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Abstract

In this work we study groups for which there is a countable set of
proper subgroups with the property that every proper subgroup is con-
tained in some member of the set.
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1. Introduction

This article is the third in a series of studies of countability re-
strictions on the partially ordered set of subgroups of a group. In [16]
and [6] the authors considered the property that a group have only
countably many subgroups (CMS). This is a very strong property
and its consequences for the group structure are considerable. For
example, in [6] the authors were able to classify all soluble groups
with CMS: they are precisely the soluble minimax groups without
abelian factors of type p∞ × p∞ for any prime p.

In a subsequent paper [2] the present authors studied the much
weaker property that a group have countably many maximal sub-
groups (CG). Modules and rings with countably many maximal
submodules or right ideals respectively played an important part in
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the investigation. As a result numerous classes of soluble groups
with CG were identified and several examples of finitely generated
soluble groups with uncountably many maximal subgroups were de-
scribed.

In the present work we study a property that is intermediate
between the properties CMS and CG. Let S and T be non-empty
sets of proper subgroups of a group G. Then T is said to dominate
S if each member of S is contained in a member of T . If there is a
countable set of proper subgroups of G that dominates S, then S is
said to be countably dominated or CD in G. Finally, should the set
of all proper subgroups of G be dominated by a countable subset S,
then we will say that G is countably dominated or a CD-group: we
will also say that S dominates G. It is clear how the property CD
should be defined for modules.

Evidently every CMS-group is a CD-group, and by Lemma 2.1
below every CD-group is a CG-group. In fact the three properties
are distinct. Indeed the direct product G of groups of each prime
order has CD since the set of subgroups of prime index dominates
G. However, G is not a CMS-group, for plainly it has uncountably
many subgroups. Also the group p∞×p∞ has no maximal subgroups,
so it is a CG-group, but it is not a CD-group by a simple direct
argument (or Lemma 3.3 below). Hence the general situation is:

CMS ⊂ CD ⊂ CG.

Lemma 2.2 also shows that for finitely generated groups the
properties CD and CG are one and the same. On the other hand,
the wreath product Zp wr Z is a finitely generated metabelian group,
so it satisfies max-n and hence is a CG-group by [2: Theorem 6].
But the group does not have the property CMS, since it is not a
minimax group. Indeed it appears that the property CD is much
closer to CG than to CMS.

Results
In Section 2 we give a number of general results about the prop-

erty CD; we also describe various sources of groups with this prop-
erty. In Section 3 properties of p-adically irreducible modules are
developed which are needed in the proofs of the main theorems in
Sections 4 and 5. Virtually nilpotent CD-groups are characterized
in Section 4. The approach adopted here involves modules over finite
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groups whose underlying abelian groups are divisible p-groups. The
theory of such modules was developed by Zaicev [17] and Hartley
[8]. Our first result is:

Theorem 4.1. Let the group G have a nilpotent normal subgroup N
of finite index and write F = G/N and N̄ = Nab. Then G is a
CD-group if and only if N̄ has a finitely generated F -submodule
X such that (N̄/X)p is a Černikov group whose finite residual is
a near direct sum of finitely many, pairwise non-near isomorphic,
p-adically irreducible F -submodules for each prime p.

The terminology employed here is as follows. A near direct sum
of modules is a sum of submodules in which the intersection of any
one submodule with the sum of all the others is bounded as a Z-
module, i.e., it has finite exponent. Two modules are said to be
near isomorphic if they have isomorphic quotients modulo bounded
submodules. Finally, if p is a prime, a module whose underlying
abelian group is a p-group is said to be p-adically irreducible if it is
unbounded, but every proper submodule is bounded.

There is little prospect of classifying solubleCD-groups, as there
are too many different types. Indeed even the case of metanilpotent
groups with min-n presents a significant challenge. Nevertheless our
conclusions about these groups are quite complete.

Theorem 5.1. Let G be a metanilpotent group satisfying min-n
and let A = γ∞(G), the last term of the lower central series of G.
Then G has the property CD if and only if the following hold:

(i) G/A is a nilpotent Černikov group whose finite residual is lo-
cally cyclic;

(ii) Aab has the property CD as a G-module.

Some light on nature of the second condition in Theorem 5.1 is
shed by two equivalent descriptions.

Theorem 5.7. Let A be an artinian module over a nilpotent Černikov
group Q. Then the following are equivalent.

(i) A = A1

·
+ A2

·
+ · · ·

·
+ An + S where the Ai are pairwise non-

near isomorphic, p-adically irreducible Q-modules for various
primes p and S is a bounded Q-submodule.
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(ii) A has countably many submodules.

(iii) A has the property CD as a Q-module.

Here the symbol
·
+ denotes a near direct sum. The proof of

Theorem 5.7 calls for a detailed analysis of the structure of artinian
modules over nilpotent Černikov groups. This in turn rests on im-
portant work of Hartley and McDougall [10] on the structure of such
modules in the non-modular case. Notice the similarity between the
module conditions in Theorems 4.1 and 5.7.

The situation for soluble groups satisying min-n with derived
length > 2 is certainly more complex: for there are uncountable
groups of this type (see [9]), whereas all CD-groups are countable.

The property CD is not inherited by subgroups, even in the
finitely generated case, as is shown by the group Zp wr Z – further
examples are given at the end of Section 5. Thus we should expect
the property that every subgroup of a group have CD – which will
be denoted by SCD – to be much stronger than CD. As evidence
of this we present a result which describes the soluble SCD-groups.

Theorem 6.1. A soluble group G is an SCD-group if and only
if it has finite abelian ranks and there are no factors in G of type
p∞ × p∞ for any prime p.

Recall that a soluble group has finite abelian ranks if it has a
series of finite length whose factors are abelian groups with all ranks
finite. Notice that the groups described in Theorem 6.1 are similar to
the soluble CMS-groups, the difference being that infinitely many
primes may occur as orders of elements. Moreover, Theorem 6.1
enables us to characterize virtually soluble SCD-groups as well,
with the help of Lemma 2.4 below.

Our final result Theorem 6.2 characterizes the periodic general-
ized radical groups which are SCD-groups.

Notation

(i) CD: countably dominated.

(ii) CMS: countably many subgroups.

(iii) CG: countably many maximal subgroups.

(iv) HK : the K-core of H.
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(v) Gab: the abelianization of G.

(vi) Z̄(G): the hypercentre of G.

(vii) A[n]: the subgroup of elements of order dividing n in an abelian
group A.

(viii) π(G): the set of primes dividing orders of elements of G.

(ix) γi(G): a term of the lower central series of G.

(x) A1

·
+ A2

·
+ · · ·

·
+ An: the near direct sum of submodules Ai.

(xi) A ≈ B: modules A and B are near isomorphic.

(xii) Der(G,A), Inn(G,A): sets of derivations and inner derivations.

All modules are right modules.

2. General properties

Our first observation is that the property CD is closely related
to that of having countably many maximal subgroups, denoted by
CG. It will be convenient to establish this fact in a slightly more
general form. First recall that two proper subgroups H and K of a
group G are said to be comaximal if G = ⟨H,K⟩.
Lemma 2.1. Let G be a CD-group. Then G is a countable CG-
group and every set of pairwise comaximal subgroups of G is count-
able.

Proof. By hypothesis there is a countable set of proper subgroups
X that dominates the set of all proper subgroups of G. Let S be a
set of pairwise comaximal subgroups of G. Each H ∈ S is contained
in some H∗ ∈ X . Moreover, if H and K are distinct members of S,
then H∗ ̸= K∗ since G = ⟨H∗, K∗⟩. Since X is countable, it follows
that S is countable. Also distinct maximal subgroups are pairwise
comaximal, so G has the property CG. It remains to prove that G
is countable. For each X ∈ X choose gX ∈ G \X and observe that
L = ⟨gX | X ∈ X⟩ is not contained in any member of X ; therefore
L = G and G is countable. 2

There is a partial converse of the last result.

Lemma 2.2. A finitely generated CG-group is a CD-group.

Proof. If G is finitely generated CG-group, then every proper sub-
group of G is contained in a maximal subgroup. Hence the set of
maximal subgroups, which is a countable set, dominates G. 2
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The next lemma will be used several times as a reduction tool.

Lemma 2.3. Let N be a nilpotent normal subgroup of a group G.
Then G satisfies CD if and only if G/N ′ does.

Proof. Clearly a quotient of a CD-group is also a CD-group, so
only the sufficiency requires proof. Now if H < G, then HN ′ < G;
for otherwise N = (H ∩N)N ′ and hence N = H ∩N ≤ H, so that
H = G. Since G/N ′ is a CD-group, it follows that G is too. 2

Next we discuss closure properties of the class CD. It is a simple
observation that G = p∞ × p∞ is not a CD-group. Indeed G has
uncountably many subgroups of type p∞ and these are pairwise
comaximal, so Lemma 2.1 shows that G is not a CD-group. Thus
the property CD is not closed under forming direct products or
extensions.

As has already been observed, the propertyCD is not closed un-
der the formation of subgroups. In fact a construction of Ol’̌sanskĭi
[13: Theorem 1] demonstrates that every countable group can be
embedded in a finitely generated CD-group. Also examples at the
end of Section 5 tell us that the property CD is not even inherited
by normal subgroups of finite index.

While CD is not closed under taking extensions, certain weak
forms of extension closure are valid.

Lemma 2.4. Let G be a group and let N ▹ G. If N has CD and
G/N satisfies the maximal condition on subgroups, then G has CD.

Proof. Let X be a countable set of subgroups which dominates
N . Denote by Y the set consisting of all proper subgroups of G
containing N and all subgroups of the form XSS, where X ∈ X
and S is a finitely generated subgroup of G. Then Y is countable
since G/N satisfies max and N is countable by Lemma 2.1. We
argue that Y dominates G. To this end let H < G. If HN < G
then H ≤ HN ∈ Y . Otherwise, HN = G and H ∩N < N , so there
exists X ∈ X such that H∩N ≤ X. Furthermore, since H/H∩N is
finitely generated, there is a finitely generated subgroup S such that
H = (H ∩ N)S. Since S normalizes H ∩ N , we have H ∩ N ≤ XS

and H ≤ XSS ∈ Y . Thus Y dominates G. 2

The following proposition, which is a variation on Lemma 2.4, is
analogous to certain results in [2], especially Theorems 2 and 9. The
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proof uses the fact that an infinite, virtually soluble group of finite
exponent necessarily has uncountably many maximal subgroups [2:
Theorem 4].

Proposition 2.5. Let G be a group with a polycyclic normal sub-
group N .

(i) If G/N has CG, then G has CG.

(ii) If G/N has CD, then G has CD.

Proof. First note that polycyclic groups are CMS-groups and hence
are CD-groups. In both parts of the proof induction on the derived
length of N is used, which allows us to assume that N is abelian. Let
M denote the set of maximal subgroups of G that do not contain
N .

Assume that G/N , but not G, has CG; then M is uncountable.
Since N has CMS, there exists B < N such that B = N ∩M for
uncountably many M ∈ M. Now B ▹ NM = G for all such M ,
and it is easy to see that N/B is minimal normal in G/B. Since we
can pass to G/B, we may assume that N is minimal normal in G,
which means that it is a finite elementary abelian p-group for some
prime p.

Uncountably many M ∈ M are a complements of N in G, so
by the well known correspondence between derivations and comple-
ments of normal subgroups Der(M,N) is uncountable. Let C =
CM(N). As N and M/C are finite, so is Der(M/C,N). In view of
the exact sequence 0 → Der(M/C,N) → Der(M,N) → Der(C,N),
it follows that Der(C,N) = Hom(C,N) is uncountable. Conse-
quently C/C ′Cp must be infinite. Now M/C ′Cp is abelian-by-finite
and has finite exponent. In addition, M ≃ G/N , so that M/C ′Cp is
a CG-group; therefore by [2: Theorem 4] it is finite, a contradiction
which completes the proof of (i).

To prove (ii) assume that G/N has CD. By (i) and Lemma 2.1
the group G has CG. Set S = {H < G | G = HN}; we will show
that S is dominated by a countable set of proper subgroups. Let
H ∈ S. Then H ∩ N = (H ∩ N)H < N and H ∩ N is contained
in a maximal H-invariant proper subgroup of N , say B(H), since
N is polycyclic. Thus HB(H) is a maximal subgroup of G and it
belongs to S. Consequently {HB(H) | H ∈ S} is a countable set
that dominates S and G has CD. 2
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We close the section by providing some further sources of CD-
groups. For example, finitely generated nilpotent-by-polycyclic-by-
finite groups are CD-groups. To prove this reduce to the case of
finitely generated abelian-by-polyclic-by-finite groups using Lemma
2.3. Such groups are well known to satisfy max-n, so they are CG-
groups by [2: Theorem 6] and the claim is established.

Some classes of locally nilpotent CD-groups can be identified
by using the next result.

Proposition 2.6. Let G be a locally nilpotent group. Assume that G
has a nilpotent normal subgroup A such that Aab is finitely generated
as a G-module and G/A has CD. Then G has CD.

Proof. By Lemma 2.3 we may assume that A is abelian. By hypoth-
esis the group A/[A,G] is finitely generated and hence polycyclic,
so G/[A,G] has CD by Proposition 2.5(ii). Thus it is enough to
show that there cannot exist H < G such that G = H[A,G]. As-
suming that H is such a subgroup, we have B = H ∩ A ▹ HA = G
and, since A is finitely generated as a G-module, B ≤ C for some
maximal submodule C of A. Then HC is a maximal subgroup of G.
Since G is locally nilpotent, [A,G] ≤ G′ ≤ HC, which leads to
G = H[A,G] ≤ HC, a contradiction. 2

For example, if p is a prime and F is any finite p-group, the
wreath product F wr p∞ is a CD-group. Finally, we record a very
different source of CD-groups. Recall that a barely transitive group
is a transitive permutation group on an infinite set such that the
orbits of each proper subgroup are finite.

Proposition 2.7. Let G be a barely transitive permutation group
which is not finitely generated. Then G is a CD-group.

Proof. Let H be a point stabilizer in G. It is well-known that G
is countable and that its proper subgroups are residually finite –
see [1]. Hence G is locally graded and [1: Lemma 2.1] shows that
H is not contained in a maximal subgroup of G. It follows that G
can be written as the union of a strictly increasing sequence (Xi)i∈N
of proper subgroups of G containing H each of which is finitely
generated modulo H. Let U < G. By bare transitivity |U : H ∩ U |
is finite, whence ⟨H,U⟩ = ⟨H,F ⟩ for some finite subset F of G. It
follows that U ≤ Xi for some i ∈ N. Therefore the set {Xi | i ∈ N}
dominates G and G has CD. 2
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3. Near direct sums and p-adically irreducible modules

In this section we present certain module theoretic results that
are needed in Sections 4 and 5. Two modules A and B over the
same ring are said to be near isomorphic, in symbols A ≈ B, if
there exist submodules A0 ≤ A and B0 ≤ B which are bounded as
abelian groups and are such that A/A0 ≃ B/B0 as modules. If A
and B are (Z-) divisible, it is easy to show that A ≈ B if and only
if A ≃ B/B0 for some bounded submodule B0 of B, by using the
fact that A ≃ A/A[n] for n > 0.

A critical concept for us is that of a near direct sum. Let A be a
module and {Ai|i ∈ I} a family of submodules of A. Then A is said
to be the near direct sum of the submodules Ai if A =

∑
i∈I Ai and

Ai∩ (
∑

j ̸=i∈I Aj) is bounded for each i ∈ I. If all these intersections
are annihilated by a fixed positive integer t, the sum is called a
t-near direct sum. The notation

A = A1

·
+ A2

·
+ · · ·

·
+ An

will be used to indicate that A is the near direct sum of submodules
A1, A2, . . . , An.

Let p be a prime and let A be a p-torsion module, i.e., its un-
derlying abelian group is a p-group. Then A is p-adically irreducible
if all its proper submodules are bounded, but A itself is unbounded;
in this event A is clearly divisible. A case of special interest is that
of a divisible p-torsion module over ZF where F is a finite group.
Zaicev [17] (see also [8: p.218]) proved that if A is a such module
with B a submodule, then there is a submodule C such that A is the
|F |-near direct sum of B and C. Zaicev drew the conclusion that A
is an |F |-near direct sum of p-adically irreducible submodules.

Near direct sums of pairwise non-near isomorphic modules that
are p-adically irreducible feature prominently in this work. In cer-
tain respects they behave like semisimple modules, as the next result
shows.

Lemma 3.1. Let A be a divisible p-torsion F -module where F is
a finite group. Assume that A is the near direct sum of a family
{Si|i ∈ I} of pairwise non-near isomorphic, p-adically irreducible
submodules. If B is a divisible submodule of A, then B =

∑
i∈J Si

for some J ⊆ I.

Proof. There is a positive integer ℓ such that A/A[pℓ] =
⊕

i∈I(Si +
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A[pℓ])/A[pℓ]. Let S be a p-adically irreducible submodule of A. For
each i ∈ I composition of the natural homomorphism S → A/A[pℓ]
with the projection A/A[pℓ] → (Si+A[pℓ])/A[pℓ] yields a homomor-
phism θi : S → (Si + A[pℓ])/A[pℓ]. Since S � A[pℓ], there is a j ∈ I
for which θj ̸= 0. Thus (S)θj is a non-zero divisible submodule of
the p-adically irreducible module (Sj + A[pℓ])/A[pℓ]. Therefore θj
is surjective. Since S is p-adically irreducible, Ker(θj) is bounded
and S ≈ (Sj +A[pℓ])/A[pℓ] ≈ Sj. Since the modules Si are pairwise
non-near isomorphic, θi = 0 for all i ∈ I \ {j}, which means that
S ≤ Sj + A[pℓ]. Hence S = pℓS ≤ Sj, so that S = Sj.

Now consider a non-zero divisible submodule B of A. By Za-
icev’s theorem quoted above, B is a near direct sum of p-adically
irreducible submodules. By the first part of the proof each of these
p-adically irreducible submodules is one of the Si. 2

The next result is surely known.

Lemma 3.2. Let p be a prime and F a finite group. Then the
number of near-isomorphism classes of p-adically irreducible ZF -
modules is at most |F |.
Proof. LetA be a divisible p-torsion ZF -module with finite Z-rank r.
Let Ẑp and Q̂p denote the ring of p-adic integers and the field of p-
adic numbers respectively. The dual of A is A∗ = Hom(A, p∞),

which is a free Ẑp-module of rank r. Set A~ = A∗ ⊗Q̂p
Q̂p, which is

a Q̂p-vector space of dimension r. Clearly A is p-adically irreducible

if and only if A~ is Q̂p-simple.
Let A and B be p-adically irreducible F -modules; then A and

B have finite rank since F is finite. Clearly A ≈ B if and only

if A~ Q̂pF≃ B~. A count of irreducible characters shows that there
are at most |F | isomorphism classes of simple Q̂pF -modules, so the
lemma follows. 2

We will have several opportunities to use the next observation.

Lemma 3.3. Let F be a group, p a prime and A a ZF -module.

Assume that A = A1

·
+A2

·
+C where A1 and A2 are near isomorphic,

p-adically irreducible submodules and C is a submodule of A. Then
there is an uncountable set B of pairwise comaximal submodules of A
such that A/B is p-adically irreducible for B ∈ B. Hence A does
not have the property CD as a ZF -module.
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Proof. In the first place A has a quotient Ā = U ⊕ V where U
and V are isomorphic p-adically irreducible ZF -modules. Note that
EndZF (U) is uncountable, since it has a subring isomorphic with

Ẑp. Thus U has uncountably many complements in Ā: let X ̸= Y

be two of them. Then Ā/Y
ZF≃ U is p-adically irreducible, while

X + Y/Y is unbounded since X ̸= Y ; hence Ā = X + Y . It follows
that the complements of U in Ā form an uncountable set of pairwise
comaximal submodules of A. The final statement follows by an
argument in the proof of of Lemma 2.1. 2

We end the section with an example showing that near isomor-
phic, p-adically irreducible modules need not be isomorphic.

Example. Let P = A ⊕ A where A ≃ 2∞, and consider the auto-
morphisms α, β of P defined by

α : (a, b) 7→ (b, a) and β : (a, b) 7→ (a,−b)

where a, b ∈ A. Thus α and β have order 2 and F = ⟨α, β⟩ is a
dihedral group of order 8. Observe that P is 2-adically irreducible
as a ZF -module. Now let u denote the element of order 2 in A.
Then x = (u, u) is a fixed point of F and P ≈ P/⟨x⟩. A simple
calculation shows that P and P/⟨x⟩ are not ZF -isomorphic.

4. Virtually nilpotent groups with CD

In this section we give a complete characterization of the virtu-
ally nilpotent groups which have the property CD. What emerges is
a criterion that largely hinges on the structure of certain associated
modules.

Theorem 4.1. Let the group G have a nilpotent normal subgroup N
of finite index and write F = G/N and N̄ = Nab. Then G is a CD-
group if and only if N̄ has a finitely generated F -submodule X such
that (N̄/X)p is either finite or a Černikov group whose finite residual
is a near direct sum of finitely many, pairwise non-near isomorphic,
p-adically irreducible F -submodules for each prime p.

Proof. In the first place Lemma 2.3 shows that we can take N to
be abelian. Starting with the necessity, we assume that G is a CD-
group. Initially we will suppose that G is periodic and we can then
assume that N is a p-group. Let A denote the maximum divisible
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subgroup of N . Since G/Np is a CD-group of finite exponent, it is
finite by [2: Theorem 4]. It follows that N/A, and hence G/A, is
finite because it is reduced.

We view A as a ZF -module. By Zaicev’s theorem A is the
near direct sum of a family {Ai | i ∈ I} of p-adically irreducible
F -submodules. Suppose that Ai ≈ Aj for distinct i, j ∈ I. Then by
Lemma 3.3 there is an uncountable set Y of F -submodules of A that
are pairwise comaximal in A and are such that A/Y is p-adically
irreducible for all Y ∈ Y . Choose a transversal T to A in G and
let Y1 = {⟨T ⟩Y | Y ∈ Y}. If Y ∈ Y , the group A/Y is not finitely
generated, whence neither is G/Y . Therefore G /∈ Y1 and Y1 is a set
of pairwise comaximal subgroups of G. Now the mapping Y ∈ Y 7→
⟨T ⟩Y ∈ Y1 is injective; for, if ⟨T ⟩Y = ⟨T ⟩Y ∗ with distinct Y, Y ∗ in
Y , then Y Y ∗ = A and hence G = ⟨T ⟩Y ∈ Y1, a contradiction. It
follows that Y1 is uncountable, which is in contradiction to Lemma
2.1. Hence the modules Ai are pairwise non-near isomorphic and by
Lemma 3.2 the index set I must be finite. As a consequence N is a
Černikov group. Since A is the finite residual of N , we see that N
has the required structure.

At this point we drop the hypothesis of periodicity. There is a
free abelian subgroup X such that N/X is periodic. Since G/N is
finite, we can replace X by its core in G and assume that X ▹ G.
Let p be any prime; then G/Xp is a periodic CD-group, so the
first part of the proof shows that X/Xp is finite. Thus X is finitely
generated and also (N/X)p is a Černikov group. Moreover, if D/Xp

is the finite residual of (N/Xp)p, then DX/X is the finite residual
of (N/X)p, which completes the proof of necessity.

Next we establish sufficiency; assume that G satisfies the condi-
tions. First of all assume that X = 1, so that G is periodic. Note
that as a consequence G is countable. We will construct a countable
set that dominates G as follows. Let R denote the finite residual of
N . For each p ∈ π(N) let Cp be the (finite) set of all proper sub-
groups of G containing Np′Rp. Furthermore, if Rp ̸= 1, then Rp is
the near direct product of a finite family {Si|i ∈ I} of pairwise non-
near isomorphic, p-adically irreducible F -modules. Denote by Mp

the set of all F -submodules that have the form ⟨Sj | j ̸= i, j ∈ I⟩ for
some i ∈ I. Now let Xp be the set of all subgroups ELNp′ , where
E is a finite subgroup of G and L ∈ Mp; note that subgroups in
Xp are proper. Define X be the union of all the sets Cp and Xp just
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defined. Clearly X is countable; we will prove that it dominates G.
To this end let U < G; we will argue that U ≤ X for some X ∈ X .

In the first place we may assume that N � U , since otherwise
U ∈ X . Choose p ∈ π(N/N ∩U); then N ∩ (UNp′) = (N ∩U)Np′ <
N , so that UNp′ < G and, on replacing U by UNp′ , we may assume
that Np′ ≤ U . If URp < G, take X to be URp ∈ Cp. Therefore
we suppose that URp = G, so that Rp ̸= 1 and U ∩ Rp ▹ G. Let
S be the finite residual of U ∩ Rp. Then S is a proper divisible
F -submodule of Rp and thus Lemma 3.1 shows that S ≤ L for
some L ∈ Mp. Moreover, U/SNp′ is finite since G/Np′ is Černikov.
Therefore U = ESNp′ for some finite E ≤ G. If X = ELNp′ , then
U ≤ X ∈ Xp ⊆ X and therefore X dominates G and G has CD.

Finally, consider the general case, so X is the finitely generated
submodule of N specified in the hypothesis. Then G/X is a periodic
CD-group by the previous part of the proof. It now follows from
Proposition 2.5 that G is a CD-group. 2

The full structural consequences of the condition CD are shown
in the next result.

Corollary 4.2. Let G, N and F be as in the theorem and assume
that G has CD. Then:

(i) the group N has finite abelian ranks;

(ii) there is a finitely generated subgroup X of N such that G/XG

is periodic and (N/XG)p is a Černikov group whose finite resid-
ual is the near direct sum of finitely many, pairwise non-near
isomorphic, p-adically irreducible F -submodules for all primes
p.

Proof. By the theorem Nab has finite ranks, so by the well known
tensor product property of the lower central series the lower central
factors of N also have finite ranks; therefore N has finite abelian
ranks. Consequently, N has a finitely generated subgroup X such
that each factor Xγi(N)/Xγi+1(N) is periodic. Therefore G/XG is
periodic, so we may assume that G is periodic; we can also take N to
be a p-group. Since N is a nilpotent Černikov group, N ′ is finite and
central in N . If R denotes the finite residual of N , then RN ′/N ′ is
the finite residual of Nab. Furthermore R ≈ RN ′/N ′. Since G/N ′ is
aCD-group, it follows from the theorem that R inherits the relevant
properties of the module RN ′/N ′. 2
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We single out two special cases of Theorem 4.1 in which the
characterization takes a simpler form.

Corollary 4.3.

(i) A periodic nilpotent group is a CD-group if and only if each of
its infinite primary components is a finite extension of a Prüfer
group.

(ii) A nilpotent Černikov group is a CD-group if and only if its
finite residual is locally cyclic (in which case the group is a
CMS-group).

Proof. Let G be a periodic nilpotent CD-group. Applying Corollary
4.2 with N = G, we conclude that each primary component of G
is Černikov, so that the finite residual R of G is central. Hence
the p-adically irreducible subgroups of Rp are p∞-groups and R is
locally cyclic. The converse follows at once from Theorem 4.1. It is
immediate that (ii) is valid. 2

Observe that the class of nilpotent CD-groups is not subgroup
closed. For example, let G = ⟨x⟩ n A where A ≃ 2∞ ⊕ 2∞ and
(a1, a2)x = (a1, a1 + a2); then G is a nilpotent CD-group of class
2, but A is not a CD-group. On the other hand it follows from
Corollary 4.3 and Proposition 2.5 that the class of polycyclic-by-
periodic nilpotent CD-groups is subgroup closed.

It is worthwhile recording the situation for abelian groups in
regard to the property CD.

Corollary 4.4. An abelian group A is a CD-group if and only if
there is a finitely generated subgroup B such that A/B is periodic
and each of its infinite primary components is a finite extension of
a Prüfer group.

5. Metanilpotent groups with min-n and CD

Our aim in this section is to give necessary and sufficient condi-
tions for a metanilpotent group satisfying min-n to have the prop-
erty CD. In this endeavour it is essential to keep in mind that a
metanilpotent group with min-n is locally finite and countable by
work of Baer [4] and McDougall [12] respectively. It was shown in [2]
that all metanilpotent groups with min-n are CG-groups. However,
the question of which of these groups have the property CD is more
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subtle and progress requires detailed knowledge of the structure of
artinian modules over nilpotent Černikov groups. Our principal aim
is to establish the following result.

Theorem 5.1. Let G be a metanilpotent group satisfying min-n
and let A = γ∞(G), the last term of the lower central series of G.
Then G has the property CD if and only if the following hold:

(i) G/A is a nilpotent Černikov group whose finite residual is lo-
cally cyclic.

(ii) Aab has the property CD as a G-module.

Proof. First note that A and G/A are nilpotent and by Lemma 2.3
we can assume that A is abelian. To prove necessity assume that
G has CD and note that (i) holds by Corollary 4.3. Let S denote
the set of all proper G-submodules of A and suppose that A does
not have CD as a G-module. Write A0 = A ∩ Z̄(G) and note that
Z̄(G) is a Černikov group by a theorem of Baer [3] – see also [14:
Theorem 5.22]. For the moment let A0 = 1. Since H0(G/A,A) = 0,
we have H2(G/A,A) = 0 by [11: 10.3.2], so that G splits over A,
say G = H n A. Notice that HS < G for S ∈ S. As G is a
CD-group, there is a countable set of proper subgroups T such that
for each S ∈ S we have HS ≤ T (S) for some T (S) ∈ T . Then
S ≤ A ∩ T (S) and A ∩ T (S) is a proper G-submodule of A. Hence
S is dominated by {A ∩ T (S)|S ∈ S}, which is a countable set of
proper G-submodules of A. Therefore A has the property CD as a
G-module.

Returning to the general case, we note that by the previous
paragraph the set of S ∈ S such that SA0 < A is CD in G. What
remains to be proved is that the set S1 = {S ∈ S|SA0 = A} is CD
in G. Let S ∈ S1. Then A/S is a Černikov group since A/S ≃
A0/S ∩ A0. Evidently we may assume that A/S is either finite or
else a divisible abelian p-group of finite rank which is p-adically
irreducible as a G-module. Since A is an artinian G-module, it has
finitely many submodules of finite index. Thus it is enough to show
that the set S2 of all S ∈ S1 for which A/S is a p-adically irreducible
G-module is CD in the module A. Assume that this is false.

Write C = CG(A0); then F = G/C is finite by a result of

Baer [3] – see also [14: Theorem 3.29.2]. Since A/S
G≃ A0/S ∩ A0,

the subgroup C centralizes A/S, so the latter is an F -module. By
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Lemma 3.2 there are finitely many near isomorphism types of p-
adically irreducible F -modules, from which it follows that there is
an uncountable subset S3 ⊆ S2 such that if S, T ∈ S3, then A/S
and A/T are near isomorphic as F -modules.

Suppose that S + T = A for some S, T ∈ S3. Then A/S
G≃

T/S ∩ T and A/T
G≃ S/S ∩ T . But then G/(S ∩ T ) is a Černikov

CD-group whose finite residual contains two near isomorphic, p-
adically irreducible submodules S/(S ∩ T ) and T/(S ∩ T ). Since
this contradicts Theorem 4.1, we have S + T ̸= A for all S, T ∈ S3.

Now fix S ∈ S3 and let T ∈ S3 be arbitrary. Since S+T < A and

A/T is p-adically irreducible, (S + T )/T
G≃ S/S ∩ T is finite. Since

S is G-artinian, it has finitely many G-submodules of finite index.
Hence there exist uncountably many T ∈ S3 such that S ∩T = U is
fixed. But G/U is a Černikov group, so it has countably many finite
subgroups. This gives the contradiction that there are countably
many T ’s; thus necessity is established.

Turning to sufficiency, we suppose that properties (i) and (ii)
hold, but the setH of all proper subgroups ofG is notCD inG. Now
G/A is a CD-group by Corollary 4.3, so the set {H ∈ H|HA < G}
is CD in G. Therefore the set H1 = {H ∈ H|HA = G} is not CD
in G.

For anyH ∈ H1 we haveH∩A▹ HA = G; thusH∩A is a proper
submodule of A. By condition (ii) the set of proper submodules of
A is dominated by some countable set S of proper submodules. For
each S ∈ S define H1(S) = {H ∈ H1|H ∩ A ≤ S}. Since S is
countable, there must exist S ∈ S such that H1(S) is not CD in
G. Factoring out by S, we reach the situation where G = H n A
for H ∈ H2, a subset of H1 which is not CD in G and is therefore
uncountable. Notice that H is a Černikov group.

Let A0 = A∩Z̄(G) and recall that Z̄(G) is a Černikov group. For
the moment suppose that A0 = 1. Then H1(G/A,A) = 0 by [11:
10.3.2]. Hence Der(G/A,A) = Inn(G/A,A), which is countable.
It follows that there are only countably many complements H in
G = H nA, which gives the contradiction that H2 is countable and
completes the proof in this case.

We now proceed to the general case. Since (A/A0)∩ Z̄(G/A0) =
1, the group G/A0 is a CD-group by the previous argument, so
the set of H ∈ H2 such that HA0 < G is CD in G. It follows
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that the set H3 = {H ∈ H2|HA0 = G} cannot be CD in G and
thus is uncountable. For H ∈ H3 we have A = A ∩ (HA0) = A0,
from which it follows that A, and hence G, is Černikov. In addition
A = [A,G], which implies that H1(G/A,A) has finite exponent by
[11: 10.3.6]. From this it is routine to deduce that H1(G/A,A)
is finite. Therefore Der(G/A,A) is countable and again there are
countably many complements H. However, this means that H3 is
countable, a final contradiction. 2

Artinian modules over centre-by-finite groups

Let G be a metanilpotent group with min-n and write A =
γ∞(G) and Q = G/A. Then Aab is an artinian module over the
nilpotent Černikov group Q; note also that Q is centre-by-finite.
Theorem 5.1 makes it clear that the key to determining whether G
is a CD-group is the Q-module structure of Aab. Thus such modules
merit our attention. In particular, we need to understand the effect
of the module property CD on Aab.

Firstly, we note that if Q is a nilpotent Černikov group and A
an artinian Q-module, then G = Q n A is a metanilpotent group
satisfying min-n. By the results of Baer and McDougall G is locally
finite and countable, from which it follows that A is countable and
periodic.

The structure of artinian modules over centre-by-finite groups
has been analyzed in the non-modular case by B. Hartley and D.
McDougall in the important paper [10]. We will describe their re-
sults in some detail since they are critical for this investigation.

For any prime p let Q be a countable, locally finite p′-group. Let
{Mλ|λ ∈ Λ} denote a complete set of non-isomorphic, simple ZpQ-
modules and let the rank of Mλ be nλ. If V is a divisible abelian
p-group of rank nλ, we can endow V [p] with a Q-module structure
by identifying it with the abelian group Mλ. Since Q is a locally
finite p′-group, the Q-module structure of V [p] can be extended to
V [pn] – see for example [10: Lemma 3.2]. In this way we obtain Q-
modules Vλ(n) = V [pn], n = 1, 2, . . . . Let Vλ(∞) =

∪
n=1,2,... Vλ(n);

this is the Q-injective hull of V [p]. Then Vλ(n + 1)/Vλ(n)
Q
≃ Mλ.

It is easy to show that Vλ(∞) is a uniserial, p-adically irreducible
Q-module. Moreover, the Vλ(n) are the only proper submodules of
Vλ(∞). Finally, note that the Q-modules Vλ(n) are noetherian and
artinian, while Vλ(∞) is artinian.
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Example (i). Let Q be a group of type q∞ and let M be the simple
Čarin Q-module over Zp where p ̸= q – see [5] or else [11: 1.5.1].
Recall that M is the field obtained by adjoining qnth roots of unity
for n = 1, 2, . . . to the field of p elements, and giving M the nat-
ural Q-module structure. Then there is a corresponding p-adically

irreducible Q-module V such that M
Q
≃ V [p].

The main result of [10] is a Krull-Schmidt Theorem for artinian
Q-modules (Theorems A and C). In the following theorem Vλ(n)
and Vλ(∞) have the above meanings.

Theorem. Let p be a prime, Q a countable centre-by-finite p′-group
and A an artinian Q-module which is a p-group. Then A is the
direct sum of finitely many indecomposable submodules each of which
is isomorphic to some Vλ(n) or Vλ(∞). Moreover the decomposition
is unique up to an automorphism of A.

Another result that will be important here is:

Lemma 5.2. Let A be an artinian module over a nilpotent Černikov
group Q. Then Qp/CQp(Ap) is finite for all primes p.

This may be deduced from [12: Theorem 3.2] and it is not hard
to prove directly. We remark that Q/CQ(Ap) might not be a p′-
group, so we could be faced with a modular situation – see the
example (v) at the end of this section. Another useful fact is:

Lemma 5.3. Let Q be a nilpotent Černikov group and A an artinian
Q-module. If A is bounded, then it is noetherian.

Proof. We may assume that Q acts faithfully on A and that A is a
p-group. Lemma 5.2 shows that Q = P × R where P is a finite p-
group and R is a p′-group. Since Q/R is finite, A is R-artinian. Now
A being bounded, the Hartley-McDougall decomposition shows that
A is the direct sum of finitely many R-submodules of types Vλ(i),
i = 1, 2, · · · . Since each Vλ(i) is noetherian, the result follows. 2

Corollary 5.4. Let G be a metanilpotent group satisfying min-n and
set A = γ∞(G). If A has finite exponent, then G has the property
CD.

Proof. First note that G/A is a Černikov group. By Lemma 5.3
the G/A-module Aab is noetherian. Since A is countable, it has
countably many submodules and the result follows by Theorem 5.1.
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Next we establish a basic result about artinian modules over
nilpotent Černikov groups that will allow us to analyse the condition
(ii) in Theorem 5.1 in the modular case.

Proposition 5.5. Let Q be a nilpotent Černikov group and A an
artinian Q-module which is a p-group. Then there is a near direct
decomposition

A = (A1

·
+ A2

·
+ · · ·

·
+ An) + A[pℓ],

where ℓ is a natural number and the Ai are p-adically irreducible
submodules.

Proof. We may assume without loss that Q acts faithfully on A. By
Lemma 5.2 we have Q = P ×R, where P is a finite p-group, of order
pk say, and R is a Černikov p′-group. Of course, A may be assumed
to be unbounded.

Since A is artinian, there is a Q-submodule A1 which is minimal
subject to being unbounded. Then A1 is a p-adically irreducible
Q-module. Since A1 is divisible, it is R-injective by [10: Lemma
2.3] and we can write A = A1 ⊕ B for some R-submodule B. Let
π : A → A1 be the canonical R-projection and define a map π̄ : A →
A1 by (a)π̄ =

∑
x∈P (ax)πx

−1, a ∈ A. By a standard calculation π̄
is a Q-homomorphism and (A1)π̄ = pkA1 = A1. Since π̄2 = pkπ̄,
we have for any a ∈ A that (pka − (a)π̄)π̄ = 0, so that pka −
(a)π̄ ∈ K1 = Ker(π̄) and thus A/(A1+K1) is bounded. Notice that

A1 ∩K1 = A1[p
k], so A1 +K1 = A1

.
+K1. If K1 is unbounded, we

repeat the argument forK1 to get a p-adically irreducible submodule
A2 and a submodule K2 such that K1/(A2 + K2) is bounded and

A2 +K2 = A2

.
+K2.

Continuing in this manner, we obtain a sequence of p-adically
irreducible submodules A1, A2, . . . and submodules K1, K2, . . . such
thatA/(A1+A2+· · ·+An+Kn) is bounded andA1+A2+· · ·+An+Kn

is near direct. Since A is artinian, this procedure must terminate

finitely, which means that some Kn is bounded. Hence A/(A1

·
+

A2

·
+ · · ·

·
+An) is bounded. Write B = A1

·
+A2

·
+ · · ·

·
+An. Since B

is a divisible subgroup, we have A = B ⊕ S where S is a bounded
subgroup. If pℓS = 0, then S ≤ A[pℓ] and hence A = B + A[pℓ]. 2
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From the last result we obtain some useful structural informa-
tion about artinian modules over nilpotent Černikov groups.

Proposition 5.6. Let Q be a nilpotent Černikov group and A an
artinian Q-module. Then there is a bounded Q-submodule K such

that A/K
Q
≃ A1⊕A2⊕· · ·⊕An where the Ai are p-adically irreducible

Q-modules for various primes p. Hence A ≈ A1 ⊕ A2 ⊕ · · · ⊕ An.

Proof. Evidently we may assume that A is a p-group. By Proposi-

tion 5.5 we have A = (A1

·
+ A2

·
+ · · ·

·
+ An) + A[pℓ] for some ℓ > 0

where the Ai are p-adically irreducible submodules. Choose m ≥ ℓ
so large that A[pm] contains all the intersections Ai ∩ (

∑
j ̸=i Aj),

i = 1, 2, . . . , n. Then

A/A[pm]
Q
≃ A1/A1[p

m]⊕ A2/A2[p
m]⊕ · · · ⊕ An/An[p

m].

Finally, Ai/Ai[p
m]

Q
≃ Ai via multiplication by pm. 2

We are now in a position to characterize those artinian modules
over nilpotent Černikov groups which have the module propertyCD.

Theorem 5.7. Let A be an artinian module over a nilpotent Černikov
group Q. Then the following statements are equivalent.

(i) A = A1

·
+A2

·
+· · ·

·
+An+S where the Ai are non near isomorphic,

p-adically irreducible Q-modules for various primes p and S is
a bounded Q-submodule.

(ii) A has countably many submodules.

(iii) A has the property CD as a Q-module.

Proof. Evidently we can assume that A is a p-group for some prime
p.

(i) ⇒ (ii). Let A have the decomposition in (i). Note that S is
noetherian by Lemma 5.3, so it has countably many submodules;

thus we can assume that n > 0. Let B = A1

·
+ A2

·
+ · · ·

·
+ An−1 +

S ̸= A. By induction on n the submodule B has countably many
submodules and the same is true of A/B since its proper submodules
are bounded and hence noetherian.

Assume that nevertheless A has uncountably many submodules
{Sλ|λ ∈ Λ}. Then there are submodules C and D such that Sλ ∩
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B = C and Sλ + B = D with C,D fixed for uncountably many λ.
Then D/C = (Sλ/C)⊕ (B/C). If D/B is bounded, it is noetherian
and hence HomQ(D/B,B/C) is countable. Otherwise D = A and
HomQ(A/B,B/C) = 0 since A/B cannot be near Q-isomorphic
with a submodule of B/C. This gives the contradiction that there
are countably many complements Sλ/C and hence countably many
Sλ’s.

(ii) ⇒ (iii). This implication is obvious.

(iii) ⇒ (i). Assume that A has CD as a Q-module. By Proposition

5.5 there is a decomposition A = (A1

·
+A2

·
+ · · ·

·
+An)+A[pℓ] where

the Ai are p-adically irreducible and ℓ > 0. Now apply Lemma 3.3
to show that no two of the Ai can be near isomorphic Q-modules.

2

Combining Theorems 5.1 and 5.7, we obtain a satisfying descrip-
tion of the metanilpotent groups with min-n that have CD.

Corollary 5.8. Let G be a metanilpotent group satisfying min-n
and let A = γ∞(G). Then G is a CD-group if and only if G/A is

a nilpotent C̆ernikov group whose finite residual is locally cyclic and
Aab has countably many G-submodules.

It is easy to find examples of metanilpotent groups with min-n
that are not CD-groups – and even some that are Černikov groups.

Example (ii). Consider the group G = Q n A where Q = ⟨x⟩
has order 2 and A = A1 × A2 with Ai ≃ 2∞. Let Q act on A
via ax = a−1, a ∈ A. Then γ∞(G) = A has uncountably many Q-
submodules, so G is not a CD-group by Corollary 5.8. On the other
hand, if we make x act trivially on A1 and invert in A2, then G is a
CD-group since A1 and A2 are not near isomorphic as Q-modules.
Notice that G is a hypercentral group and A is not a CD-group.

Example (iii). In this example A = A1 ⊕ A2 where Ai ≃ 5∞. Then
Ai has an automorphism α of order 4. Let Q = ⟨x⟩ have order 4 and
make A into aQ-module by defining a1x = (a1)α and (a2)x = a2α

−1,
where ai ∈ Ai. Set G = Q n A. Evidently γ∞(G) = A and G is a
CD-group since A1 and A2 are not near isomorphic as Q-modules.
In this case G has trivial centre.

Example (iv). To obtain non-Černikov examples let Q be a group
of type q∞ and let A be the p-adically irreducible Q-module (where
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p ̸= q) derived from a simple Čarin ZpQ-module – see Example (i)
above. Set G = Qn A; this is a metabelian group with min-n that
is not a Černikov group. Evidently γ∞(G) = A has only countably
many submodules, so G is a CD-group. On the other hand, the
group Qn (A⊕A) is not a CD-group because the Q-module A⊕A
has uncountably many submodules.

From examples in (ii) and (iii) we can see that if a metanilpotent
group with min-n is a CD-group, its finite residual need not have
CD. It is more challenging to show that the Černikov residual need
not inherit the property CD.

Example (v). There is a metabelian group with min-n which has
CD, but whose Černikov residual does not have CD.

Let Q = R × ⟨z⟩ where R is a 2∞-group and |z| = 3. Let
A = A1 ⊕ A2 where Ai is the injective hull of the Čarin 3-module
over R; thus R acts on Ai via the field multiplication. Make A into
a Q-module via the actions

(a1, a2)r = (a1r, a2r), (a1, a2)z = (a2,−a1 − a2),

where r ∈ R and ai ∈ Ai. Clearly A is R-artinian.
We prove that A is a 3-adically irreducible Q-module. If this

is false, then A has a proper unbounded submodule B. First note
that B ̸≥ A1; for otherwise we will also have B ≥ A2 and B = A.
Factoring out by a suitable A[3m], we can assume that B ∩A1 = 0.

Since B is unbounded, A = B ⊕ A1 and B
R≃ A/A1

R≃ A2. Let
1 ̸= b ∈ B[3]; then ⟨b⟩⟨z⟩ is a finite elementary abelian 3-group
and hence z fixes some non-trivial element of it. Since B[3] is R-
isomorphic with a simple Čarin module and b 7→ b(z − 1) is an
R-module endomorphism, we conclude that B[3](z − 1) = 0.

Suppose that B(z − 1) ̸= 0 and write Bi = B[3i]. There is a
least n ≥ 2 such that Bn(z − 1) ̸= 0. Since Bi+1(z − 1) ≤ Bi, we
have Bn+1(z − 1)3 ≤ Bn−1(z − 1) = 0. Since z3 = 1, it follows that

0 = Bn+1(z − 1)3 = Bn+1(3z(1− z)) = Bn(z − 1),

a contradiction which shows that B(z − 1) = 0. Let (a1, a2) ∈ B;
then (a1, a2) = (a2,−a1−a2), so that 3a1 = 0 = 3a2. Hence 3B = 0,
a contradiction which proves A to be 3-adically irreducible.

In conclusion define G = Q n A, which is a metabelian group
satisfying min-n. Then A = γ∞(G) has CD as a G-module by
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Theorem 5.7 and Theorem 5.1 shows that G is a CD-group. The
finite residual of G is RA and the Černikov residual is A, neither of
which is a CD-group. 2

6. Groups whose subgroups are CD-groups.

As was mentioned in the introduction, soluble groups with CD
are much harder to deal with than nilpotent groups. It is notewor-
thy that a periodic soluble CD-group can have abelian p-subgroups
of infinite rank: for example the wreath product Zp wr p∞ is a
CD-group, yet the base group is infinite elementary abelian. This
observation suggests that one of the difficulties in dealing with sol-
uble CD-groups is the failure of subgroup closure for this property.
With this in mind, we strengthen our hypothesis in this section and
consider groups all of whose subgroups have CD: this property will
be denoted by SCD.

In general one cannot expect to say much about SCD-groups –
after all Tarski p-groups have this property. However, we are able
to characterize virtually soluble groups with SCD in terms of their
abelian sections. By Lemma 2.4 it is sufficient to do this for soluble
groups.

Theorem 6.1. A soluble group G is an SCD-group if and only
if it has finite abelian ranks and there are no factors in G of type
p∞ × p∞ for any prime p.

Proof. The necessity of the conditions follows from Corollary 4.4.
Assume that the conditions hold in G. Since these are inherited by
subgroups, it is enough to prove that G is a CD-group.

We argue by induction on the derived length d that G is a CD-
group. Let d > 1 and put A = G(d−1). Then G/A is a CD-group,
so it suffices to show that the set S = {H < G | G = HA} has a
countable cofinal subset. By Corollary 4.4 the subgroup A has CD;
let X be a countable dominating set of proper subgroups in A. For
any X ∈ X , the group A/XG has a non-trivial G-invariant quotient
which is either divisible or finite elementary abelian. Since G has
no p∞×p∞ factors, there is a G-invariant subgroup B(X) < A such
that XG ≤ B(X) and A/B(X) is isomorphic to Q or p∞ or a finite
elementary abelian p-group for some prime p. Let C = {B(X) | X ∈
X}, which is a countable set.

Let H ∈ S. Then D = H ∩ A ▹ HA = G and D < A; hence
D ≤ X for some X ∈ X , whence D ≤ XG ≤ B = B(X). Now
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(HB)∩A = (H∩A)B = B, so thatHB < G and G/B = (HB/B)n
(A/B).

It follows that the set of all subgroups K of G such that K/B
is a complement of A/B in G/B for some B ∈ C is cofinal in S. To
complete the proof it is enough to show that for each B ∈ C there
are only countably many such complements. We can factor G by
such a B, so let B = 1. Hence A is finite or A ≃ Q or A ≃ p∞. We
will show that A has countably many complements in G.

Let H be a complement of A in G and set C = CH(A) ▹ G.
We wish to show that Der(H,A) is countable. There is an exact
sequence

0 → Der(H/C,A) → Der(H,A) → Hom(C,A),

so it is enough to prove that Der(H/C,A) and Hom(C,A) are count-
able. This is clear if A is finite, so assume it is infinite.

First suppose that A ≃ Q. Then Aut(Q) is a direct product of
cyclic groups and it has finite torsion subgroup, whileH/C has finite
abelian ranks. It follows that H/C is finitely generated. Therefore
Der(H/C,A) is countable. Since Hom(C,A) is a finite dimensional
Q-space, it too is countable.

Now let A be a p∞-group; then Aut(A) and hence H/C, is
abelian and residually finite. There is a finitely generated subgroup
X/C such that H/X is periodic. If X ̸= C, then CA(X) is finite
and thus Der(H/X,CA(X)) is finite. Also Der(X/C,A) is clearly
countable, which implies that Der(H/C,A) is countable by the coho-
mology sequence. If X = C, then H/C is periodic and hence finite,
since it is residually finite. Thus Der(H/C,A) is countable. Finally,
consider Hom(C,A). There cannot be a surjective homomorphism
C → A; for if there were, there would be a p∞- quotient C/N and
then the factor CA/N would be of type p∞ × p∞. Consequently a
homomorphism from C to A has finite image, from which it follow
that Hom(C,A) is countable. 2

It is worth noting that a soluble group whose abelian subgroups
have CD need not have this property. Indeed, the nilpotent group
constructed in [6: Theorem 3.1] has a quotient of type p∞ × p∞,
so it does not satisfy CD, yet all its abelian subgroups have CMS
and hence CD. On the other hand, a periodic soluble group whose
abelian subgroups are CD-groups does in fact have CD. We will put
this result in a more general setting. First recall that a generalized
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radical group is a group with an ascending series whose infinite
factors are locally nilpotent.

Theorem 6.2. Let G be a a periodic generalized radical group.
Then the following conditions on G are equivalent:

(i) G is an SCD-group;

(ii) all abelian subgroups of G are CD-groups;

(iii) for each prime p the Sylow p-subgroups of G are either finite
or finite extensions of a p∞-group.

Proof. Certainly (i) implies (ii). Assume that (ii) holds and let P be
a Sylow p-subgroup of G. Then P is a locally finite p-group whose
abelian subgroups have finite rank. Thus P is a Černikov group (see
[7: Theorem 1.6.9]). In addition the finite residual of P can have
rank at most 1, so (iii) follows.

Next assume that (iii) holds. Since the hypothesis is inherited by
subgroups, it is enough to prove that G is a CD-group. The group
G is locally finite and satisfies min-p for all primes p, so a theorem of
Belyaev – see [7: Theorem 3.5.15] – implies it has a locally soluble
subgroup of finite index. By Lemma 2.4 we may assume that G
is locally soluble and hence is radical. By [7: Proposition 5.4.8]
the group G is countable and it cannot contain a proper subgroup
isomorphic to itself. Furthermore, for every prime p the quotient
G/Op′(G) is a Černikov group [7: Corollary 2.5.13].

We claim that G has no proper subgroup H such that G =
HOp′(G) for every prime p. For, let H be such a subgroup. By [7:
Corollary 3.1.6], if P is a Sylow p-subgroup of H, then H = PQ
for some p′-subgroup Q of G, which implies that G = P (QOp′(G)),
whence it follows that P is a Sylow p-subgroup of G. In the termi-
nology of [7] this means that H is a basic subgroup of G relative to
the set of all primes. But then H ≃ G by [7: Theorem 5.3.10], so
that H = G, thus justifying the claim.

It follows that every proper subgroup fails to contain Op′(G) for
some prime p. Finally, G/Op′(G) is a CD-group by Theorem 4.1
and it follows that G is a CD-group. 2

There is some similarity between the structures of solubleCMS-
groups and soluble SCD-groups. However, this does not extend to
locally soluble groups. Indeed, while locally soluble CMS-groups

25



are soluble by [6: Theorem 2.12], there are periodic locally nilpotent
SCD-groups which are insoluble. For example, let Fp be a finite
p-group of derived length dp where the dp are unbounded. Then
G = Drp Fp is a periodic, residually finite, locally nilpotent group
which is an SCD-group by Theorem 6.2. Of course G is insoluble.

Concluding remarks.

The proof of Theorem 6.2 shows that a locally finite group with
CD satisfies the equivalent conditions (ii) and (iii) in the theorem.
It is tempting to conjecture that the converse is true, i.e., (iii) im-
plies the property CD for locally finite groups. However, this is
disproved by the existence of uncountable locally finite groups with
finite Sylow subgroups [7: 5.4.11]: recall that all CD-groups are
countable. Of course one can still ask whether a countable locally
finite group G satisfying min-p and having no subgroups of type
p∞ × p∞ for all p must have CD and hence SCD. This question re-
mains open. It is not hard to see that it would be sufficient to prove
it for countable locally finite groups with finite Sylow subgroups.
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