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Permutable subgroups and the Maier-Schmid theorem for
nilpotent-by-finite groups

GIOVANNI CUTOLO AND ANTONELLA LEONE

Abstract. We prove that every core-free permutable subgroup of a nilpotent-by-finite group G is contained in the
hypercentre of G. We also discuss some properties of permutable subgroups of arbitrary groups with respect to com-

mutators and to the upper central series.

Introduction

By definition, a permutable (or quasinormal) subgroup of a group G is a subgroup H such that HK = KH, or
equivalently HK ≤ G, for all K ≤ G. Permutability is a very strong, if somewhat elusive, embedding property, whose
study dates back to papers by Øysten Ore in the thirties of the 20th century. General information on permutable
subgroups and their properties can be found, among other sources, in [7, §7.1], [11] and [8].

The Maier-Schmid theorem referred to in the title is the following celebrated result, first proved in [9]: if G is
a finite group, then every core-free permutable subgroup of G is contained in the hypercentre of G. Here, as usual,
saying that a subgroup H of G is core-free means that the normal core HG of H in G is trivial. Consequences of the
Maier-Schmid theorem are that all permutable subgroups of finite groups are subnormal, and that those which are also
core-free are nilpotent—as a matter of fact both properties were already known at the time when the Maier-Schmid
theorem appeared.

Passing to infinite groups, only part of this information is preserved, and in weakened form. Indeed, while permutable
subgroups of arbitrary groups are not necessarily subnormal, they are always ascendant (see [7, 7.1.7]). On the other
hand, there are examples in the literature (see [6, 2] and [4, Theorem 10]) showing that if H is a core-free permutable
subgroup of an infinite group G it may happen that H is not contained in the hypercentre of G, thus the Maier-Schmid
theorem is not generally true for infinite groups. Moreover, such an H is bound to be residually (finite nilpotent) but
can be rather far away from being nilpotent or at least hypercentral; for instance it can fail to be locally soluble ([6]).

On the positive side, the Maier-Schmid theorem is known to hold true in various classes of infinite groups, in most
cases satisfying finiteness conditions (see [4] for results and background information), or also, for instance, for locally
cyclic permutable subgroups of arbitrary groups ([1, 5]).

One of the results proved in [4] (Theorem 9) is the fact that the Maier-Schmid theorem holds for abelian-by-finite
groups. The question of whether the same is, more generally, true of nilpotent-by-finite groups was left open in [4]. A
partial answer was given in [3], where it was shown that the theorem holds for periodic core-free permutable subgroups
of nilpotent-by-finite groups. Here we answer the question in full:

Theorem 2.6. Let G be a nilpotent-by-finite group and let H be a core-free permutable subgroup of G. Then
H ≤ Zn(G) for some positive integer n. As a consequence, H is nilpotent and subnormal in G.

Knowing thatH is contained in the n-th centre Zn(G) ofG for some finite n, rather than just in the hypercentre Z̄(G)
of G, is of course a useful piece of extra information, which is not usually available in other cases when extensions of the
Maier-Schmid theorem can be proved. For instance, the well-known example by Iwasawa discussed in the introduction
of [4] provides a hypercentral group G with a permutable core-free subgroup not contained in Zω(G).

To this respect, therefore, core-free permutable subgroup of nilpotent-by-finite groups behave as those of finite
groups. However, it is worth mentioning that they do not share a property of permutable subgroups of abelian-by-
finite groups. Indeed, all core-free permutable subgroups of abelian-by-finite groups are finite (see Corollary 2.2 below),
but nilpotent groups may have infinite permutable core-free sugroups, as witnessed by Example 1.7.

Some possible further extensions of Theorem 2.6 are ruled out by Theorem 10 of [4]: for every prime p there exists
a metabelian p-group G with a core-free permutable subgroup which is not contained in the hypercentre of G.

A side scope of this paper is that of presenting some elementary properties of (not necessarily core-free) permutable
subgroups of arbitrary groups, related to commutators and relative orders of elements. This is the content of Section 1.
In particular, Theorem 1.6 extends to permutable subgroups some properties of the series obtained by intersecting a
normal subgroup with terms of the upper central series of a group.
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Notation. Most of our terminology and notation is standard; part of it has been introduced above.
We write H p G to mean that H is a permutable subgroup of G, while H p̂ G means that H is permutable and

core-free.
If x is an element of a group G and H ≤ G, the order of x relative to H is |x|H := |〈x〉/〈x〉 ∩ H|, which equals

|H〈x〉 : H| if H〈x〉 ≤ G. If |x|H is finite we say that x is periodic modulo H, or also π-periodic modulo H if |x|H
is a π-number for a set π of primes. If X ≤ G the set of all elements of X which are periodic (resp. π-periodic)
modulo H is the isolator IX(H) (resp. the π-isolator IX,π(H)) of H in X; note that we don’t require H ≤ X here. As
is well-known, such isolators are subgroups if X is locally nilpotent. We shall also use expressions like “X is periodic
modulo H” to mean X = IX(H), or “X has finite exponent modulo H” to mean that there exists a positive integer λ
such that Xλ ≤ H. Furthermore, π(G : H) is the set of all primes p such that IG,p(H) ⊃ H, and π(G) = π(G : 1).

As usual, Gπ denotes the π-component of G, that is set IG,π(1) of all π-elements of G, whenever this set is a
subgroup. We write π′ for the set of all primes not in π and follow the usual habit of writing p for π when π = {p}.

For the sake of definiteness, we use N+ to denote the set of positive integers and reserve N for the set of natural
numbers.

1. Orders and commutators

We shall make frequent use of this key property of permutable subgroups:

Lemma 1.1 (see, for instance, [7, 7.1.7]). Let G be a group and H p G. Then:

(i) all elements of GrNG(H) are periodic modulo H.
(ii) As a consequence: H is inert in G (that is, |H : H ∩Hg| is finite for all g ∈ G).

We shall also need the following elementary observations related to nilpotency. We could not locate a suitable
reference, so we sketch a proof for the reader’s convenience.

Lemma 1.2. Let G be a group, π a set of primes, X,Y ≤ G and assume X ≤ Zn(〈X,Y 〉) for some n ∈ N+. Then
the following conditions are equivalent:

(i) there exists a π-number λ such that [X,Y ]λ = 1;
(ii) there exists a π-number λ such that Xλ ≤ CG(Y ).

Furthermore, if X is periodic modulo CG(Y ), then [X,Y ] is periodic and [X,Y ]π = [IX,π(CG(Y )), Y ].

Proof. Arguing by induction on n, it can be checked that [Xλn−1

, Y ] = 1 if [X,Y ]λ = 1. This settles the implication
(i) ⇒ (ii). To prove the converse, since [X,Y ] is nilpotent it can be assumed that [X,Y ] is abelian, and a second

induction argument shows that [Xλ, Y ] = 1 implies [X,Y ]λ
n−1

= 1 in this case.
Finally, assume that X is periodic modulo CG(Y ). Let P and Q be the π- and the π′-isolators of CG(Y ) in X

respectively; then X = PQ. By applying (ii) ⇒ (i) to the cyclic subgroups of P , we see that [P, Y ] is generated
by π-subgroups. But [X,Y ] is nilpotent, therefore [P, Y ]Q ≤ [X,Y ]π. Similarly, [Q,Y ]P ≤ [X,Y ]π′ . Then [X,Y ] =
[PQ, Y ] = [P, Y ]Q × [Q,Y ] = [P, Y ]× [Q,Y ]P , hence [X,Y ] is periodic and [P, Y ] = [X,Y ]π, as required. �

With reference to the equivalence (i) ⇐⇒ (ii), the argument also provides bounds for the exponents involved, a
fact that we shall not need.

In the next lemma we record a ‘non-divisibility’ property of commutators arising from non-normal permutable
subgroups.

Lemma 1.3. Let G be a group and H p G. Assume that x ∈ G and h ∈ H are such that c := [x, h] /∈ H. Then
c ∈ H〈x〉 and |x|H is finite; moreover, if n = |x|H〈c〉:
(i) |x|H = n · |c|H ;

(ii) c ∈ Hxnt for some integer t coprime with |c|H ;
(iii) there exists no z ∈ CG(〈x, h〉) such that c = zn.

Proof. Clearly c ∈ H〈x〉, since H p G. Also, x does not normalise H, as c /∈ H, hence x is periodic modulo H by
Lemma 1.1. Next, |x|H = |H〈x〉 : H| = |H〈x〉 : H〈c〉| |H〈c〉 : H| = nm, where m = |c|H , yielding (i).

By looking at (relative) orders, we see that 〈x〉∩H〈c〉 = 〈xn〉 and 〈x〉∩H = 〈xnm〉. Then c ∈ Hxnt for some integer t.
If there is a prime p dividing both t and m, then c ∈ H〈xnt〉 ≤ H〈xnp〉 < H〈c〉, because |xnp|H = m/p < m = |c|H .
This is a contradiction, hence t and m are coprime, which proves (ii).

Finally, assume c = zn for some z ∈ CG(〈x, h〉). Choose s ∈ Z such that st ≡m −1; then cst ∈ c−1H. Let x1 = xzs.
We have c = [x1, h], hence H〈c〉 ≤ H〈x1〉 as above. Now xn1 = xncs ∈ H〈c〉 and xnt1 = xntcst ∈ Hccst = H. Therefore
|xn1 |H divides t. But |xn1 |H also divides m, as xn1 ∈ H〈c〉. Since t and m are coprime xn1 ∈ H. Let n1 = |x1|H〈c〉.
We have proved that n1m = |x1|H divides n, hence n1 < n. We can repeat the argument after substituting x1, n1
and z1 := zn/n1 for x, n and z; indeed z1 ∈ CG(〈x1, h〉) and zn1

1 = c = [x1, h]. Further iteration provides a strictly
decreasing sequence (ni)i∈N+ of positive integers; this contradiction completes the proof. �
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Lemma 1.4. Let G be a group and H p G. Fix a prime p, and let A be an abelian p-subgroup of G. Let x ∈ IG,p(H)
and h ∈ H be such that c := [x, h] ∈ ArH. If A ∩H has finite exponent and [A, 〈x〉], [A, h] ≤ H, then either A has
finite exponent, or [A, 〈x, h〉] 6= 1 and A it is the direct product of a group of finite exponent by a Prüfer p∞-group.

Proof. Let q = exp(A ∩ H) |x|H and X = 〈A, x〉, so that X ′ = [A, 〈x〉] ≤ H and Y := X ∩ H C X. For all
g ∈ X, write ḡ for gY ; note that |g|H is the order |ḡ| of ḡ in the abelian p-group X/Y . Let a ∈ A r A[q], where
A[q] = {b ∈ A | bq = 1}. Then |ā| > |x̄|, hence |xa| = |ā|; also, |c̄| < |ā| since |c̄| ≤ |x̄| by Lemma 1.3. We have
[xa, h] = c[a, h] ∈ cH because A is abelian and [A, h] ≤ H. Then Lemma 1.3 shows |xa| = |c̄|n, where n = |xa|H〈c〉,
and 〈c̄〉 = 〈xa〉n. As |x|H〈c〉 |c̄| = |x̄| < |xa|, the former equation gives |x|H〈c〉 < n, hence xn ∈ H〈cp〉, that is,
x̄n ∈ 〈c̄p〉. Thus we obtain 〈c̄〉 = 〈xan〉 = 〈ān〉 < 〈ā〉, since |c̄| < |ā| . We have shown that, for all a ∈ A r A[q], it
holds A ∩H < (A ∩H)〈c〉 < (A ∩H)〈a〉. It follows that Aq ' A/A[q] has rank 1. If expA is infinite, then Aq is a
Prüfer group and hence a direct factor in A. Finally, we show that in this latter case [A, 〈x, h〉] 6= 1. Indeed assume
that expA is infinite and [A, 〈x, h〉] = 1. Let G0 = 〈A, x, h〉 and H0 = H ∩G0, so that H0 p G0; then A∩H ≤ Z(G0).
Denote by ∗ the natural epimorphism G0 � G0/(A ∩H). Then c∗ /∈ H∗0 and expA∗ is infinite, moreover 〈c∗〉 < 〈a∗〉
for all elements a∗ ∈ A∗ of sufficiently large order, so that c∗ ∈ (A∗)p

λ

for all λ ∈ N. Since [A∗, 〈x∗, h∗〉] = 1 this
contradicts Lemma 1.3. Now the proof is complete. �

The following lemma is a special case of Lemma 1.4 and will play a key role in the upcoming proofs.

Lemma 1.5. Let G be a group, X ≤ G and Y ≤ H p G. Assume [X,Y ] ≤ Z(〈X,Y 〉). Then Q := [X,Y ]/([X,Y ]∩H)
is periodic and, for all primes p, the p-component of Q has finite exponent.

Proof. At the expense of replacing G with 〈X,Y 〉 and H with H ∩ 〈X,Y 〉, if needed, we may assume [X,Y ] ≤ Z(G).
We may also pass to the quotient G/([X,Y ] ∩H), so we assume [X,Y ] ∩H = 1, hence Q ' [X,Y ]. If [X,Y ] is not
periodic, then it is easily seen that G is generated by elements of infinite order modulo H. In this case H C G by
Lemma 1.1 (i), hence [X,Y ] ≤ [X,Y ] ∩H = 1. Therefore [X,Y ] is periodic. Fix a prime p. Since [X,Y ] ≤ Z(G) the
set {[x, y] | x ∈ X, y ∈ Y } is closed under taking powers. From this, and from the fact that [X,Y ] is periodic and
abelian it is not hard to deduce that every element of A := [X,Y ]p can be written as c =

∏
i∈I [xi, hi] for a finite set I,

where, for each i ∈ I, xi ∈ X, hi ∈ Y and ci := [xi, hi] has p-power order. If c 6= 1, then ci 6= 1 for some fixed i ∈ I.
Now |xi|H is finite, otherwise xi normalises H and so ci ∈ H ∩ [X,Y ] = 1. Then, at the expense of replacing xi with
xλi for a suitable p′-number λ, we may assume xi ∈ IG,p(H). Lemma 1.4 now shows that A has finite exponent. The
lemma is proved. �

We are in a position to prove one of the results anticipated in the introduction.

Theorem 1.6. Let G be a group and H p G; for all i ∈ N also let Si = H ∩ Zi(G).

(i) If p is a prime and exp(S1)p is finite, then exp(Sn+1/Sn)p is finite for all n ∈ N;
(ii) if expS1 is finite, then expSGn is finite for all n ∈ N such that π([Sn, G]) is finite;
(iii) if both expS1 and π([G,H] : H) are finite, then expSGn is finite for all n ∈ N.

Proof. To prove (i), fix a prime p and assume that (S1)p has finite exponent. Let P̄ = P/S1 = (S2/S1)p. Then [P,G] ≤
(Z(G))p and [P,G] ∩H ≤ (S1)p. It follows from Lemma 1.5 that e := exp[P,G] is finite. Then P e ≤ Z(G) ∩H = S1,
so that P̄ e = 1. This proves the result in the case n = 1; an easy induction argument now completes the proof.

Similarly, to prove (ii) and (iii) it is enough to consider the case n = 2. Assume that expS1 is finite. Since
[S2, G] ∩H ≤ S1 we may apply Lemma 1.5 to show that each primary component of [S2, G] has finite exponent. But
π([S2, G]) is finite, hence e := exp[S2, G] is finite. Then Se2 ≤ S1, hence S2 has finite exponent and the same is true
of SG2 ≤ Z2(G). Thus (ii) is proved. Finally, (iii) is an easy consequence of (ii). Indeed, if expS1 and π([G,H] : H)
are finite, then π([S2, G]) is finite because [S2, G] ∩H has finite exponent as a subgroup of S1. �

Example 1.7. Let π1 and π2 be disjoint sets of odd primes, and let π = π1 ∪ π2. Assume that π2 is either empty or
infinite, and that π1 is infinite in the former case.

For all p ∈ π let Ap be a cyclic group of order p2, and let αp be the automorphism a ∈ Ap 7→ a1+p ∈ Ap. Now let
A := Drp∈π Ap, and let H = 〈h〉 × Drp∈π1 〈hp〉 and G = A oH be defined as follows. For all p ∈ π1, we let hp have
order p and act like αp on Ap and trivially on Ap′ . If π2 = ∅, we let h = 1, otherwise h has infinite order and acts
trivially on Aπ1

and like αp on Ap for all p ∈ π2.
Then G is a nilpotent group of class 2. It is not hard to see that H is permutable in G (as a consequence, for

instance, of [5, Lemma 6]; here we use the fact that 2 /∈ π), and clearly HG = 1. In the notation of Theorem 1.6,
S1 = H∩Z(G) = 1 and S2 = H∩Z2(G) = H. Of course H may be made periodic of infinite exponent, or non-periodic;
also note that [S2, G] = 〈app | p ∈ π〉 involves infinitely many primes.

With reference to Theorem 1.6, this example shows that, even if G is nilpotent, assuming that expS1 is finite is
not enough, by itself, to conclude that expS2 is finite, nor, even, that S2 is periodic or exp(torS2) is finite.

The same example also suggests that the other standard property of the factors of the series obtained by intersecting
the upper central series of a group with a normal subgroup cannot be extended to permutable subgroups. Indeed,
in the group just constructed, S1 is torsion-free but S2/S1 is not unless π1 = ∅. This contrasts with the well-known
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fact that, still in the setting of Theorem 1.6, if H C G and S1 is π-torsion-free for a set π of primes, then each factor
Sn+1/Sn must also be π-torsion-free.

A consequence of Theorem 1.6 is the following useful variant of Lemma 1.5.

Lemma 1.8. Let G be a group, Y ≤ H p G and X ≤ IZn(G),p(CG(Y )) for some n ∈ N and a prime p. If (H ∩Z(G))p
and [X,Y ] ∩H have finite exponents, then also [X,Y ] has finite exponent.

Proof. We argue by induction on n and assume n > 1, the result being obvious if n ≤ 1. By Lemma 1.2, we know
that [X,Y ] is a p-group. Let ∗ denote the natural epimorphism: G � G/Z(G). It follows from Theorem 1.6 (i) that(
(Zn(G))∗∩H∗

)
p

has finite exponent, hence [X,Y ]∗∩H∗ has finite exponent, as well as (H∗∩Z(G∗))p. Applying the

induction hypothesis to G∗ we obtain that exp[X,Y ]∗ is finite. In view of Lemma 1.2 this means that [Xλ, Y ] ≤ Z(G)
for some λ ∈ N+. Therefore [Xλ, Y ]∩H has finite exponent, and the same is true of [Xλ, Y ], by Lemma 1.5. A second
appeal to Lemma 1.2 shows that exp[X,Y ] is finite. �

2. The Maier-Schmid theorem for nilpotent-by-finite groups

In this section we shall prove our main result. We begin with a few lemmas. In the first one we collect some easy (and
essentially known) remarks on core-free permutable subgroups. Note that the hypotheses on G in both (iii) and (iv)
are satisfied if G is nilpotent-by-finite.

Lemma 2.1. Let H be a permutable subgroup of a group G. Then:

(i) If HG = 1 and N is a normal subgroup of G such that H ∩N has finitely many conjugates in G, then H ∩N is
finite.

(ii) If HG = 1 and N is a normal subgroup of finite index in G, then H ∩ Z(N) is finite.
(iii) If G is locally residually finite, HG = 1 and H has finitely many conjugates in G, then HG is finite and contained

in Zn(G) for some n ∈ N.
(iv) If all periodic images of G are locally finite and G is both finitely generated and periodic modulo H, then G/HG

is finite and HG/HG ≤ Zn(G/HG) for some n ∈ N.

Proof. (i): Since H is inert in G (Lemma 1.1 (ii)), also H ∩N is inert. But (H ∩N)G = 1, therefore H ∩N is finite.
(ii) follows from (i) applied to Z(N); (iii) is Proposition 1 of [4].
(iv): |HG : H| is finite by [7, Lemma 7.1.9]. But G/HG is periodic and finitely generated, hence finite by the

hypothesis on G. Then |G : H| is finite, hence G/HG is finite and the statement follows from the Maier-Schmid
theorem. �

A direct consequence of part (ii) of the previous lemma is:

Corollary 2.2. Every core-free permutable subgroup of an abelian-by-finite group is finite.

Corollary 2.2 does not extend to nilpotent-by-finite groups. Indeed, the groups constructed in Example 1.7 are
nilpotent of class 2 and have infinite, core-free permutable subgroups.

Also note that the normal closure of a subgroup as in Corollary 2.2 may well be infinite. An example, not much
different from those in Example 1.7, is the following. If p is an odd prime and G = Ao 〈h〉, where |h| = p, A is infinite

homocyclic of exponent p2 and ah = a1+p for all a ∈ A, then G is abelian-by-finite, 〈h〉 p̂ G and 〈h〉G is infinite.
A further consequence of Lemma 2.1 is that, in order to prove the main result of this section, we only need to

consider the case of a permutable subgroup whose isolator is the whole group.

Lemma 2.3 ([3]). Let G be a nilpotent-by-finite group and let H p̂ G. If G is not periodic modulo H, then H ≤ Zn(G)
for some n ∈ N.

Proof. Let N be a nilpotent normal subgroup of finite index in G. If G is not periodic modulo H, then neither is N
and Lemma 1.1 (i) yields H C HN . Then H has finitely many conjugates in G, and the conclusion follows from
Lemma 2.1(iii). �

Lemma 2.4. Let H p̂ G, where G is a nilpotent-by-finite group. Let T be the maximal periodic normal subgroup
of HG. Then T ≤ Z̄(G).

Proof. In view of Lemma 2.3 we may assume that G is periodic modulo H. Let N be a nilpotent normal subgroup of
finite index in G. First, we shall prove T ∩ N ≤ Z̄(G). To this end, note that G = XN for some finitely generated

subgroup X of G, and let a ∈ T ∩ N . Since V := 〈a〉X is finite, V ≤ HG and HG = 1, there exists a finitely
generated Y ≤ G such that X ≤ Y , a ∈ HY and V ∩HY = 1. By Lemma 2.1 (iv), the group HY/HY is finite and
W := HY /HY ≤ Z̄(HY/HY ). But V is X-isomorphic to a subgroup of W , hence [V,mX] = 1 for some m ∈ N. This
argument shows that every factor of the series obtained by intersecting T with the upper central series of N has an
ascending X-central (and hence G-central) series of length at most ω. Therefore T ∩ N ≤ Zωc(G), where c is the
nilpotency class of N .



PERMUTABLE SUBGROUPS AND THE MAIER-SCHMID THEOREM FOR NILPOTENT-BY-FINITE GROUPS 5

Now let C = CG(T/T ∩ N). Since T/T ∩ N and hence G/C are finite, T = S(T ∩ N) and G = QC for suitable
finitely generated subgroups S and Q. Now SQ is periodic (as a subgroup of T ) and finitely generated (as a subgroup
of 〈S,Q〉), hence it is finite. As in the previous paragraph, we can find a finitely generated U ≤ G such that Q ≤ U ,
S ≤ HU and SQ∩HU = 1, and then deduce that HU/HU is finite and HU/HU ≤ Z̄(HU/HU ). Since, as a Q-group, SQ

is isomorphic to a subgroup of HU/HU we have [S, nQ] = 1 for some n ∈ N. Therefore [T, nG] = [S(T ∩N), n(QC)] ≤
T ∩N ≤ Zωc(G), so that T ≤ Zωc+n(G). �

The next lemma is the key step in the proof of our main result.

Lemma 2.5. Let G be a nilpotent-by-finite group and H p̂ G. Let K be a periodic normal subgroup of G contained
in HG and assume that all primary components of K have finite exponent. Then L := (HK)G ≤ Zn(G) for some
n ∈ N.

Proof. Clearly L = (L ∩ H)K ≤ HG. Let F be the Fitting subgroup of G. Then F is nilpotent. Let L1 = L ∩ F .
A known result due to Baumslag (see for instance [10, Lemma 6.34]) shows that each primary component of K is
nilpotent since it is nilpotent-by-finite and of finite exponent, hence K ≤ L1.

First consider the case when expK is finite. Since L ≤ HK and G is nilpotent-by-finite, in this case there exists
λ ∈ N+ such that Lλ ≤ H. But then Lλ ≤ HG = 1, hence L ≤ Z̄(G) by Lemma 2.4. Let p be a prime dividing expL,
and let A be a factor of the finite series 1 ≤ Lp ∩ Z(F ) ≤ Lp ∩ Z2(F ) ≤ · · · ≤ (L1)p ≤ Lp. Then Γ = G/CG(A) is
finite, because Lp/(L1)p is finite and the remaining factors of the series are centralised by F . Since L ≤ Z̄(G) it is
then clear that Γ is a p-group and we may apply Baumslag’s result again (to the external semidirect product Ao Γ ,
for instance) to conclude that A has a finite Γ -central series. It follows that there is some n ∈ N such that L ≤ Zn(G),
as required. Moreover, if expL1 and |G/F | are coprime all the factors A of the form (Lp ∩ Zi+1(F ))/(Lp ∩ Zi(F ))
appearing in the previous argument are central in G. Then, in this case, the argument yields L1 ≤ Zc(G), where c is
nilpotency class of F , and hence L ≤ Z`+c(G), where ` = |L : L1| is finite.

Now consider the general case. For every prime p, we have J[p] := IL1,p′(H) = (L1 ∩ H)Kp′ . Then Lq1 ≤ J[p] for
some power q of p, because expKp is finite. Let B[p] = (HLq1)G. Then B[p] ≤ (HK)G = L, and Lq1 ≤ B[p] ≤ L ∩HLq1
because Lq1 C G. Moreover, B`[p] ≤ L` ∩ HLq1 ≤ L1 ∩ HLq1 = (L1 ∩ H)Lq1 ≤ J[p]. Now, exp(KB[p]/B[p]) is finite

and so, by the previous case, L/B[p] ≤ Znp(G/B[p]) for some np ∈ N. Furthermore, if p /∈ π := π(G/F ) then
exp(L1/B[p]), which is a power of p, is coprime with |G/F | and hence with |G/B[p] : Fit(G/B[p])|. Then, thanks to
the closing remark in the previous paragraph, we may choose np = `+ c, that is C := [L, `+cG] ≤ B[p]. Thus we have

C` ≤
⋂
{B`[p] | p ∈ π

′} ≤
⋂
{J[p] | p ∈ π′} = IL1,π(H) = (L1 ∩H)Kπ. Since π is finite expKπ is finite. It follows that

C has finite exponent modulo H and then, as HG = 1, we see that expC is finite. By the previous case, C ≤ Zm(G)
for some m ∈ N, hence [L, `+c+mG] = [C,mG] = 1, that is, L ≤ Z`+c+m(G). �

Theorem 2.6. Let G be a nilpotent-by-finite group and H p̂ G. Then H ≤ Zn(G) for some positive integer n. As a
consequence, H is nilpotent and subnormal in G.

Proof. Let F = FitG, so that F is nilpotent and G/F is finite. Arguing by contradiction, we may assume that G
and H provide a counterexample in which F has the minimal index in G and, among such counterexamples, also one
in which H0 := H ∩ F has minimal nilpotency class. By Lemma 2.3, G is periodic modulo H.

Let A = Z(H0) and C = CF (A). Then H0 ≤ C, hence F is periodic modulo C; it follows from Lemma 1.2
that [A,F ] is periodic and, for every prime p, [A,F ]p = [A,P ] where P = IF,p(C). Now, H ∩ Z(F ) is finite by
Lemma 2.1 (ii), hence we may apply Theorem 1.6 (i) to F and H0 to deduce that (H0)p has finite exponent. Then
exp([A,P ] ∩H0) is finite and hence, by Lemma 1.8, exp[A,P ] is finite.

Let K = [A,F ]G. Then K ≤ tor(F ∩HG) and all primary components of K have finite exponent, because [A,F ]
has the same property. Let L = (HK)G and use ∗ to denote the natural epimorphism G� G/L. Then H∗ p̂ G∗, and
H∗ � Zn(G∗) for all n ∈ N by Lemma 2.5.

Now A∗ ≤ H∗∩Z(F ∗), as [A,F ] ≤ L. Then A∗ is finite by Lemma 2.1 (ii); since it only has finitely many conjugates
also K∗1 := (A∗)G

∗
is finite. Thus we can make use of Lemma 2.5 again to factor out (H∗K∗1 )G∗ . More explicitly,

let L1 C G be such that L ≤ L1 and L∗1 = (H∗K∗1 )G∗ . Using double asterisks to denote images modulo L1, we have
H∗∗ p̂ G∗∗ and, for all n ∈ N, H∗∗ � Zn(G∗∗). The minimality requirement on |G/F | implies |G∗∗/F ∗∗| = |G/F |, that
is, L1 ≤ F . Then H∗∗ ∩ F ∗∗ = (H ∩ F )∗∗ = H∗∗0 . But (Z(H0))∗∗ = A∗∗ = 1, hence the nilpotency class of H∗∗0 is less
than that of H0, which contradicts our second minimality assumption. This contradiction completes the proof. �
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