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Groups with countably many subgroups

GIOVANNI CUTOLO AND HOWARD SMITH

Abstract. We describe soluble groups in which the set of all subgroups is countable and show that locally (soluble-by-

finite) groups with this property are soluble-by-finite. Further, we construct a nilpotent group with uncountably many

subgroups in which the set of all abelian subgroups is countable.

1. Introduction

It is a trivial observation that a group is finite precisely when it has only finitely many subgroups. As a next step we
consider the question: when is the set of all subgroups of a group G countable? The abelian groups with this property
have been characterised by Rychkov and Fomin in [13], see Lemma 2.3 below. We shall mostly be concerned with the
analogous problem for soluble groups.

We shall say that a group G has the property CMS (or G ∈ (CMS)) if the set L(G) of all subgroups of G is
countable. Quite plainly all group with CMS are countable, and all groups with the maximal condition on subgroups
also satisfy CMS.

The class (CMS) is closed under taking subgroups and quotients, but not under extensions, nor even direct products.
For example, if p is a prime, the Prüfer p-group Cp∞ has CMS, but its direct square Cp∞ × Cp∞ has 2ℵ0 subgroups.
Groups with CMS satisfy a very strong rank-finiteness condition. Indeed, a direct product of infinitely many nontrivial
groups certainly has at least 2ℵ0 subgroups, therefore groups in (CMS) cannot have any such section. We shall prove
that soluble groups without subnormal sections of the types excluded by these remarks satisfy CMS. Thus we shall
see in Theorem 2.7 that a soluble-by-finite group satisfies CMS if and only if it is minimax and has no (subnormal)
sections of type Cp∞ × Cp∞ , for any prime p. We shall also see that all locally (soluble-by-finite) groups with CMS are
soluble-by-finite (Theorem 2.12). A side feature of both theorems is that they also show that locally (soluble-by-finite)
groups with uncountably many subgroups have at least 2ℵ0 of them.

Let p be a prime. In the description of a soluble CMS-group G a role is played by the maximal number of factors
isomorphic to Cp∞ in a finite series of G. We shall denote this number by rp∞(G). For instance the result by Rychkov
and Fomin cited above could be rephrased by saying that the abelian groups with CMS are precisely those abelian
minimax groups G such that rp∞(G) ≤ 1 for all primes p. It turns out that rp∞(G) ≤ 2 for all soluble groups G with
CMS and all primes p; and, unlike the abelian case, rp∞(G) = 2 may occur, even if G is nilpotent.

On a different thread, we show—in Theorem 3.1—that there exists a nilpotent group with uncountably many sub-
groups, of which just countably many are abelian.

In some contrast with these results, nothing can be said on soluble groups in which the set of subgroups has a
given uncountable cardinality. Indeed, it is not difficult to prove that if κ is an uncountable cardinal, then every
abelian and hence every soluble group of cardinality κ has as many subnormal subgroups as subsets, i.e., 2κ—it is
proved in [3] that if the group is supposed to be nilpotent-by-finitely generated abelian then ‘subnormal’ may even
be replaced by ‘normal’ in this statement. A consequence of these remarks and of Theorem 2.7 is that if G is an
infinite soluble-by-finite group then |L(G)| is either ℵ0 or 2|G| (see Corollary 2.8); moreover, G has |L(G)| subnormal
subgroups. Regarding the latter (hardly surprising) remark, note that there exist countable locally soluble groups with
uncountably many subgroups but only countably many subnormal subgroups. Examples of this kind are the groups
constructed in [17], (2.3), in which all subnormal subgroups have finite index.

Leaving subnormality aside, Corollary 2.8 raises a question: what (non-trivial) restrictions are there (if any) on the
possible cardinalities of the sets of all subgroups of infinite groups if the (generalised) solubility hypothesis is dropped?
The following example is of interest in this regard. The construction in Theorem 35.2 of [9] provides a simple group G
of cardinality ℵ1 with exactly ℵ1 subgroups; moreover, all proper subgroups of G are countable and, for any sufficiently
large prime p, it may be arranged for G to be a p-group. It is also worth remarking that intermediate steps in this
construction provide examples of infinite simple, two-generated groups in (CMS) not satisfying the maximal condition:
in the notation of [9] all the groups Gν+1 where ω ≤ ν < ω1 (or just 0 < ν < ω1 if the construction is started from,
say, a Prüfer p-group) have this property. Finally we mention that a similar problem, counting conjugacy classes of
subgroups, has been considered by S. Shelah [14] for uncountable cardinals (we thank Simon Thomas for drawing our
attention to this paper).
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2. Proofs

As remarked in the introduction, the class (CMS) is not extension-closed. Our first results provide sufficient conditions
for an extension of CMS-groups to satisfy CMS.

Lemma 2.1. Let the group G have a normal subgroup N with CMS such that G/N ∈ Max. Then G has CMS.

Proof. Given H ≤ G, let L = N ∩ H. Then L is one of the countably many subgroups of N . Also, L C H and
H/L ' HN/N is finitely generated. Therefore H = L〈F 〉 for some finite subset F of G. Since G is countable, there
are countably many possible choices for F . It follows that G has CMS. �

Lemma 2.2. Let the group G have a normal subgroup N such that both N and G/N have CMS. Then G /∈ (CMS)
if and only if G has a section V/U , such that U ≤ N and (V ∩N)/U has uncountably many complements in V/U .

Proof. Assume G /∈ (CMS). Then uncountably many subgroups of G have the same image under the mapping
H 7→ (H ∩ N,HN/N) from L(G) to the countable set L(N) × L(G/N). In other words, there exist subgroups
U,W ≤ G such that U ≤ N ≤ W and the set K of all H ≤ W such that H ∩N = U and HN = W is uncountable.
Now U C H for all H ∈ K, hence U C V := 〈H | H ∈ K〉. For all H ∈ K we have V/U = (V ∩N/U)o (H/U), thus
the result follows. �

There is a well-known correspondence between complements in semidirect products and derivations (see, for instance,
[7], p. 196). So, in the notation of the previous lemma, if G /∈ (CMS) there are a section M (= V ∩N/U) of N and
a group V̄ isomorphic to a subgroup of G/N (namely V/V ∩ N) acting on M via conjugation in such a way that
Der(V̄ ,M) is uncountable. Of course, in the special case when V̄ acts trivially on M (that is, when M is a central
factor in V ) then Der(V̄ ,M) = Hom(V̄ ,M).

We are already in a position to give a proof of the result by Rychkov and Fomin describing the abelian groups with
CMS; we include it for the reader’s convenience.

Lemma 2.3 ([13]). Let G be an abelian group. Then the following conditions are equivalent:

(i) G ∈ (CMS);
(ii) |L(G)| < 2ℵ0 ;
(iii) G is minimax and, for every prime p, it has no section isomorphic to Cp∞ × Cp∞ ;
(iv) G is minimax and, for every prime p, rp∞(G) ≤ 1;
(v) G has a finitely generated subgroupH such thatG/H is the direct product of finitely many, pairwise nonisomorphic

Prüfer groups.

Proof. Plainly, (i) implies (ii). Now assume (ii). For any prime p, G has no section isomorphic to Cp∞ × Cp∞ ,
because the latter group has 2ℵ0 subgroups. For the same reason, as remarked in the introduction, no section of G
is the direct product of infinitely many nontrivial groups, which amounts to saying that G is minimax. This shows
that (ii) implies (iii). Next, by the structure of abelian minimax groups, (iii), (iv) and (v) are clearly equivalent.
Finally, assume (v). Then L(G/H) is lattice-isomorphic to the direct product of the subgroup lattices of the primary
components of G/H, hence it is countable. If X is a subgroup of G/H and M is a section of H, then Hom(X,M) is
finite. Therefore, the remarks following Lemma 2.2 show that G ∈ (CMS). The proof is complete. �

We shall see that conditions (i–iii) in Lemma 2.3 are still equivalent for arbitrary soluble groups, while (iv) and (v)
are generally stronger than the property CMS.

Lemma 2.4. Let G be a group and N ≤ Z(G). Then G ∈ (CMS) if and only if G/N and all abelian sections of G
satisfy CMS.

Proof. Only the sufficiency needs a proof. By hypothesis, both N and G/N satisfy CMS. If G /∈ (CMS), then G has
a section V/U as described in Lemma 2.2. Let K/U be a complement to W := (V ∩ N)/U in V/U . Then V ′ ≤ K,
because N ≤ Z(G); it follows that V/UV ′ is an abelian section of G in which (N ∩ V )V ′/UV ′ has uncountably many
complements, a contradiction. �

To prove Theorem 2.7 we shall make use of some information on derivations of nilpotent groups of finite rank. We
state the relevant result in a slightly more general form than strictly needed. The lemma is most probably known, the
proof is an adaptation of that of Theorem 10.3.6 in [7].

Lemma 2.5. Let G be a nilpotent group of finite rank and M a ZG-module which is artinian as an abelian group. If
H0(G,M) is finite, then Hn(G,M) is finite for all n ∈ N.

Proof. By [7], 10.3.7, saying that H0(G,M) ('MG = CM (G)) is finite is equivalent to saying that MG = M/[M,G]
is finite. Therefore, if N is a G-submodule of M then both N and M := M/N satisfy the hypothesis for M , as
NG ≤ MG and MG is an epimorphic image of MG. The long exact cohomology sequence shows that, for all n ∈ N,
Hn(G,M) is finite if both Hn(G,N) and Hn(G,M) are finite. Thus, to show that the result holds for M it is enough
to prove it for N and M/N . Now, Lemma 4.4 of [11] shows that the result is certainly true for finite modules. Then,
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arguing by induction on the total rank of M as an abelian group, we may assume that M is Z-divisible and has no
proper infinite submodules.

Let X be a subgroup of G such that Hn(X,M) is finite for all n ∈ N. If X C Y ≤ G then the Lyndon-Hochschild-
Serre spectral sequence (see [7], p. 204), together with [11], Lemma 4.4 again, shows that Hn(Y,M) is finite for all
n ∈ N. Arguing by induction on the subnormal defect of X in G we obtain the required result. Therefore, we may
assume that no subgroup of G satisfies this property for X. Now, since M satisfies the minimal condition on subgroups,
it is easily seen that CM (G) = CM (X) for some finitely generated subgroup of G. Therefore we may substitute X
for G and assume that G is finitely generated.

If G is periodic, it is finite and the result is obvious. We may now assume that there exists a non-periodic element
x ∈ Z(G). Let N = CM (x). Then N is a G-submodule of M , therefore either N is finite or N = M . In the former
case H0(〈x〉,M) ' N is finite, H1(〈x〉,M) ' M/[M,x] = 0 (see [12], exercise 11.3.2, p. 340) and Hn(〈x〉,M) = 0
for all n > 1; this contradicts one of the assumptions in the previous paragraph. Otherwise, N = M and M is a
G-module, where G = G/〈x〉. Also, for all i ∈ N, Hi(〈x〉,M) is ZG-isomorphic to M (if i < 2) or to 0 (if i ≥ 2).
Thus the hypotheses of the lemma are satisfied by Hi(〈x〉,M) in place of M and G in place of G. By induction
on r0(G), we conclude that all cohomology groups Hj(G,Hi(〈x〉,M)) are finite. Now the Lyndon-Hochschild-Serre
spectral sequence shows that Hn(G,M) is finite for all n ∈ N. The lemma is proved. �

Corollary 2.6. Let p be a prime and G a nilpotent group of finite rank acting on the group P ' Cp∞ non-trivially.
Then Hn(G,P ) is finite for all n ∈ N, and Der(G,P ) is countable.

Proof. We have CP (G) < P , hence H0(G,P ) ' CP (G) is finite. The first part of the corollary follows now from
Lemma 2.5. Der(G,P ) is an extension of the group of inner derivations IDer(G,P ), which is isomorphic to P/CP (G) '
P , by H1(G,P ), hence |Der(G,P )| = ℵ0. �

We remark that it can be shown, by means of elementary, direct methods, that with the hypothesis of Corollary 2.6
every derivation G → P has finite image. Also note that if the hypothesis that G has finite rank is dropped in
Lemma 2.5, then it is still true that the cohomology groups Hn(G,M) have finite exponent ([7], Theorem 10.3.6) but
they can have infinite rank, even if M is finite. Indeed, Hom(G,CM (G)) embeds in Der(G,M), so it is easy to arrange
for H1(G,M) to be uncountable.

Theorem 2.7. Let G be a soluble-by-finite group. Then the following are equivalent conditions:

(i) G ∈ (CMS);
(ii) |L(G)| < 2ℵ0 ;
(iii) G is a minimax group and, for all primes p, G has no section isomorphic to Cp∞ × Cp∞ ;
(iv) G is a minimax group and, for all primes p, G has no subnormal section isomorphic to Cp∞ × Cp∞ .

Proof. Assume |L(G)| < 2ℵ0 . By Lemma 2.3 all abelian sections of G are minimax—hence G is minimax—and none
of them is isomorphic to Cp∞ × Cp∞ , for any prime p. This proves that (ii) implies (iii). That (i) and (iii) imply
(ii) and (iv) respectively is obvious; to complete the proof we need to prove that (iv) implies (i). Assume that G is
minimax and no subnormal section of G is isomorphic to the direct square of a Prüfer group. By [10], Theorem 10.33,
if R is the finite residual of G and F/R is the Fitting subgroup of G/R, then R is divisible abelian, F/R is nilpotent
and G/F is polycyclic-by-finite. In view of Lemma 2.1, it will be enough to prove that F has CMS. The hypothesis
and Lemma 2.3 imply that all subnormal abelian sections of G, and hence all abelian section of F/R, satisfy CMS.
Then an easy induction on the nilpotency class of F/R, based on Lemma 2.4, shows that F/R ∈ (CMS).

Suppose that F /∈ (CMS). Then, by Lemma 2.2, F has a section V/U , where U ≤ R, in which (V ∩ R)/U has
uncountably many complements. This property is preserved if we replace V with V R (note that U C V R), thus we
may assume R ≤ V . As V ≤ F , this makes V subnormal in G. Using bars to denote images modulo U , fix K such
that V̄ = R̄ o K̄. Then D := Der(K̄, R̄) is uncountable. Next, R̄ is divisible; the hypothesis implies that it is the
direct product of finitely many, pairwise nonisomorphic Prüfer groups. Thus R̄ = Drp∈π R̄p, where π is a finite set
of primes and R̄p ' Cp∞ for all p ∈ π. Then D ' Drp∈π Der(K̄, R̄p), and Dp := Der(K̄, R̄p) is uncountable for some
p ∈ π. By Corollary 2.6, K̄ acts trivially on R̄p. But then Dp = Hom(K̄, R̄p). Since this group is uncountable, there
exists L C K such that U ≤ L and K/L ' Cp∞ . If Q/U is the p′-component of R̄ then V/LQ is a subnormal section
of G isomorphic to Cp∞ × Cp∞ . This is a contradiction, which completes the proof. �

As a consequence of Theorem 2.7 and Lemma 2.3, a soluble-by-finite group satisfies CMS if and only if all of its
(subnormal) abelian sections satisfy CMS.

Corollary 2.8. Let G be an infinite soluble-by-finite group. Then the set of all subnormal subgroups of G has the
same cardinality as L(G), and this cardinality is either ℵ0 or 2|G|.

Proof. If |G| > ℵ0 the result is contained in [3]. Assume |G| = ℵ0. It is clear that G has infinitely many subnormal
subgroups. By Theorem 2.7, either G ∈ (CMS) or G has a subnormal abelian section not in (CMS), and hence 2ℵ0

subnormal subgroups. �
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More information is readily available on soluble (or soluble-by-finite) groups with CMS. If G is such a group, let R
and F be as in the proof of Theorem 2.7. If P is a nontrivial primary component of R, hence a Prüfer group, then
either P = [P, F ] or P ≤ Z(F ). Let S be the direct product of the primary components of R which are not central
in F , thus S = [S, F ] = [R,F ]. It follows from [7], 10.1.15 and 10.3.6 that F nearly splits over S, so there exists a
nilpotent subgroup H ≤ F such that H ∩ S is finite and SH has finite index in F . (Although we don’t need this
further observation, we remark that a simple argument involving [7], 10.3.9, together with the fact that S is divisible
and locally cyclic shows that we may even choose H such that SH = F .)

Proposition 2.9. Let G be a soluble-by-finite group with CMS. Then rp∞(G) ≤ 2 for all primes p.

Proof. Fix a prime p. Assume that we have proved our result for nilpotent groups. In the notation of the previous
paragraph rp∞(G) = rp∞(F ) = rp∞(S) + rp∞(H); by our assumption rp∞(H) ≤ 2, so we may assume that the
p-component P of S is nontrivial, that is, P ' Cp∞ . As [P,H ′] = 1 and G has no sections of type Cp∞×Cp∞ , it is clear
that H ′ has no section isomorphic to Cp∞ . Therefore rp∞(H) = rp∞(H/H ′) ≤ 1 by Lemma 2.3, hence rp∞(G) ≤ 2.

Therefore we may assume that G is nilpotent. We may also assume m(G) minimal subject to G being a counterex-
ample, where m(G) = r0(G) +

∑
q prime rq∞(G). Let p be a prime such that rp∞(G) > 1. The minimality of m(G)

implies that no subgroup of Z(G) is infinite cyclic, and that G/G′ has no quotient, and hence no section, isomorphic
to Cq∞ for any prime q 6= p. This latter property is inherited by finite tensor products of abelian minimax groups,
so G has no section isomorphic to Cq∞ . Since Z(G) is infinite, it has a subgroup isomorphic to Cp∞ . Let A be a
maximal abelian normal subgroup of G and C = CG(A/Z(G)). Now rp∞(A) ≤ 1, because of Lemma 2.3, hence
A/Z(G) is finitely generated and so also G/C is finitely generated. Finally, C stabilizes the series 1 < Z(G) < A,
hence C ′ ≤ CG(A) = A and rp∞(C/A) ≤ 1, by Lemma 2.3 again. The result follows. �

In the next section we shall construct nilpotent groups G of class 2 with CMS such that rp∞(G) = 2 for some
prime p. Clearly, soluble minimax groups with rp∞(G) ≤ 2 for all p may fail to satisfy CMS (abelian groups providing
easy counterexamples); but we record here an obvious consequence of Theorem 2.7:

Corollary 2.10. Let G be a soluble-by-finite minimax group such that rp∞(G) ≤ 1 for all primes p. Then G ∈ (CMS).

Next we look at the effect of CMS on more general classes of groups. For several classes of generalised soluble-or-
finite group, CMS implies virtual solubility. For example, if G is a radical group with CMS, then every abelian section
of G is minimax (Lemma 2.3) and so G is minimax and hence soluble-by-finite, by a theorem of Baer [1]. The same
holds for the case G locally finite, by [16], so a locally finite group satisfies CMS if and only if it is a Chernikov group
with locally cyclic finite residual. An extra argument allows us to extend further these results to wider group classes
for which an analogue of Baer’s theorem does not hold (Merzljakov [8] provides an example of insoluble locally soluble
group in which all abelian sections are finitely generated).

Lemma 2.11. Let (Xn)n∈N be a sequence of varieties, such that Xn ⊆ Xn+1 for all n ∈ N, and let X =
⋃
n∈N Xn. Let

G be a nontrivial locally-X group, and assume that G has a chain N of normal subgroups such that
⋂

N = 1. If no
element of N is in X, then G has at least 2ℵ0 subgroups.

Proof. For all K ∈ X, let `(K) (the length of K) be the least n ∈ N such that K ∈ Xn. Suppose that no element
of N is in X. Then we can recursively construct a strictly decreasing sequence (Ni)i∈N of elements of N and, for
all i ∈ N, a finitely generated subgroup Fi of Ni in such a way that, after letting Hi = 〈F0, F1, . . . , Fi〉, we have
`i := `(Hi) = `(HiNi+1/Ni+1) < `(Fi+1) for all i. For, we start with any element of N as N0 and F0 = 〈x〉, for some
nontrivial x ∈ N0. Let i ∈ N and assume that the required subgroups have been constructed up to i. If `i = `(Hi), then
there is some N ∈ N such that N < Ni and Hi/(Hi ∩N) /∈ X`i−1, because X`i−1 is a variety, hence `(HiN/N) = `i;
we choose one such N as Ni+1. As N /∈ X`i , we can then choose Fi+1 as a finitely generated subgroup of N not in X`i .
It is easy to check that the required conditions are satisfied by the sequences thus defined.

Now, for all S ⊆ N we let F (S) = 〈Fi | i ∈ S〉. If T ⊆ N and T 6= S, we claim that F (S) 6= F (T ). For, let j be the
least integer in the symmetric difference T 4 S and let bars denote images modulo Nj+1. Without loss of generality,

assume j ∈ T . Then (with the obvious proviso for the case j = 0), F (S) ≤ Hj−1 and `(Hj−1) = `j−1 < `j , while

〈F (T ), Hj−1〉 = Hj has length `j . This shows that F (S) 6= F (T ), as claimed. It follows that G has at least 2ℵ0

subgroups, as required. �

Theorem 2.12. Let G be a locally (soluble-by-finite) group. If |L(G)| < 2ℵ0 , then G is soluble-by-finite.

Proof. Assume |L(G)| < 2ℵ0 . We start by taking on the case when G is locally soluble. For all n ∈ N+ we let Xn
be the variety of soluble groups of length at most n. Also let N = {G(n) | n ∈ N+}, so that S :=

⋂
N is the soluble

residual of G. Lemma 2.11 shows that G/S is soluble, so S′ = S. Hence we may replace G with S and, arguing
by contradiction, assume that G is perfect and non-trivial. After factoring out Z(G) = Z̄(G) we may also assume
Z(G) = 1. We claim that every soluble normal section F of G is central. Since G = G′ it is enough to show that G
acts nilpotently on F . Recall from Theorem 2.7 that F is minimax. For all n ∈ N+, F/Fn is finite, so G/CG(F/Fn)
is finite, hence trivial because G is perfect. Thus G acts trivially on F/R, where R is the finite residual of F . Now, R
is divisible abelian, by the already cited Theorem 10.33 of [10], so R is locally cyclic by Lemma 2.3. Then G/CG(R)
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is abelian, that is, [R,G] = 1. It follows that [F,G] = 1, as claimed. As a consequence, G has no minimal normal
subgroups. Thus, by Zorn’s Lemma, there exists a chain M of nontrivial normal subgroups of G such that

⋂
M = 1.

But then, by Lemma 2.11, some F ∈ M is soluble and hence central in G, a contradiction. We have proved that all
locally soluble groups with less than 2ℵ0 subgroups are soluble.

Now let G be a locally (soluble-by-finite) group with the same property. By the first part of the proof, all locally
soluble subgroups of G are soluble, hence of finite rank by Theorem 2.7. Then the main theorem in [5] (also see [6])
shows that G has a locally soluble subgroup of finite index. The result follows. �

We close this section with another consequence of Theorem 2.7, which is of some relevance in view of the forthcoming
Theorem 3.1.

Corollary 2.13. Suppose that all nilpotent subgroups of the soluble-by-finite group G satisfy CMS. Then G ∈ (CMS).

Proof. G is minimax, because all abelian subgroups of G satisfy CMS. Let R be the finite residual of G and F/R
be the Fitting subgroup of G/R. Suppose G /∈ (CMS), then F /∈ (CMS), so F has a section X/Y ' Cp∞ × Cp∞ for
some prime p. Then X /∈ (CMS) and we may well assume G = X. The near-splitting argument in the paragraph
following Corollary 2.8 still applies. So there exist H ≤ G and S C G such that H ∩ S and |G : SH| are finite, H is
nilpotent and S = [S,G] ≤ G′ ≤ Y . But this implies that Cp∞ × Cp∞ is an epimorphic image of H, so H /∈ (CMS), a
contradiction. �

3. Counterxamples

It is fairly common that a group-theoretical property must hold in a soluble group if it is satisfied by all of its abelian
subgroups; this is most often the case for finiteness conditions. The property CMS is not of this kind. In the previous
section we noticed that soluble groups in which all abelian sections satisfy CMS must themselves satisfy CMS; this
sentence becomes false if we substitute ‘subgroups’ for ‘sections’. Indeed, there exists a nilpotent group in which all
abelian subgroups satisfy CMS, and yet the group itself does not. Slightly more than that:

Theorem 3.1. For all primes p and all integers n > 2 there exists a nilpotent p-minimax group G of class 2 and
torsion-free rank n without CMS but with just countably many abelian subgroups.

The group that we shall construct to justify Theorem 3.1 also turns out to have subgroups proving:

Proposition 3.2. For all primes p and all integers n > 1 there exists a nilpotent p-minimax group G of class 2
satisfying CMS such that rp∞(G) = 2 and r0(G) = n.

Recall that a p-minimax soluble group is a soluble minimax group G with no section isomorphic to Cq∞ for any
prime q 6= p. This section mostly consists in the proof of these two results. The construction is an expansion of one
carried out in [4], Example 3.1.

We start by constructing the groups that will be the abelianisations of the groups in Theorem 3.1. We fix some
notation. Let r be a positive integer and βji and γji integers, where j and i range in {1, 2, . . . , r} and N respectively.
Let A be the abelian group generated by elements a1, a2, . . . , ar and bi, ci, where i ranges in N, subject to the relations

∀i ∈ N pbi+1 = bi +

r∑
j=1

βjiaj , pci+1 = ci +

r∑
j=1

γjiaj . (R)

It is clear that the subgroup U = 〈a1, a2, . . . , ar〉 of A is free abelian of rank r and A/U ' Qp ⊕ Qp (as usual, Qp is
the subgroup {npm | n,m ∈ Z} of the rational group); thus A has rank r + 2.

For all j ∈ {1, 2, . . . , r}, define the p-adic integers βj =
∑
i∈N βjip

i and γj =
∑
i∈N γjip

i. We shall show that choosing
these p-adic integers algebraically independent forces infinitely generated subgroups of A to have rank greater than r.
We start from a simple case, which is exactly what is needed to prove the main results of this section restricted to the
case n = 3.

Lemma 3.3. Assume that r = 1 and {1, β1, γ1} is a linearly independent set (over Z) of cardinality 3. Then all
subgroups of rank 1 in A are cyclic.

Proof. Since A is p-minimax a subgroup of rank 1 in A must be either cyclic or isomorphic to Qp. Assume that the
latter case occurs. Then there exists a sequence (xi)i∈N of nonzero elements of A such that pxi+1 = xi for all i ∈ N.
Now x0 = λb1n + µc1n + νa1 for some positive integer n and λ, µ, ν ∈ Z. Elements of A/U = A/〈a1〉 are uniquely
divisible by p; it follows that for all i ∈ N there exists νi ∈ Z such that xi = λb1,n+i + µc1,n+i + νia1. Then

xi = pxi+1 = λpb1,n+i+1 + µpc1,n+i+1 + pνi+1a1 = λb1,n+i + µc1,n+i + (λβ1,n+i + µγ1,n+i + pνi+1)a1

and so

νi − pνi+1 = λβ1,n+i + µγ1,n+i
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for all i ∈ N. Then ν = ν0 =
∑
i∈N(νi − pνi+1)pi = λ

∑
i∈N β1,n+i p

i + µ
∑
i∈N γ1,n+i p

i, hence

pnν = λ
(
β1 −

n−1∑
i=0

β1i p
i
)

+ µ
(
γ1 −

n−1∑
i=0

γ1i p
i
)
.

Since 1, β1 and γ1 are linearly independent this yields λ = µ = 0 = ν, that is, x0 = 0, a contradiction. �

We mention that the converse of Lemma 3.3 also holds (if 1, β1 and γ1 are linearly dependent then A has a subgroup
isomorphic to Qp), although we will not make use of this observation.

Lemma 3.4. Assume that {β1, β2, . . . , βr, γ1, γ2, . . . , γr} is algebraically independent (over Z) and has cardinality 2r.
Then all subgroups of rank r in A are finitely generated.

Proof. To start with, we claim that if V is a proper, pure subgroup of U the group A/V still satisfies the hypothesis
of the lemma, for suitably defined parameters. For, denote by bars images modulo V . Then Ū is freely generated by
elements u1, u2, . . . , us, say, and āj =

∑s
k=1 tjkuk for all j, where (tjk) is an integer matrix of type r × s and rank s.

At the expense of permuting the subscripts j in {1, 2, . . . , r} and suitably redefining the basis elements ui, we may
assume that the first s rows of (tjr) form a lower triangular matrix of rank s. For all i ∈ N

pb̄i+1 = b̄i +

r∑
j=1

βjiāj = b̄i +

r∑
j=1

βji

( s∑
k=1

tjkuk

)
= b̄i +

s∑
k=1

r∑
j=1

βjitjkuk = b̄i +

s∑
k=1

β∗kiuk,

having set β∗ki =
∑r
j=1 βjitjk. For all k ∈ {1, 2, . . . , s} let β∗k =

∑
i∈N β

∗
kip

i; then β∗k =
∑r
j=1 tjkβj . In a similar

fashion we define the integers γ∗ki =
∑r
j=1 γjitjk and the p-adic integers γ∗k =

∑
i∈N γ

∗
kip

i in such a way that pc̄i+1 =

c̄i +
∑s
k=1 γ

∗
kiuk for all i ∈ N. We have to prove that {β∗1 , β∗2 , . . . , β∗s , γ∗1 , γ∗2 , . . . , γ∗s} is an algebraically independent

set (over Z, or equivalently Q) of cardinality 2s. To this end, assume the equality
∑
cuv

∏s
k=1 β

∗
k
ukγ∗k

vk = 0, where
the sum is intended to be taken over a finite set of pairs (u,v), each u = (u1, . . . , us) and v = (v1, . . . , vs) being an
s-tuple of non-negative integers, and the cuv are integers. We have to check that all cuv are zero. We have

0 =
∑

cuv

s∏
k=1

β∗k
ukγ∗k

vk =
∑

cuv

s∏
k=1

( r∑
j=1

tjkβj

)uk
( r∑
j=1

tjkγj

)vk
. (1)

Arguing by contradiction, assume that (ũ, ṽ) is maximal subject to cũṽ 6= 0, with respect to lexicographic order.

Look at the occurrences of “monomials” λ
∏s
j=1 β

ũj

j γ
ṽj
j (with λ ∈ Z) in the formal expansion of the right-hand side

of (1). Assume that (u,v) is such that this monomial occurs in cuv
∏s
k=1(

∑r
j=1 tjkβj)

uk(
∑r
j=1 tjkγj)

vk and cuv 6= 0.

Recalling that tjk = 0 if j < k ≤ s we observe that β1 does not explicitly appear (with nonzero coefficient) beyond
the first factor, and this shows that u1 ≥ ũ1. By the maximality of (ũ, ṽ) it follows that u1 = ũ1. This also means

that the first factor does not give any contribution to our monomial except for the power of β1. Then βũ2
2 must occur

in
∏s
k=2(

∑r
j=1 tjkβj)

uk . As in the previous case, we deduce that u2 ≥ ũ2, and hence u2 = ũ2 by maximality. By
iterating this argument, we prove that uj = ũj for all j ≤ s, hence u = ũ. The same argument shows that v = ṽ.

Therefore our monomial occurs in the expansion of (1) exactly once, with coefficient λ = cũṽ
∏s
j=1 t

ũj+ṽj
jj . Since all

tjj are nonzero, the algebraic independence of {β1, β2, . . . , βr, γ1, γ2, . . . , γr} shows that cũṽ = 0, a contradiction. Now
our claim (in the first line of our proof) is justified; it shows that when needed in the proof we can factor out from A
proper, pure subgroups of U .

Another reduction argument is as follows. Let n,m ∈ N and µ, λ ∈ Z r {0}. For all i ∈ N, let b∗i = λbi+n
and c∗i = µci+m, and for all j ∈ {1, 2, . . . , r} let β∗ji = λβj,i+n and γ∗ji = µγj,i+n. Then pb∗i+1 = b∗i +

∑r
j=1 β

∗
jiaj

and pc∗i+1 = c∗i +
∑r
j=1 γ

∗
jiaj for all i ∈ N. Also, for all j, β∗j :=

∑
i∈N β

∗
jip

i = (λ/pn)
(
βj −

∑n−1
t=0 βjtp

t
)

and,

similarly, γ∗j :=
∑
i∈N γ

∗
jip

i = (µ/pm)
(
γj −

∑m−1
t=0 γjtp

t
)

. It follows that {β∗1 , β∗2 , . . . , β∗r , γ∗1 , γ∗2 , . . . , γ∗r} is algebraically

independent of cardinality 2r. Therefore we may replace A with A∗ = U + 〈b∗i , c∗i | i ∈ N〉, obtaining a group in which
λbn and µcm play the roles of b0 and c0—note that A/A∗ is finite. Furthermore, if u =

∑r
j=1 ujaj , v =

∑r
j=1 vjaj ∈ U

then we may replace b0 with b0 + u and c0 with c0 + v leaving the remaining bi and ci unaltered. The only change
needed is redefining βj0 as βj0 − uj and γj0 with γj0 − vj for each j, and hence βj and γj as βj − uj and γj − vj
respectively.

Now let H be a subgroup of A which is not finitely generated. We have to show that r(H) > r or, equivalently,
r0(A/H) ≤ 1. There is no loss in replacing H with its pure closure in A, so we shall assume that H is pure. It is
obvious that r0(A/H) ≤ 1 if U ≤ H, so we may exclude this case. In view of the previous paragraphs, we may factor
out H ∩ U , so we assume H ∩ U = 0. Then H is isomorphic to a subgroup of A/U ' Qp ⊕Qp. Let X be a subgroup
of rank 1 in H. Choose any V ≤ U such that U/V ' Z; then A/V satisfies the hypotheses of Lemma 3.3 and so
X ' (X + V )/V is cyclic. Thus all rank-1 subgroups of H are cyclic. We deduce that r(H) = 2; more precisely H is
an extension of a cyclic group by Qp. It also follows that A/(U +H) is periodic. Now we have r0(A/H) = r(U) = r,
so we only have to show that r = 1.
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Since A/(U +H) is periodic there exist λ ∈ Z and u ∈ H such that λ 6= 0 and x := λc0 + u ∈ H. Now let X be the
pure closure of 〈x〉 in H. Write |X : 〈x〉| as pnt where n, t ∈ N and p does not divide t. Then there exists h ∈ X such
that x = hp

n

and 〈h〉 is p-pure in H and hence in A. By uniqueness of division by pn in A/U , we have h ≡U λcn.
Therefore h = λcn + u′ for some u′ ∈ U . At the expense of substituting h for c0 (see the reduction arguments above),
we may assume that 〈c0〉 is p-pure in A and contained in H; the same applies for 〈b0〉.

Thus the elements of H/〈c0〉 are uniquely divisible by p. Therefore there exists a sequence (hi)i∈N of elements
of H (uniquely defined modulo 〈c0〉) such that h0 = b0 and phi+1 ≡〈c0〉 hi for all i ∈ N. Now, for all i ∈ N we have

pi(hi− bi) ∈ U + 〈c0〉, and the set of all elements of A of order at most pi modulo U + 〈c0〉 is U + 〈ci〉. It follows that,
for all i ∈ N, we have:

hi = bi + µici + ui; phi+1 = hi + τico;

for some integers µi, τi and ui ∈ U . Expanding the equation on the right yields:

p(bi+1 + µi+1ci+1 + ui+1) = bi + µici + ui + τico

and hence

(µi+1 − µi)ci +

r∑
j=1

(βji + µi+1γji + puj,i+1 − uji)aj = τico, (2)

where we let ui =
∑r
j=1 ujiaj for all i. Projecting this equality modulo U gives (µi+1 − µi)ci ≡U τip

ici, that is,

µi+1 − µi = τip
i for all i ∈ N. Now, µ0 = 0, as h0 = b0, hence

µi+1 =

i∑
t=0

τtp
t.

Going back to (2) we now have (µi+1 − µi)ci = τip
ici = τi(c0 +

∑r
j=1

∑i−1
t=0 γjtp

taj). Then, for each i and j, after

letting γ̂ji =
∑i−1
t=0 γjtp

t we have:
τiγ̂ji + βji + µi+1γji + puj,i+1 − uji = 0. (3)

Now, ∑
i∈N

µi+1γji p
i =

∑
i∈N

(
i∑
t=0

τtp
t

)
γji p

i =
∑

t,i∈N; t≤i
τtp

tγji p
i =

∑
t∈N

τt(γj − γ̂jt)pt,

hence, by multiplying the left-hand side of (3) by pi and summing over N we obtain:

0 =
∑
i∈N

τiγ̂jip
i + βj +

∑
i∈N

µi+1γjip
i +
∑
i∈N

(puj,i+1 − uji)pi = τγj + βj − uj0. (4)

Assume for a contradiction that r > 1. From the two equations obtained from (4) for j = 1 and j = 2 we deduce:

(β1 − u10)γ2 = (β2 − u20)γ1,

which contradicts the algebraic independence of {β1, β2, . . . , βr, γ1, γ2, . . . , γr}. This contradiction shows that r = 1,
and ultimately that A has the required property. The proof is complete. �

Lemma 3.5. Let p be a prime and G a direct product of a finite number n > 1 of copies of Cp∞ . Let P be a countable
set of subgroups of G isomorphic to Cp∞ and let X be a set of elements of the socle G which are linearly independent
over Zp. Then G has 2ℵ0 subgroups K such that K ∩X = ∅ and G = PK for all P ∈ P.

Proof. The proof is by induction on n. If X has at least two distinct elements, a and b, then let y = a−1b, otherwise
we define y as an element in the socle of G not in 〈X〉. In either case G has 2ℵ0 subgroups Y ' Cp∞ such that y ∈ Y ,
and hence Y ∩X = ∅. Let Y be the set of all such Y which are not in P, hence |Y| = 2ℵ0 . If n = 2 then all elements
of Y satisfy the requirement for K, so we may assume n > 2. Fix one Y ∈ Y. Use bars to denote images modulo Y .
Then X̄ is a linearly independent subset of the socle of Ḡ (with |X̄| = |X| − 1 if |X| > 1). Also, P̄ ' Cp∞ for all
P ∈ P. Therefore, by induction hypothesis, there are 2ℵ0 subgroups K/Y of Ḡ such that K̄ ∩ X̄ = ∅ and K̄P̄ = Ḡ
for all P ∈ P. For each such K we have K ∩ X = ∅; moreover G/K ' Cp∞ and, for all P ∈ P, P � K and hence
PK = G. The proof is now complete. �

We are now in a position to prove Theorem 3.1.

Proof of Theorem 3.1. Let A be a torsion-free abelian group of rank n which is an extension of a free abelian group
of rank r := n − 2 by Qp ⊕ Qp and such that all subgroups of rank n − 2 in A are finitely generated. Lemma 3.4
(or, for n = 3, Lemma 3.3) makes sure that such groups do exist for every choice of n > 2. Any such group A
has a presentation of the form described in the first part of this section, with relations as in (R), so we retain the
same notation introduced there. We also let F = 〈aj , b0, c0 | 1 ≤ j ≤ r〉 ≤ A. Then F is free abelian of rank n and
A/F ' Cp∞ × Cp∞ .

If B is a pure subgroup of rank n − 1 in A then rp∞(B) = 1, for rp∞(B) = 2 would imply that B has a subgroup
of rank n − 2 which is not finitely generated. Then B satisfies CMS by Lemma 2.3. Now, every subgroup of A of
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rank n − 1 is contained in a pure subgroup of the same rank. But A has countably many pure subgroups only, each
being the pure closure of a finite subset of A. It follows that the set of all subgroups of rank n− 1 in A is countable.

We shall compute the Schur multiplier M(A) of A. As usual, we identify M(A) with A ∧A = (A⊗A)/DA, where
DA = 〈x⊗ x | x ∈ A〉 ≤ A⊗A, and for all x, y ∈ A we let x∧y = (x⊗y) +DA. For all j, h ∈ {1, 2, . . . , r} and i, k ∈ N
we let

uji := aj ∧ bi; vji := aj ∧ ci; wik := bi ∧ ck; zjh := aj ∧ ah.
These elements generate M(A): note that, for all i, k ∈ N, if i > k we have bk = pi−kbi − u for some u ∈ U =
〈a1, a2, . . . , ar〉, hence bi ∧ bk = u ∧ bi and a similar argument works for ci ∧ ck. More explicitly, we will make use of
the formulae:

bi ∧ b0 = bi ∧
(
pibi −

r∑
j=1

θbjiaj

)
=

r∑
j=1

θbjiuji and, similarly, ci ∧ c0 =

r∑
j=1

θcjivji, (5)

where we have let θbji =
∑i−1
t=0 βjtp

t and θcji =
∑i−1
t=0 γjtp

t.
Since A is torsion-free, for all B ≤ A the natural mapM(B)→M(A) induced by inclusion is injective (see [2], p. 520,

Corollary), which allows us to identify M(B) with the subgroup 〈x ∧ y | x, y ∈ B〉 of M(A), as we shall do from now
on. After this identification we have that M(F ) is free abelian on the basis {uj0, vj0, ur0, vr0, w00, zjh | 1 ≤ j < h ≤ r}.

Let Z = 〈zjh | 1 ≤ j < h ≤ r〉 and E = Z + 〈uji, vji | i, j ∈ N, 1 ≤ j ≤ r〉. As before, for all i, k, ` ∈ N, from
p`bi+` ≡U bi we obtain p`wi+`,k = (p`bi+`) ∧ ck ≡E bi ∧ ck = wik and, similarly, p`wi,k+` ≡E wik; thus

p`wi+`,k ≡E wik ≡E p`wi,k+`.

As a further consequence, each of wik, wki and wi+k,0 is congruent to pi+kwi+k,i+k modulo E, hence

wik ≡E wki ≡E wi+k,0.

It follows that M(A) = E + 〈wi0 | i ∈ N〉. Now, the usual relations easily give, for all i ∈ N and j ∈ {1, 2, . . . , r},

puj,i+1 ≡Z uji; pvj,i+1 ≡Z vji; pwi+1,0 ≡E wi0.

Since the 2r + 1 elements uj0, vj0 and w00 are independent modulo Z, it follows that E/Z is the direct sum of 2r
copies of Qp and M(A)/E ' Qp. But Ext(Qp,Qp) = 0, hence M(A) splits over E modulo Z. Therefore M(A)/Z is
the direct sum of 2r + 1 copies of Qp. Now, Z ≤ M(F ), and it follows that M(A)/M(F ) is the direct sum of 2r + 1
copies of Cp∞ .

Let P ' Cp∞ , viewed as a trivial A-module, assume that a subgroup K of M(A) is given such that M(A)/K '
Cp∞ and fix an epimorphism ξ : M(A) � P such that K = ker ξ. The Universal Coefficients Theorem (see [12],

11.4.18; [15], Ch. 5) yields a natural isomorphism H2(A,P )
∼−→ Hom(M(A), P ), so there exists a central extension

P ↪→ G
ν
� A where the commutator map A × A → P induces ξ. More explicitly the resulting group G will be such

that [x, y] = (xν ∧ yν)ξ for all x, y ∈ G. Thus P = G′ ≤ Z(G), and the choice of K in M(A) determines centralizers
in G. We shall see that it is possible to choose K in such a way that all abelian subgroups of G are finitely generated
modulo P and, as a consequence, that there are only countably many of them.

If H is a subgroup of G with torsion-free rank less than n − 1, then HP/P is finitely generated, because of the
properties required for A. Next we consider the case when H has torsion-free rank n − 1. In M(A), let S be the set
of all subgroups of the form M(B) where B is a subgroup of A which has rank n− 1 and is not finitely generated. If
we assume that K is chosen in such a way that the following condition is satisfied:

(K1): S +K = M(A) for all S ∈ S,

then, for all H ≤ G such that HP/P is not finitely generated and has rank n − 1, we have H ′ = P , so that H is
not abelian. Indeed, if H is such a subgroup, then M(Hν) ∈ S, because Hν ' HP/P , so that if (K1) holds then
H ′ = M(Hν)ξ = M(A)ξ = P (recall that K = ker ξ).

To discuss subgroups of rank n modulo P we observe that if the following holds:

(K2): M(F ) + 〈uj1 | 1 ≤ j ≤ r〉 ≤ K and w10 /∈ K,

then CG(F0) = F0, where F0 is the preimage of F under ν. For, let X = {x ∈ A | x∧F ⊆ K}. Then X =
(
CG(F0)

)
ν ,

so the required conclusion is equivalent to X = F . Assume that (K2) holds. Then F ⊆ X and we only need to check
the reverse inclusion. Let x ∈ X. Then x = f +λbi +µci for some f ∈ F and i, λ, µ ∈ N. To prove that x ∈ F we may
well assume f = 0. Also, at the expense of redefining i, we may assume that at least one of λ and µ is not divisible
by p. Since A/F is a p-group, we may further assume that λ and µ are coprime. The following elements are in K for
all j; we use (5) to compute them:

aj ∧ x = λuji + µvji; b0 ∧ x = −λ
r∑
j=1

θbjiuji + µw0i; c0 ∧ x = −λwi0 − µ
r∑
j=1

θcjivji. (6)
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Now,

w0i = b0 ∧ ci =
(
pibi −

r∑
j=1

θbjiaj

)
∧ ci = (bi ∧ pici)−

r∑
j=1

θbjivji

=
(
bi ∧

(
c0 +

r∑
j=1

θcjiaj

))
−

r∑
j=1

θbjivji = wi0 −
r∑
j=1

(θcjiuji + θbjivji).

Modulo K, the equalities in (6) yield λuji ≡ −µvji for all j and hence

0 ≡ b0 ∧ x ≡ µ
( r∑
j=1

θbjivji + w0i

)
≡ µ

(
wi0 −

r∑
j=1

θcjiuji

)
0 ≡ −c0 ∧ x ≡ λ

(
wi0 −

r∑
j=1

θcjiuji

)
.

Now, λ and µ are coprime, therefore wi0 ≡K
∑r
j=1 θcjiuji. But, by (K2), wi0 has order pi modulo K, while the

element on the right has smaller order, unless i = 0. Therefore i = 0, that is, x ∈ F . Thus our claim is established.
Next we show that the consequence F0 = CG(F0) of (K2) in turn implies that all abelian subgroups H of G with

torsion-free rank n are finitely generated modulo P . For, assume H ≤ G and r0(H) = n. Then Fλ0 ≤ H for some
positive integer λ, hence [Hλ, F0] = [H,Fλ0 ] = 1. Therefore Hλ ≤ CG(F0) = F0 and so HP/P is finitely generated.

Summing up the argument thus far, we have proved that if K is chosen in such a way that both (K1) and (K2)
are satisfied, then all abelian subgroups H of G are finitely generated modulo P . In this case there are just countably
many abelian subgroups of G containing P . Moreover, each of them satisfies CMS, by Lemma 2.3, and it follows that
the set of all abelian subgroups of G is countable. Clearly, G /∈ (CMS), because rp∞(G) = 3.

Therefore, to complete the proof of Theorem 3.1, we only need to show that M(A) has a subgroup K such that (K1)
and (K2) hold. To this aim, we first look at the structure of the subgroups of M(A) in the set S. We know that M(A)
is an extension of the free abelian group W := M(F ) + 〈uj1 | 1 ≤ j ≤ r〉 by the direct sum of 2r + 1 copies of Cp∞ .

Let B be a subgroup of A which has rank n− 1 and is not finitely generated. As is well-known, M(B) has rank
(
n−1
2

)
,

hence it is not trivial. All subgroups of rank n−2 in B are finitely generated, hence B has no infinite cyclic quotients,
that is, Hom(B,Z) = 0. Therefore Hom(B ⊗ B,Z) ' Hom(B,Hom(B,Z)) = 0, and so Hom(M(B),Z) = 0, since
M(B) is an epimorphic image of B ⊗ B. It follows that M(B) is not finitely generated, hence M(B) +W/W has at
least one subgroup isomorphic to Cp∞ . Having chosen one such subgroup for each B, let P be the set that they form.
Note that P is countable, because A has only countably many subgroups of rank n− 1. Now apply Lemma 3.5 to the
group M(A)/W to produce a subgroup K of M(A) containing W such that w01 /∈ K and P (K/W ) = M(A)/W for
all P ∈ P. Then K satisfies (K2) and also (K1), since every S ∈ S contains the preimage modulo W of some P ∈ P.
Thus the proof of Theorem 3.1 is complete. �

It turns out that all subgroups of torsion-free rank n − 1 in the group G just constructed (in the case when both
(K1) and (K2) hold) satisfy CMS.

For, let H ≤ G and assume r0(H) = n− 1. If L ≤ H and L′ is infinite then P = L′ ≤ L. As remarked in the course
of the proof, all subgroups of rank n−1 in A satisfy CMS, hence H/P ∈ (CMS). Thus H has at most countably many
subgroups with infinite derived subgroup. Now assume that L ≤ H and L′ is finite. Then L/Z(L) is finite. We showed
that all abelian subgroups of G are finitely generated modulo P , hence LP/P is finitely generated. As rp∞(LP ) = 1,
we also have LP ∈ (CMS). It follows that there are only countably many possible choices for L, therefore H ∈ (CMS).

Now, G has subgroups H such that r0(H) = n− 1 and rp∞(H) = 2, for instance those such that P < H and H/P
is a pure subgroup of G/P of rank n− 1. This proves Proposition 3.2. �

We close the paper by observing that the groups constructed to prove Theorem 3.1 when n = 3 are of the least
possible ranks. We make use of an elementary and certainly known lemma.

Lemma 3.6. Let G be a nilpotent group. If G/Z(G) has finite rank and G′ is finitely generated, then G/Z(G) is
finitely generated.

Proof. Arguing by induction on the nilpotency class of G, we may assume that G/Z2(G) is finitely generated. Assume
that G/Z(G) is not finitely generated, then we can let Ā := A/Z(G) be a subgroup of minimal rank in Z2(G)/Z(G)
subject to not being finitely generated. Then Ā has no infinite cyclic quotients. Let x ∈ G. Since A/CA(x) ' [A, x]
is finitely generated and isomorphic to a quotient of Ā, we see that [A, x] is finite. Hence [An, x] = [A, x]n = 1, where
n is the order of torsion subgroup of G′. But then An ≤ Z(G), so that Ā has finite exponent and is therefore finite.
This contradiction completes the proof. �

Proposition 3.7. Let G be a soluble-by-finite in which all abelian subgroups satisfy CMS. If r0(G) ≤ 2 or rp∞(G) ≤ 2
for all primes p, then G ∈ (CMS).
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Proof. By Corollary 2.13, there is no loss in assuming G nilpotent. The already quoted theorem of Baer, shows that G
is minimax; we may further assume that it is a counterexample with the least value of m(G) = r0(G)+

∑
q prime rq∞(G).

Next, G has a section isomorphic to Cp∞ × Cp∞ for some prime p; from our minimality assumption it follows that
G has a quotient, say G/N , of this type and that G is p-minimax. Of course, N is infinite, hence N ∩ Z(N) has a
subgroup U , which is either infinite cyclic or isomorphic to Cp∞ . But G/U /∈ (CMS), hence, by minimality, G/U has
an abelian subgroup A/U /∈ (CMS). We may well substitute A for G and assume G′ ≤ U . If G′ is cyclic then G/Z(G)
is finitely generated by Lemma 3.6, then G = NZ(G) and Z(G) has a quotient isomorphic to Cp∞ × Cp∞ , which is
excluded by the hypothesis. Therefore G′ ' Cp∞ , hence rp∞(G) > 2 and then r0(G) ≤ 2. Let H be an infinite cyclic
subgroup of G and K be the isolator of H in G. Then G′ ≤ K. If V/G′ is a locally cyclic subgroup of K/G′ then V is
abelian, hence V satisfies CMS and rp∞(V ) = 1; but this means that V/G′ is cyclic. It follows that K/HG′ is finite,
so that rp∞(G/K) > 1. But G/K is a torsion-free abelian group and r0(G/K) ≤ 1; thus we have a contradiction and
the proof is complete. �
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