and have trivial automizer in F

Various group classes can be defined by imposing restrictions on outer automizers of subgroups. Indeed,
every (group-theoretical) class X gives rise to the class of those groups G such that OutGH ∈ X for all H ≤ G;
of course more extended classes can be defined by imposing this restriction on specific subgroups of G only.
Classes defined by the ‘small automizers’ property can be obtained in this context; indeed, if X is the class of
trivial groups the condition OutGH ∈ X (or OutGH = 1) means exactly that H has ‘small automizer’ in G.

The object of [6] was the class (CO), defined as outlined in the previous paragraph when X the class of cyclic
groups. Thus, (CO) is the class of those groups in which every subgroup of has cyclic outer automizer. Here we
consider the analogous class (FO), obtained by taking for X the class of finite groups. So, we say that a group G
is an FO-group, or that G ∈ (FO), if an only if OutGH is finite for all H ≤ G. The more restricted class (BFO)
is defined by saying that a group G is a BFO-group if and only if there is a finite upper bound for |OutGH|,
when H ranges over the subgroups of G. Obvious examples of FO-groups are the centre-by-finite groups (which
actually are BFO-groups), but also the quasifinite groups or, more generally, all groups in which all subgroups of
infinite index are finite or cyclic, or, even more generally, have finitely many outer automorphisms. Less obvious
examples are the abelian-by-finite, centre-by-(finite rank) groups. That these groups are in the class (FO), and
even in (BFO), is shown by the first of our main results, which characterises abelian-by-finite FO-groups.
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Theorem A. Suppose that the group G has an abelian normal subgroup A of finite index n. Then G ∈ (FO)
if and only if G/Z(G) has finite torsion-free rank and, for all primes p dividing n, if P/A is a Sylow p-subgroup
of G/A then A/CA(P ) has finite p-rank. If this is the case, then G ∈ (BFO).

(In accordance with standard terminology, a group has finite torsion-free rank if and only if it has a finite
series whose factors are either periodic or cyclic.) The relevance of Theorem A comes from the fact that in a
rather extended class of groups, containing for instance the soluble-by-finite groups, all FO-groups are abelian-
by-finite. By a generalised radical group we mean a group with an ascending normal series whose infinite factors
are locally nilpotent.

Theorem B. Every generalised radical FO-group is abelian-by-finite, and therefore a BFO-group.

So, Theorem A actually describes all FO-groups in classes like those of soluble-by-finite, hyperabelian and
FC-hypercentral groups. In the special case of locally nilpotent groups this description takes a simpler form:

Theorem C. Let G be a locally nilpotent group. Then G ∈ (FO) if and only if G/Z(G) is a Chernikov group.
If this happens, then G is hypercentral and satisfies BFO.

It is a consequence of Theorems B and C that locally supersoluble FO-groups are abelian-by-finite (Corol-
lary 4.2) but we leave open the question of whether all locally soluble FO-groups are abelian-by-finite (that
is, soluble) or at least in (BFO). Note that, despite the fact that most of the FO-groups discussed so far are
abelian-by-finite and hence in (BFO), the classes (FO) and (BFO) do not coincide. Indeed, let (Gi)i∈N be a
sequence of finite groups of odd orders with the property that for every n ∈ N there exist i ∈ N and H ≤ Gi
such that |OutGi H| > n (for instance, one can choose suitable metacyclic groups as the Gi). Theorem 35.1
in [11] shows that there exists a simple group G with the properties that each of the groups Gi is embedded
in G and every proper noncyclic subgroup of G is contained in a subgroup of G isomorphic to one of the Gi. It
is clear that G is in (FO) but not in (BFO).

We also consider groups satisfying a weaker property than FO, and define the class (FOA) as follows. We
say that G is an FOA-group if and only if OutGH is finite for all abelian subgroups H of G. Of course,
OutGH = AutGH in this case, but we leave a reference to outer automorphisms in the notation for (FOA), for
the sake of uniformity. It is not hard to construct examples of FOA-groups which are not in (FO). Indeed, as
already remarked, if F is a noncyclic free group, then OutF H = 1 for all abelian H ≤ F , thus F ∈ (FOA), in
a very strong sense. Since (FO) is quotient-closed (see Lemma 2.1), certainly F /∈ (FO). We shall prove that
properties FO and FOA are equivalent for Baer groups and for hypercentral groups (Propositions 3.8 and 3.9),
but we have not decided whether the same is true for all locally nilpotent groups. For a Baer FO-group G, the
condition in Theorem C implies that G is nilpotent and G/Z(G) is finite; thus the Baer FOA-groups are just
the centre-by-finite nilpotent groups. Finally, we shall see that soluble (and even hyperabelian) FOA-groups are
bound to be abelian-by-finite (Corollary 3.10), but not necessarily in (FO).

2. Abelian-by-finite groups

Our first lemma establishes obvious closure properties for the classes (FO), (BFO) and (FOA). The proof is
essentially the same as in [6], Lemma 2.1; we reproduce it here for the convenience of the reader.

Lemma 2.1. The classes (FO) and (BFO) are subgroup- and quotient-closed; the class (FOA) is subgroup-
closed.

Proof. Let G be a group and U ≤ G. For all H ≤ U we have HCU (H) = HCG(H) ∩ U , hence OutU H =
(NG(H) ∩ U)/(HCG(H) ∩ U) is isomorphic to a subgroup of OutGH. It follows that U belongs to (FO),
(BFO) or (FOA) if G belongs to the same class. Now suppose that N C G, and let H/N ≤ G/N . Then
CG(H)N/N ≤ CG/N (H/N) and NG/N (H/N) = NG(H)/N . Therefore OutG/N H/N is an epimorphic image
of OutGH. It follows that G/N ∈ (FO) if G ∈ (FO), and G/N ∈ (BFO) if G ∈ (BFO). The proof is
complete. �

It should be noticed that (FOA) is not quotient-closed; this follows from the fact that all free groups are
in (FOA), as we observed in the introduction. Nonetheless, a weak form of closure under quotients will be
established in Corollary 3.4.

As anticipated in the introduction, all FO-groups in the classes that we will be concerned with turn out to
be abelian-by-finite. Thus, our first aim will be discussing sufficient conditions for an abelian-by-finite group to
be an FO-group. This will lead to the proof of the ‘if’ part of Theorem A.

So, let the group G have a normal abelian subgroup A of finite index, say n = |G/A|. Let H ≤ G and
N = NG(H). Then N acts on H by conjugation, call ξ : N → AutH the homomorphism describing this action.
Further, let ν : AutH � OutH be the natural epimorphism. Then OutGH ' Nξν . As can be expected, the
structure of OutGH is related to a 1-dimensional cohomology group (for standard facts about cohomology and
group derivations the reader is referred to, e.g., [8]). Indeed, let A0 = H ∩ A, ¯̄H = H/A0 and B = NA(H),
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so that A0CA(H) ≤ B ≤ N and B = CA( ¯̄H) has index at most n in N . Plainly, OutGH is finite if and
only if Bξν is finite, and |OutGH| ≤ n|Bξν |. Now, Bξ stabilises the series 1 ≤ A0 ≤ H; this yields a natural

monomorphism µ : Bξ � Der( ¯̄H,A0). Moreover, Aξµ0 is the group of inner derivations IDer( ¯̄H,A0), hence

Bξ/Aξ0 embeds in H1( ¯̄H,A0) ' Der( ¯̄H,A0)/ IDer( ¯̄H,A0). On the other hand Aξ0 ≤ ker ν, therefore Bξν is an

epimorphic image of Bξ/Aξ0. It follows that Bξν is isomorphic to a section of H1( ¯̄H,A0). This shows that
OutGH is finite provided H1( ¯̄H,A0) is finite.

Of course H1( ¯̄H,A0) has finite exponent, dividing | ¯̄H| and hence n. We can almost immediately deduce that
if G/Z(G) has finite torsion-free rank and finite p-rank for all primes p dividing n, then G ∈ (BFO). As a
matter of fact, a stronger result holds:

Proposition 2.2. Suppose that the group G has an abelian normal subgroup A of finite index n. Assume that
G/Z(G) has finite torsion-free rank and that, for all primes p dividing n, if P/A is a Sylow p-subgroup of G/A
then A/CA(P ) has finite p-rank. Then G ∈ (BFO).

Proof. For the purpose of this proof, if κ(H) is a cardinal defined in terms of a subgroup H of G we shall say
that κ(H) is uniformly bounded if it is finite and bounded above by an integer independent of the choice of H.
For instance, what we have to prove is that |OutGH| = |NG(H) : HCG(H)| is uniformly bounded while H
varies over the subgroups of G. One can observe that all uniformly bounded integers appearing in this proof
can actually be bounded above in terms only of n and of the ranks considered in the statement.

It is easy to see that the hypothesis of the proposition is inherited by all subgroups of G, with n possibly
replaced by a smaller integer and the p-ranks possibly increased by r0(G/Z(G)) at most. Fix H ≤ G. If
H ≤ G1 ≤ G then HCG1

(H) = HCG(H)∩G1, and it follows that |OutGH| ≤ |OutG1
H| |NG(H) : NG1

(H)| ≤
|OutG1

H| |G : G1|. Therefore, provided we know that |G : G1|, or at least |NG(H) : NG1
(H)|, is uniformly

bounded, we may safely substitute G1 for G in our argument. Thus, after replacing G with NG(H) first and
then with AH, we may assume H C G = AH. Then [A,H] ≤ A0 := A ∩ H. We may further assume that
n = |G/A| is minimal for G being a counterexample; it follows that there exists t ∈ N such that |OutX K| ≤ t
for all X such that A ≤ X < G and all K ≤ X. Let K be such that A0 ≤ K < H. Then K C AK < G and
A/(A ∩KCAK(K)) ' OutAK K has order at most t. Also, A0CA(K) = A ∩KCA(K), and hence∣∣∣∣A ∩KCAK(K)

A0CA(K)

∣∣∣∣ ≤ ∣∣∣∣KCAK(K)

KCA(K)

∣∣∣∣ ≤ ∣∣∣∣CAK(K)

CA(K)

∣∣∣∣ ≤ ∣∣∣∣AKA
∣∣∣∣ < n,

so |A/A0CA(K)| < tn. Now let A∗ =
⋂
{A0CA(K) | A0 ≤ K < H}. Since the number of the subgroups

between A0 and H can be bounded in terms of n only, |G/A∗H| = |A/A∗| is uniformly bounded, so we may
replace G with A∗H. Thus we may assume A∗ = A, that is, A = A0CA(K) for all K such that A0 ≤ K < H.

From the paragraphs preceding this proof, we know that ¯̄A := A/A0CA(H) is embedded in H1(H/A0, A0),
hence it has finite exponent dividing n. Also, OutGH ' A/(A ∩ HCG(H)) is isomorphic to a quotient of ¯̄A.
Therefore, to complete the proof, all we have to do is show that the p-rank rp( ¯̄A) is uniformly bounded for
every prime p dividing n. Let p be such a prime, P/A0 a Sylow p-subgroup of H/A0, and C = CA(P ).
Then PA/A is a Sylow p-subgroup of G/A and C = CA(PA), hence rp(A/C) is finite by hypothesis. Also,
rp(A/CA(PH)) = rp(A/

⋂
{CA(P x) | x ∈ H}) is uniformly bounded, since P has at most n conjugates in G. If

PH = H, then ¯̄A = A/A0CA(PH), hence we may disregard this case. So, assume PH < H. By using either
the Schur-Zassenhaus Theorem (if P C H) or the Frattini Argument (if P 6 H) we can choose K such that
A0 ≤ K < H = PHK. Then CA(H) = CA(PH) ∩ CA(K); thus rp(CA(K)/CA(H)) ≤ rp(A/CA(PH)), so
rp(CA(K)/CA(H)) is uniformly bounded. On the other hand, A = A0CA(K) by the reductions in the previous
paragraph, hence ¯̄A is an epimorphic image of CA(K)/CA(H). Therefore rp( ¯̄A) is uniformly bounded. Now the
proof is complete. �

As suggested in the first part of the proof, a (uniform) upper bound for |OutGH| can be expressed in terms
of the index n and the (finitely many) ranks mentioned in the statement. Note that all these ranks are ranks
of quotients of A/A∩Z(G). Perhaps it is also worth noting that the hypothesis that the torsion-free rank of G
be finite is only used in the proof to ensure that the assumptions on G are inherited by all of its subgroups.
However, this hypothesis cannot be disposed of, as Theorem A, once proved, will make clear.

3. Locally nilpotent groups

In this section we aim at proving Theorem C, describing locally nilpotent FO-groups. We shall also show that
property FOA is sufficient to ensure FO for certain locally nilpotent groups. It is with FOA-groups that we start.
A first, useful property of FOA-groups is that the condition on abelian subgroups required by the definition
also holds for centre-by-finite subgroups.

Lemma 3.1. Let H be a centre-by-finite subgroup of the FOA-group G. Then AutGH = NG(H)/CG(H) is
finite.
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Proof. Let N = NG(H) and M = CN (H/Z(H)). Then N/M is finite. For all x ∈ H the subgroup Ax :=
〈x〉Z(H) is abelian and normalised by M ; hence M/CM (Ax) is finite by property FOA. Since H = 〈Ax | x ∈ S〉
for a finite set S, we deduce that M/CM (H) is finite. It follows that N/CG(H) is finite, as required. �

Anther obvious remark is the following lemma:

Lemma 3.2. Let G be a hypercyclic FOA-group. Then every maximal normal abelian subgroup of G has finite
index in G. As a special case, every hypercentral FOA-group is abelian-by-finite.

Proof. If A is a maximal normal abelian subgroup of G then A = CG(A). Thus G/A = OutGA is finite. Since
hypercentral groups are hypercyclic, the result follows. �

We are already in a position to characterise nilpotent FOA-groups and show that they actually are in (FO).

Lemma 3.3. Every nilpotent FOA-group is centre-by-finite.

Proof. LetG be a nilpotent FOA-group of minimal nilpotency class subject toG/Z(G) being infinite. Lemma 3.2
shows that G has an abelian normal subgroup A of finite index, hence G = A〈F 〉 for some finite set F . For all
x ∈ F the subgroup 〈x〉G′ has class less than that of G, hence it is centre-by-finite, so G/CG(〈x〉G′) is finite by
Lemma 3.1. Now, Z(G) ≥

⋂
{CA(x) | x ∈ F}; it follows that G/Z(G) is finite. �

Corollary 3.4. Let N C G ∈ (FOA), and assume that N ≤ Zn(G) for some n ∈ N. Then G/N ∈ (FOA).

Proof. Let A/N be an abelian subgroup of G/N . Then A is nilpotent, hence NG(A)/CG(A) is finite by
Lemmas 3.3 and 3.1. The result follows. �

Corollary 3.5. Let G be a locally nilpotent FOA-group. Then G′ is periodic.

Proof. Every element x of G′ is in X ′ for some finitely generated X ≤ G. But such an X is nilpotent, hence
X/Z(X) is finite and so X ′ is finite. Therefore, x is periodic. �

Lemma 3.3 can be strengthened as follows.

Proposition 3.6. Let G ∈ (FOA). Then Zn(G)/Z(G) is finite for all positive integers n.

Proof. Let T be a transversal to CG(Zn(G)) in G. We know from Lemmas 3.3 and 3.1 that T is finite. The
former lemma also shows that 〈t〉Zn(G) is centre-by-finite for all t ∈ T . It follows that Z(G) = CZ(Zn(G))(T )
has finite index in Zn(G). �

To extend Lemma 3.3 in a different direction, we make use of the following observation.

Lemma 3.7. Let G be a Baer group such that:

(i) for every subnormal subgroup H of G, FitH is nilpotent;
(ii) FitG ≤ Zn(G) for some n ∈ N.

Then G is nilpotent (of class n at most).

Proof. The following consequence of (i) is not hard to prove: for every subnormal subgroup H of G, FitH ≤
FitG. It is also easy to show that ¯̄G := G/Zn(G) inherits condition (i) from G, and Fit ¯̄G = 1 by (ii). Therefore,
every subnormal subgroup of ¯̄G has trivial Fitting subgroup. Since G is a Baer group, this means that ¯̄G = 1.
Then G = Zn(G) and the proof is complete. �

Proposition 3.8. Let G be a Baer group. Then G ∈ (FOA) if and only if G/Z(G) is finite.

Proof. Assume G ∈ (FOA). If A is a normal abelian subgroup of G and C = CG(A) then G/C is finite.
Moreover, A〈x〉 is nilpotent for all x ∈ G, because 〈x〉 is subnormal in G, hence A/CA(x) is finite by Lemma 3.3.
It follows that A/A∩Z(G) is finite. Now let N be a normal nilpotent subgroup of G. Then, by the same lemma,
N/Z(N) is finite, and since Z(N)/Z(N)∩Z(G) also is finite by the argument in the previous lines, N/N ∩Z(G)
is finite.

If G is a Fitting group this shows that G/Z(G) is a (periodic) FC-group, hence it is hypercentral by [12],
Theorem 4.38, and therefore abelian-by-finite by Lemma 3.2. But abelian-by-finite Baer groups are nilpotent,
hence G is nilpotent and so centre-by-finite (Lemma 3.3, once again) in this case.

Coming back to the general case, the previous paragraph shows that F := FitG is nilpotent and, more
generally, condition (i) of Lemma 3.7 is satisfied by G. By the first paragraph, F/Z(G) is finite, hence F = Zn(G)
for some n ∈ N. Now the proof can be completed by invoking Lemmas 3.7 and 3.3. �

The following consequence is worth noting. For every FOA-group G, if B is the Baer radical of G, then
B = FitG and G/CG(B) is finite (by Lemma 3.1).

Proposition 3.9. Let G be a hypercentral group in (FOA). Then G is abelian-by-finite and G/Z(G) is a
Chernikov group. Therefore, G ∈ (BFO).
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Proof. Lemma 3.2 shows that G has an abelian normal subgroup A of finite index such that Z(G) ≤ A. Let T
be a transversal to A in G. If t ∈ T then A/CA(t) ' [A, t] is periodic, by Corollary 3.5. As Z(G) =

⋂
{CA(t) |

t ∈ T}, we conclude that A∗ := A/Z(G) is periodic, hence G∗ := G/Z(G) is periodic. Let S be the socle of A∗,
and let S0 = S ∩ Z(G∗). By Proposition 3.6, S0 is finite. Now, S0 has a complement K in S. Let N be the
normal core of K in G∗. Then S/N is finite, because S/K and G/A are finite. But N ∩ Z(G∗) = 1. Since G is
hypercentral this yields N = 1. Therefore, S is finite, which amounts to saying that A∗ satisfies the minimal
condition. Hence G∗ is a Chernikov group, as required. Finally, Proposition 2.2 yields that G ∈ (BFO). �

Proof of Theorem C. Let G be a locally nilpotent FO-group. In view of Proposition 3.9, to prove that
G/Z(G) is Chernikov we only have to show that G is hypercentral. Assume false. Then we may factor out
the hypercentre of G and assume that Z(G) = 1. Hence G has trivial FC-centre (by [12], Theorem 4.38) and
so, by Proposition 3.8 and Lemma 3.1, trivial Baer radical. As a consequence, CG(G′) = 1; as G ∈ (FO) this
implies that G/G′ is finite. Then G = G′H for some finitely generated (hence nilpotent) subgroup H. Let c be
the nilpotency class of H and L = γc+2(G); then G = LH. It follows that L is the hypocentre of G; moreover
G/L is finite. Since G is locally nilpotent L has no proper subgroup of finite index. Thus, at the expense of
replacing G by L, we may assume that G has the same property. Now let N C G and K = CG(N). Then
K ∩ N = Z(N) = 1, because FitG = 1, hence property FO shows that G/KN is finite. But then G = KN ,
by our recent assumption. Hence G = N × K. We have shown that the lattice of normal subgroups of G is
complemented. Then G is a direct product of simple groups (see [14]), hence it is abelian, therefore trivial.
Thus we have proved that G is hypercentral and hence G/Z(G) is a Chernikov group.

Conversely, suppose that G is a (not necessarily locally nilpotent) group such that G/Z(G) is Chernikov.
Then G has a normal subgroup A of finite index such that Z(G) ≤ A and A/Z(G) is abelian, divisible and
periodic. This condition implies that A is abelian, therefore G ∈ (FO) by Proposition 2.2. �

Abelian-by-finite, hypercentral groups of finite rank are certainly in (FO), by Proposition 2.2, but they are
not necessarily nilpotent, an easy example being provided by the locally dihedral 2-group. This makes clear
that there exist plenty of non-nilpotent locally nilpotent FO-groups.

In view of Propositions 3.8 and 3.9, one could ask whether all locally nilpotent groups in (FOA) are hyper-
central (or, equivalently, abelian-by-finite) and so satisfy FO. This question is left open. Note that the results
in this section readily allow us to reduce the problem to the case of (countable, locally finite) p-groups with
trivial Baer radical.

Finally, although we shall not pursue the topic of FOA-groups any further, we observe that a very easy
consequence of Proposition 3.8 is that all hyperabelian FOA-groups are abelian-by-finite, hence soluble, but not
necessarily FO-groups.

Corollary 3.10. Let the FOA-group G have an ascending series with subnormal terms and abelian factors.
Then G is abelian-by-finite.

Proof. Let B be the Baer radical of G. It is known, and is easy to check, that CG(B) ≤ B, that is, CG(B) =
Z(B). Then Proposition 3.8 and Lemma 3.1 show that G/Z(B) is finite. �

An easy example of a group as in the corollary but not in (FO) is the following. Let A be an abelian group
of infinite torsion-free rank and without elements of order 2. Let G = Ao 〈x〉, where x2 = 1 and ax = a−1 for
all a ∈ A. The abelian subgroups of G not contained in A have order 2, hence |OutG U | ≤ 2 for all abelian
subgroups U of G. Therefore, G is a metabelian group which satisfies FOA (boundedly). However, Z(G) = 1,
hence Theorem A (which we shall prove soon) shows that G /∈ (FO).

4. Proofs of Theorems A and B

To prove Theorem A we only have to show that Proposition 2.2 can be inverted. We make use of the following
(certainly well-known) result.

Lemma 4.1. Let A be an abelian torsion-free group of infinite rank, acted on by a finite group X. Then A
has an X-invariant subgroup which is free abelian of infinite rank.

Proof. Let 1 6= a1 ∈ A and B1 = 〈a1〉X . Plainly, B1 is free abelian of finite rank. Choose A1 as a subgroup
of A which is maximal subject to A1 ∩B1 = 1. Then A/A1B1 is periodic and r0(A/A1) = r0(B1) is finite. Let
K1 := (A1)X , the largest X-invariant subgroup of A1, so r0(A/K1) is finite and r0(K1) is infinite. Now let

1 6= a2 ∈ K1 and B2 = 〈a2〉X . Then B1B2 = B1×B2 is free abelian of finite rank and X-invariant. As above, we
can choose A2 as a subgroup of A which is maximal subject to A1∩B1B2 = 1 and, after letting K2 := (A2)X , a
nontrivial element of K2 will generate, as an X-submodule, a subgroup B3 such that B1×B2×B3 is free abelian
of finite rank. This procedure can be carried on to produce an infinite sequence of X-invariant subgroups of A
whose direct product is free abelian and so satisfies the requirements in the statement. �
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Proof of Theorem A. Sufficiency of the condition given in the statement of the theorem has already been
proved as Proposition 2.2, now we have to prove that it is also necessary. So, assume that G is an FO-group
with a normal abelian subgroup A of finite index n. Let p be a prime divisor of n, P/A a Sylow p-subgroup
of G/A, C = CA(P ), and S/C the p-component of the socle of A/C. If S/C is infinite, then a standard
argument—similar to that for Lemma 4.1—shows that S/C, viewed as a (P/A)-module, contains a direct sum
X/C of infinitely many nonzero cyclic submodules, each of order pq at most, where q = |P/A|. Clearly, P acts
nilpotently on each of these direct summands. It follows that Z/C := CX/C(P ) is infinite. But C = X ∩ Z(P )
and Z = X ∩ Z2(P ), hence this conclusion is excluded by Proposition 3.6. Therefore, S/C is finite, and this
amounts to saying that the p-rank of A/C is finite, as required.

Now we have to prove that the torsion-free rank of G/Z(G) is finite. Again, let p be a prime divisor of n
and P/A be a Sylow p-subgroup of G/A. We can write P as AF , where F is a finitely generated subgroup.
Let D = A ∩ F , so D C P , let Z/D = (A/D) ∩ Z(P/D) and K/D = (A/D) ∩ ¯̄Z(P/D). Then KF/D is a
hypercentral FO-group and Z/D = (A/D) ∩ Z(KF/D). Hence K/Z is periodic, by Theorem C. Assume that
A/Z has infinite torsion-free rank. Let K∗/K be the torsion subgroup of A/K. Lemma 4.1 provides a subgroup

B ≤ A such that K∗ ≤ B C P and B/K∗ is free abelian of infinite rank. Let pλ = |P/A| and B1 = Bp
λ+1

K∗.
Then BF/B1 is a nilpotent FO-group (because it has finite exponent; see [12], Lemma 6.34) and so B/Y is
finite, where Y/B1 = (B/B1) ∩ Z(BF/B1). Now fix a tranversal T to D in F . For every a ∈ A, we have

a∗ :=
∏
t∈T a

t ∈ A ∩ Z(P ) ≤ Z ≤ B1 but, if a ∈ Y , then a∗ ∈ apλB1. This shows that Y p
λ ≤ B1. However,

this is impossible, because B/B1 is infinite homocyclic of exponent pλ+1 and B/Y is finite. Hence r0(A/Z) is
finite. Now, A ∩ Z(P ) =

⋂
{CZ(t) | t ∈ T} and Z/CZ(t) ' [Z, t] ≤ D for all t ∈ T . Then, since D is finitely

generated, Z/A ∩ Z(P ) is finitely generated; it follows that r0(A/A ∩ Z(P )) is finite. Since A ∩ Z(G) is the
intersection of all the subgroups A∩Z(Q) where Q/A ranges over the finite set of all Sylow subgroups of G/A,
we have that r0(G/A∩Z(G)) = r0(A/A∩Z(G)) is finite. Thus r0(G/Z(G)) is finite, as required, and the proof
is complete. �

It is easy to find examples of abelian-by-finite FO-groups G in which, in the notation of Theorem A, A/Z(G)
has infinite p-rank for some (possibly all) primes p dividing |G/A|. One such example is as follows. Let A be
an abelian group of exponent 6, whose 2-component A2 is infinite. Write A2 as U × V , where U ' V , and fix
an isomorphism ∗ : U → V . Then A has an automorphism x of order 6 acting like the inversion map on the
3-component A3 of A and such that ux = u∗ and (u∗)x = uu∗ for all u ∈ U . Theorem A shows that the natural
split extension G = A o 〈x〉 is an FO-group: here 〈x3〉A/A and 〈x2〉A/A are the Sylow 2-subgroup and the
Sylow 3-subgroup of G/A, respectively, and their centralisers in A are A2 and A3. Of course Z(G) = 1, and we
can make both the 2- and 3-rank of A infinite and arbitrarily large.

Proof of Theorem B. Consider the special case of radical groups first. So, let G be a radical FO-group,
and let H be its Hirsch-Plotkin radical. Then CG(H) ≤ H, and hence G/H = OutGH is finite. But H is
abelian-by-finite by Theorem C, and hence G is abelian-by-finite, as required.

Now assume that G is a generalised radical FO-group. In view of the previous paragraph, in order to
complete the proof, we only need to show that G is soluble-by-finite. Let S be the soluble radical of G. Then S
is contained in the ω-th term of the upper Fitting series of G, hence it is soluble by the previous case. It follows
that G/S has trivial Fitting subgroup. So, at the expense of substituting G/S for G we may assume FitG = 1.
We shall prove that this implies that G is finite. For every finite normal subgroup N of G, if C = CG(N) we
have NC = N × C, because FitG = 1. Moreover, G/C is finite, and FitC is trivial because it is nilpotent by
Proposition 3.8. Hence, as G is generalised radical, C has a finite nontrivial G-invariant subgroup, unless C = 1,
in which case G is finite. If G is infinite this makes it easy to construct an infinite direct product D = Dri∈N Fi of
finite, nontrivial normal subgroups of G. None of these factors Fi is abelian. Then the already-quoted theorem
of Zassenhaus ([15], Theorem 7) shows that for all i ∈ N there exists Hi ≤ Fi such that OutFi Hi 6= 1. If
H = Dri∈NHi, then OutDH is infinite, and this is a contradiction. Therefore, G must be finite. Now the proof
is complete. �

Corollary 4.2. LetG be a locally supersoluble FO-group. ThenG is abelian-by-finite and therefore hypercyclic.

Proof. G′ is locally nilpotent, hence soluble by Theorem C. Therefore G is soluble, and the corollary follows
from Theorem B. �
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