
On a question about automorphisms of finite p-groups

GIOVANNI CUTOLO

Abstract. This paper deals with an old problem: are there nontrivial finite p-groups which
are isomorphic to their full automorphism group, besides the dihedral group of order 8? The

answer (in the negative) is obtained in some special cases, including groups of class 2, powerful

groups, groups with centre of prime order or an abelian subgroup of prime index, class-3 groups
with cyclic centre, groups with coclass at most 3 and others.

The dihedral group D8 of order 8 is a well known example of a group which is, up to isomorphisms,
the full automorphism group of some group but, at the same time, one of a rather special nature:
some of its unusual properties, that even characterise it among automorphism groups of finite
groups, were discussed in [2] and [3].

Of course the most relevant peculiarity is that D8 is (or, at least, appears to be) the only
known example of a nontrivial finite group of prime-power order which is isomorphic to its own
automorphism group. It is an old problem whether more such examples do exist; this question
has rather recently been asked in [7], Question 10, also see [8], Problem 15.29.

The aim of this paper is contributing to shed some light on this question, by investigating the
structure of possible new examples. Partial solutions are actually found in a number of special
cases. For instance, we obtain that D8 is, up to isomorphisms, the only nontrivial finite p-group G
such that G ' AutG (for some prime p) among groups of class 2 (see Theorem 2.4; the abelian
case is obvious), among groups whose centre has prime order (Theorem 4.2), among groups with an
abelian maximal subgroup (Proposition 3.4). Similarly, nontrivial powerful p-groups and groups of
class 3 with cyclic centre are excluded from having this property (Corollary 5.2 and Theorem 5.4)
as are, apart from D8, groups of coclass at most 3 (the case of coclass 1, that is of groups of
maximal class, also follows from [2]), groups of size dividing p7 and groups of rank 2, in particular
metacyclic groups; this latter is a very special case of various results in Section 5 about the ranks
of abelian subgroups in the groups under consideration.

Throughout the paper p will always denote a prime. We will also use the standard notation d(G)
and rk(G) for the minimum number of generators of a (finite) group G and for its (Prüfer) rank. By
lack of uniform notation in the literature we shall write mk(H) and mkG(H) for the maximun of the
ranks of the abelian (resp. G-invariant abelian) subgroups of H; we are assuming that H is a normal
section of G. We will generally write ∼ for the natural conjugation epimorphism G � InnG, thus
g̃ will be the inner automorphism of G determined by g, which group is G shall be made clear
by the context. Autc G will denote the group CAut G(InnG) of the central automorphisms of G.
We will often make use of the fact (established in [1] as Theorem 1) that for every finite group G
with no nontrivial abelian direct factor one has |Autc G| = |Hom

(
G, Z(G)

)
|. For the sake of

compactness we shall write CX(Y1, Y2, . . . , Yn) to mean CX(Y1)∩CX(Y2)∩· · ·∩CX(Yn), whatever
X, Y1, . . . , Yn happen to be. Finally, H l G means that H is a maximal subgroup of G and Φ(G)
denotes the Frattini subgroup of G, while G[n] is the set of all g ∈ G such that gn = 1 and Cn is
the cyclic group of order n.

1. Some lemmas on derivations

As is well-known, derivations (or 1-cocycles) of groups play an important rôle in the description
of homomorphism and automorphisms. Indeed, if K and L are normal subgroups of a group G,
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then there is a bijection from the set of all endomorphisms of G inducing the identity on both K
and G/L and the set of all derivations from G/K to CL(K): the image of an endomorphism ε
is the derivation defined by gK 7→ [g, ε] for all g ∈ G. If L ≤ K then the endomorphisms
just referred to are automorphisms and CL(K) = L∩Z(K) can be viewed as a (G/K)-module by
conjugation; it also follows that the same bijection is an isomorphism between CAut G(K, G/L) and
the derivation group Der

(
G/K, CL(K)

)
. We will use this fact without further comment throughout

the paper, sometimes in the special case when CL(K) ≤ Z(G) and so Der
(
G/K, CL(K)

)
=

Hom
(
G/K, CL(K)

)
.

Therefore, it seems convenient to collect here some elementary (and probably known) remarks
on derivations that will be useful in the sequel. If G = 〈g〉 is a finite cyclic group of order n and A
is a G-module (and a ∈ A) then the assignment g 7→ a defines a derivation from G to A if and
only if a belongs to the kernel of the trace endomorphism τ = 1 + σ + σ2 + · · ·+ σn−1, where σ is
the automorphism induced by g in A; thus Der(G, A) ' ker τ . A special case is the following. A
G-central series is a series whose factors are trivial G-modules.

Lemma 1.1. Let n, t ∈ N, let G = 〈g〉 be a cyclic group of finite order pt and let A be a
ZpG-module with a G-central series of length n. Suppose that n < pt. Then the mapping
δ ∈ Der(G, A) 7→ gδ ∈ A is an isomorphism.

Proof. Let σ be the automorphism induced by g in A. Thus (σ− 1)n = 0. In the polynomial ring
Zp[x] it holds 1 + x + · · · + xpt−1 = (x − 1)pt−1; therefore 1 + σ + σ2 + · · · + σpt−1 = 0, and the
result follows. �

Of course this lemma can be applied when A is an elementary abelian subgroup contained in
the n-th centre of a group X and G is a suitable quotient of X.

Lemma 1.2. Let G = U × V be a group, and let A be an G-module. Let α and β be derivations
from U and V respectively to A. Then α and β have a common extension to a derivation from G
to A if and only if [uα, v] = [vβ , u] for all u ∈ U and v ∈ V . In particular, if [U,A] = 1 then
Der(G, A) ' Hom

(
U,CA(G)

)
×Der(V,A).

Proof. The first half of the statement is checked directly: if the condition is satisfied then the only
possible extension of the given derivations is the mapping uv 7→ uαvvβ , with obvious notation.
The second half follows: if [U,A] = 1 then the condition translates into [uα, v] = 1 for all u ∈ U
and v ∈ V , which is equivalent to Uα ≤ CA(G). �

Lemma 1.3. Let p be an odd prime, let G be an elementary abelian p-group, and let A be
a ZpG-module of finite Zp-rank n. Suppose that both CA(G) and [A,G] have order p. Then
G/CG(A) has rank n− 1 and Der(G, A) has rank rk(G) +

(
n
2

)
.

Proof. The hypothesis implies that Z := CA(G) and [A,G] coincide. Also, it follows from
Lemma 1.2 that we may assume that CG(A) = 1. Then G embeds in Hom(A/Z,Z) ' A/Z.
On the other hand Z is the intersection of the centralizers in A of the elements of a basis
of G. Each of these centralizers has index p; it follows that the above embedding is an isomor-
phism. Thus rk(G) = n− 1, as required; more precisely, to any ordered basis (z, a1, a2, . . . , an−1)
of A, with z ∈ Z, there corresponds a “dual basis” (x1, x2, . . . , xn−1) of G such that, for all
i, j ∈ I := {1, 2, . . . , n − 1}, we have [ai, xj ] = 1 if i 6= j and [ai, xi] = z. This shows that the
module structure of A is determined by the hypotheses. This structure can be realised by mak-
ing A into a normal subgroups of the extra-special p-group P of exponent p generated by A and
elements y1, y2, . . . , yn−1 subject to [ai, yj ] = 1 = [yi, yj ] if i 6= j and [ai, yi] = z for all i, j ∈ I.
Now Der(G, A) ' Der(P/A,A) ' CAut P (A,P/A) =: Γ . If γ ∈ Γ then aγ = a for all a ∈ A and
yγ

i = yiz
µi

∏
j∈I a

λij

j for all i ∈ I and for suitable µ : I → Zp and matrix λ : I× I → Zp. Moreover
the relations [yγ

i , yγ
j ] = 1 for all i, j ∈ I show that λ is symmetric. Conversely, every such µ and

symmetric λ define an element of Γ . The result follows. �

As so often happens, the corresponding result for the case where p = 2 is slightly different, in
that the derivation group has smaller rank. So, to construct the number of automorphisms that
some of our arguments will require we will need an extended version of the lemma for 2-groups.
We make the following remark first.
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Lemma 1.4. Let G be an abelian group of exponent dividing p2, and let Gp ≤ C ≤ G. Then
G = U × V , for suitable subgroups U and V such that U ≤ C and C ∩ V = V p.

Proof. Let F be a maximal homocyclic subgroup of exponent p2 of C, or let F = 1 if expC ≤ p.
Then G = F × E for some subgroup E, and C = F × K, where K = E ∩ C has exponent p at
most. As Gp ≤ C we have Ep ≤ K, thus Ep has a complement L in K and E = L× V for some
subgroup V such that Ep = V ∩K. Let U = FL. Since V p = Ep it is clear that all requirements
for U and V are satisfied and the lemma is proved. �

Lemma 1.5. Let G be a finite abelian group of exponent dividing 4, and let A be a Z2G-module
of finite Z2-rank n. Let C = CG(A) and suppose that both CA(G) and [A,G] have order 2. Then
C ≥ G2, moreover G/C has rank n− 1 and Der(G, A) has rank rk(G) + rk(G2)− rk(C2) +

(
n−1

2

)
.

Proof. The proof is similar to that of Lemma 1.3. We have that Z := CA(G) = [A,G] and
G/C ' A/Z, therefore C ≥ G2. Let us first consider the case when C = G2. In this case
rk(G) = rk(G/C) = n − 1 and, as in the proof of Lemma 1.3, the structure of the module A
is determined and can be realised by making A into a normal subgroup of a central product P
defined as follows. Let (z, a1, a2, . . . , an−1) be an ordered basis of A, with z ∈ Z, and write G as
Drn−1

i=1 〈xi〉, where each xi has order σi ∈ {2, 4}. Let P be generated by A and pairwise commuting
elements y1, y2, . . . , yn−1 subject to [yi, ai] = z = yσi

i (hence each yi has order 2σi) and [ai, yj ] = 1
if i 6= j, for all i, j ∈ I := {1, 2, . . . , n − 1}. Up to the isomorphism given by xi 7→ Ayi for
all i, the structure of (P/A)-module of A is the same as its original G-module structure. Thus
Der(G, A) ' Der(P/A,A) ' Γ := CAut P (A,P/A). The elements γ of Γ are determined by the
mapping µ : I → Z2 and the matrix λ : I × I → Z2 such that yγ

i = yiz
µi

∏
j∈I a

λij

j for all
i ∈ I. Again, such λ is symmetric, since [yγ

i , yγ
j ] = 1 for all i, j ∈ I. Moreover, for each i, direct

computation yields z = zγ = (yγ
i )σi = zzλiiσi/2, hence λii = 0 if σi = 2. Conversely, every µ and

λ satisfying these conditions define an element of Γ . The number of i ∈ I such that σi = 4 is
rk(G2), therefore rk

(
Der(G, A)

)
= rk(Γ ) = rk(G) + rk(G2) +

(
n−1

2

)
.

In the general case, by Lemma 1.4 we can decompose G as U×V , for suitable U ≤ C and V ≤ G
such that C = U×V 2. Hence Der(G, A) ' Hom(U,Z)×Der(V,A), by Lemma 1.2. Now Der(V,A)
has rank rk(V )+rk(V 2)+

(
n−1

2

)
by the previous case, while Hom(U,Z) ' U has rank rk(G)−rk(V );

moreover C2 = U2, as V 2 has exponent 2 at most, so rk(G2) = rk(C2) + rk(V 2). The result is
now clear. �

The typical situation in which the previous lemmas will apply is when A is an elementary
abelian normal subgroup of the finite p-group G contained in Z2(G), and |A ∩ Z(G)| = p.

2. Groups of class 2

Noncyclic finite abelian groups have nonabelian automorphism groups, therefore it is straightfor-
ward that no nontrivial finite abelian group can be isomorphic to its own automorphism group.
As a next step we consider (finite) p-groups of class 2. The proofs in this section are largely
independent of the results in the previous one.

Lemma 2.1. Let G be a finite p-group of class 2 such that G ' AutG. Then Z(G) is cyclic.

Proof. Let Z = Z(G), and assume that r := rk(Z) > 1. Let s = rk(G/Z), so that rk(G) ≤ r + s,
while Γ := CAut G(Z,G/Z) ' Hom(G/Z, Z) has rank rs. Since Γ embeds in Aut G ' G it follows
that rs ≤ r + s. As r > 1 and s > 1 because G is not abelian, r = s = 2. Therefore G/Z
is 2-generator, hence G′ is cyclic, of order q, say, and it follows that G/Z ' Cq × Cq. Moreover,
Hom(G/Z[p], Z[p]) ' CAut G(Z[p], G/Z[p]) also embeds in G, hence its rank 2 rk(G/G′Z[p]) cannot
exceed the rank rs = 4 of G; thus rk(G/G′Z[p]) = 2. Now recall that G has a subgroup A
isomorphic to Γ . Thus A ' Hom(Cq × Cq, Z); since Cq ' G′ ≤ Z and rk(Z) = 2 then A = B × C
for some subgroups B ' Cq × Cq and C of rank 2. Let x be an element of G such that xZ has
order q. Then CG(x) = 〈x〉Z has rank 3 (at most), so x /∈ A. This shows that exp(AZ/Z) < q.
Two consequences of this fact are that B[p] = Z[p] and q > p, hence B[p] < B. It follows that
A/Z[p] has rank 4. This is a contradiction, since rk(G/G′Z[p]) = 2 and G′ is cyclic. �

The conclusion of Lemma 2.1 allows us to make use of the following key observation from [3].
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Lemma 2.2 (see [3], Lemma 3.2 and context). Suppose that G is a finite p-group such that
both Z and Z(Aut G) are cyclic. Then G has exactly one maximal subgroup M which is charac-
teristic. Moreover, M contains all proper characteristic subgroups of G. Further, Z

(
AutG

)
[p] =

CAut G(M) ∩ CAut G(G/Z[p]),

To streamline the proof of the main result of this section we also record this elementary fact.

Lemma 2.3. Let G be a finite p-group of class 2 with cyclic centre Z, and suppose that G/Z has
rank 2. Then there exist elements a, b ∈ G such that, after setting B = 〈b〉Z, we have G = B 〈a〉
and |B ∩ 〈a〉 | ≤ 2 (in particular, G = B o 〈a〉 if p > 2).

Proof. Choose a pair (a, b) of generators of G modulo Z in such a way that a has the least possible
order. Clearly B ∩ 〈a〉 = 〈aq〉 = Z ∩ 〈a〉, if B = 〈b〉Z and q = exp(G/Z), moreover ◦(a) ≤ ◦(b).
Since Gq ≤ Z and Z is cyclic, there exists t ∈ N such that aq = bqt. Let a1 = ab−t. Then
◦(a) ≤ ◦(a1) by the choice of a. Now, if p 6= 2 then aq

1 = 1, and a2q
1 = 1 even if p = 2. This proves

the result. �

Theorem 2.4. Let G be a nontrivial finite p-group of class 2 such that G ' Aut G. Then G ' D8.

Proof. Let Z = Z(G). Then Z is cyclic by Lemma 2.1, hence G is a central product
∏n

i=1 Gi,
where each of the subgroups Gi can be written as 〈ai, bi〉Z for suitable ai and bi and Gi∩Gj = Z if
i 6= j; by the previous lemma we may also choose the elements ai and bi such that Gi = 〈bi〉Z 〈ai〉
and | 〈bi〉Z ∩ 〈ai〉 | ≤ 2 for each i. Then G has an automorphism ϕ that fixes all ai and maps
every bi and all elements of Z to their inverses. This shows that p = 2, since either ϕ or each
of the bi must have order 2. Moreover, since Aut G has class 2 then [g,Aut G, AutG] ≤ Z for
every g ∈ G, hence b4

i = [bi, ϕ, ϕ] ∈ Z. Now the order q of G′ is the maximum of the orders of
the elements biZ, therefore q ≤ 4. Also, |Autc G| = |Hom(Gab, Z)| by Theorem 1 of [1]. But
expGab ≤ |Z/G′| exp(G/Z) = |Z/G′| · |G′| = |Z|, hence Hom(Gab, Z) ' Gab. As |AutG| = |G| it
follows that |AutG : Autc G| = q. Let Ψ = 〈ϕ〉Autc G. Since ϕ /∈ Autc G if (and only if) q = 4
then Ψ is maximal in AutG. Let M be the unique characteristic maximal subgroup of G. One of
the elements ai, bi does not belong to M , call it x. Then 〈x〉Aut G is a characteristic subgroup of G
not contained in M , hence 〈x〉Aut G = G. But 〈x〉Ψ ≤ 〈x〉Z; it follows that G/Z is two-generator.
In other words the number n of factors in the above decomposition of G as a central product is 1.
From now on let a = a1, b = b1 and B = 〈b〉Z. Note that AutG contains InnG ' Cq × Cq as a
subgroup, hence it has an element of order q avoiding the centre. The same must be true of G,
thus we may suppose that a has been chosen such that 〈a〉 ∩B = 1. Let Γ = CAut G(B,G/B[2]).
For every odd integer n let σn be the automorphism of G mapping a to itself and every element
of B to its n-th power; these automorphisms form a subgroup Σ of AutG isomorphic to the group
of all power automorphisms of B, and 〈Γ,Σ〉 = Γ × Σ. If q = 4 then Γ ' B[2] by Lemma 1.1;
since G has rank 1+rk(B) at most and contains a subgroup isomorphic to Γ ×Σ, then Σ is cyclic,
which means that exp B ≤ 4. Thus b4 = 1, but then (ba)4 = b4a4[a, b]2 = [a, b]2 6= 1, and after
replacing b with ba, as we certainly may, we obtain a contradiction. Hence q = 2. Therefore the
maximal abelian subgroups of G have order 2 modulo Z, which is cyclic; thus G (that is to say,
AutG) has no abelian subgroups of rank 3. Since CAut G(Gab, G′) ' G/G2 then d(G) = 2 and so
G = 〈a, b〉. As a consequence, B = 〈b〉G′. As Z is cyclic then either Z = G′ or Z ≤ 〈b〉. In the
former case, since |G′| = 2 it is clear that |G| = 8; in the latter case B is cyclic, hence rk(G) = 2
and the embedding Γ ×Σ � G shows that Σ ' Aut B is cyclic, thus |B| ≤ 4 and |G| = 8 again.
Therefore, in either case, G ' D8. �

3. Inner and central automorphisms

In this section we consider two subgroups of immediate relevance to our problem and that will have
a rôle in several of the upcoming proofs. Let G be a finite p-group and assume that there exists an
isomorphism α : AutG → G. Let I := (InnG)α and C := CG(I), so that C = (Autc G)α. As can
be expected the existence of the normal subgroup I ' G/Z(G) together with further restrictions
that can be established on both I and C and the way in which they are embedded in G strongly
influences the structure of G. One of the restrictions is that if G has no nontrivial abelian direct
factor (which is necessarily true if Z(G) is cyclic, or also if p > 2, for otherwise G would have
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an automorphism of order 2) then |C| = |Hom
(
G, Z(G)

)
| by the already quoted result from [1].

Further information is provided by the following lemma—recall the definition of mkG(C) given in
the introduction.

Lemma 3.1. Let G be a finite nontrivial p-group, and let I and C = CG(I) be as just defined.
Let Z = Z(G), r = rk(Z), d = d(G) and d̄ = d(G/Z[p]). Then:

(i) mkG(C) ≥ d̄r > r, in particular Z < C; also, d − 1 ≤ d̄ ≤ d and d̄ = d if p > 2, and
mkG(C) ≥ (d− 1)r;

(ii) Z(I) � Z; in particular IC < G and |C| < |Z2(G)|.

Proof. Since the statement holds for D8, in view of Theorem 2.4 we may assume that the nilpotency
class of G is greater than 2, that is, that I is not abelian. Thus d̄ > 1, and the first half of part (i)
follows from the fact that Hom(G/Z[p], Z[p]), which has rank d̄r, is isomorphic to the subgroup
CAut G(Z[p], G/Z[p]) of Autc G, which is normal in Aut G. As AutG is a p-group, G has no
direct factor of odd prime order nor any isomorphic to V4, the noncyclic group of order 4. Then
|Z[p]Φ(G)/Φ(G)| ≤ 2, hence d ≤ d̄ + 1 and (i) follows

To prove part (ii) let Z2 = Z2(G) and s = rk(G/Z2)—note that G/Z2 ' I/Z(I). Suppose that
Z(I) ≤ Z. Then

rk(I) ≤ rk
(
Z(I)

)
+ rk

(
I/Z(I)

)
= rk

(
Z(I)

)
+ s ≤ r + s,

on the other hand I ' G/Z ≥ IC/Z = (IZ/Z)× (C/Z) and IZ/Z ' I/Z(I), so:

rk(I) ≥ rk
(
I/Z(I)

)
+ rk(C/Z) = s + rk(C/Z) ≥ s + rk(C)− r ≥ s + (d̄− 1)r ≥ r + s.

Therefore all these inequalities must hold as equalities. In particular, d̄ = 2, and rk
(
Z(I)

)
=

rk(Z) = r = rk(C/Z); the first equality also shows that Z[p] ≤ Z(I); moreover IZ/Z and C/Z
are nontrivial normal subgroups of G/Z with trivial intersection, hence Z(I) ' Z2/Z is not cyclic
and r > 1. Next we shall prove that Z[p] ≤ Φ(G). If Z[p] � Φ(G) then (p = 2 and) G = U ×V for
some U, V ≤ G such that |U | = 2. By what we have just proved U ≤ Z[2] ≤ I and I = U×(V ∩I).
But since d̄ = 2 then d(I) = 2, hence V ∩ I is cyclic and I is abelian, a contradiction. Therefore
Z[p] ≤ Φ(G), and hence d(G) = 2. Moreover, since IC/IZ ' C/Z has rank r > 1 and hence G/I
is not cyclic, it follows that I ≤ Φ(G). Now let S/Z = (Z2/Z)[p]. Clearly G/CG(S) is elementary
abelian, so I ≤ Φ(G) ≤ CG(S), hence S ≤ C. This leads to a contradiction again, as IZ ∩ S > Z.
Therefore, Z(I) � Z, as we wanted to show. That IC < G is an obvious consequence. Finally,
|C| = |Z(I)| · |C/Z(I)| = |Z2/Z| · |IC/I| < |Z2/Z| · |G/I| = |Z2|. �

Remark 3.2. This seems to be a good place to make some further comment on the possibility
that Z[p] is not contained in Φ(G), that is, on the value of d̄ compared to that of d, in the notation
of the previous lemma. As already remarked, either Z[p] ≤ Φ(G) and ¯̄d = d or Z[p] � Φ(G) and
¯̄d = d − 1. In this latter case p = 2 and G = U × V for some U, V ≤ G such that |U | = 2 and
Z(V )[2] ≤ V 2, since G cannot have the noncyclic group of order 4 as a direct factor. Although
this information suffices for our purposes it is worth noticing that it seems rather unlikely that
this case can occur at all. In fact, if it does, AutV has an obvious embedding in Aut G, and it
is easy to deduce that since |AutG| = 2|V | then |AutV | properly divides |V |—more precisely, it
can be checked that the index of the image of AutV in AutG is 2(r−1)(d−1), where r = rk(Z) > 1,
and d ≥ 3. Now, to the contrary, it is a famous long-standing conjecture that the order of every
finite nonabelian p-group divides that of its automorphism group (see, e.g. [5] and the discussion
in [7], p. 363). Thus an example of a finite p-group G such that G ' AutG and Z[p] � Φ(G)
would also disprove this conjecture. Note that the conjecture has been verified in a number of
cases, including that of groups of order at most p7, a fact that we cite here for further reference.

The inner automorphism g̃ : x 7→ xg of a group G lies in the centre of InnG if and only if
[g,AutG] ≤ Z(G). Thus, an equivalent way of stating part (ii) of Lemma 3.1 is the following.

Corollary 3.3. Let G be a finite nontrivial p-group such that G ' AutG. Then AutG acts
non-trivially on Z2(G)/Z(G).

A simple consequence of Lemma 3.1 is the following proposition, which characterises D8 in the
same spirit of Theorem 2.4.
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Proposition 3.4. Let G be a finite p-group such that G ' AutG. If G has an abelian subgroup
of index p then G ' D8.

Proof. Let A be an abelian subgroup of index p in G, and let I and C be defined as in Lemma 3.1.
By Theorem 2.4 it will be enough to show that G has class 2. Assume that this is false, then
I � A, hence G = IA and so A ∩ C = Z(G). It follows that C is abelian, as |C/Z(G)| ≤ p, and
C ≤ A, otherwise G = AC and G would have class 2. Therefore C = Z(G), but this is excluded
by Lemma 3.1. �

4. Groups with cyclic centre

Our first result in this section settles the case of those groups whose centre has prime order. Its
proof uses a lemma which basically reproduces the main inductive step in the proof of Gaschütz-
Schmid theorem on the existence of outer automorphisms in finite p-groups, see [9], pp. 74–75.

Lemma 4.1. Let G be a finite p-group and let M be a maximal subgroup of G. If Z(G) <
CG(M) < M then G has an outer automorphism θ of p-power order such that Mθ = M and
[Z(M), θ] = 1.

Proof. Let Q = G/M and let A = Z(M). If χ is the coupling of the (canonical) extension
M � G � Q then the Wells sequence gives the exact sequence

0 −→ H1(Q,A) −→ NOut G(M) res−→ NOut M (Qχ)/Qχ −→ H2(Q,A).

If our statement fails then p does not divide |H1(Q,A)|, hence H1(Q,A) = 0. It follows that
H2(Q, A) = 0 and so the mapping labelled by ‘res’ actually is an isomorphism. Thus every
automorphism of M normalizing Qχ can be extended to an automorphism of G. By Gaschütz-
Schmid Theorem p divides |COut M (A)|; since COut M (A) C Out M it follows that Qχ centralizes
an element θ̄0 = θ0 InnM of order p in COut M (A). Now COut M (A)∩Qχ = 1, because CG(A) = M ;
thus θ̄0Q

χ 6= 1. Therefore, by the above isomorphism, θ0 can be extended an outer automorphism θ
of G such that Mθ = M . �

We could add, even if this facts will not be needed in this paper, that this construction makes
sure that θ induces either the identity or an outer automorphism on M . Also, the lemma remains
true if the hypothesis that Z(G) < CG(M) < M is replaced by CG(M) � M , since in this case G
can be decomposed as central product G = MCG(M).

Theorem 4.2. Let G be a finite p-group such that G ' AutG. If |Z(G)| = p then G ' D8.

Proof. Suppose that Z := Z(G) has order p. Arguing by contradiction, assume G 6' D8. First
we shall show that all maximal subgroups of G with the possible exception of the characteristic
one (see Lemma 2.2) have Z as their centre. Indeed, let M l G and assume that Z(M) 6= Z.
As |Z| = p it is obvious that CG(M) = Z(M), moreover M is not abelian by Proposition 3.4,
so we can apply Lemma 4.1 to produce an outer automorphism θ of G such that Mθ = M . But
AutG = 〈θ〉 InnG, because InnG l Aut G since |Z| = p, therefore M is characteristic in G. Thus
our claim is established.

Now let I and C be as in Lemma 3.1. Then I l G and C ' Autc G = CAut G(Z,G/Z) '
Hom(G/Z, Z) ' G/Φ(G), moreover C ≤ I (by Lemma 3.1, or because otherwise G would have
a direct factor of order p), thus C = Z(I). This shows that Z(I) 6= Z, hence I is the only
characteristic maximal subgroup of G, by the above part of the proof. On the other hand for
every g ∈ Z2 r Z we have 1 6= G/CG(g) ' [G, g] ≤ Z, hence CG(g) l G; as Z

(
CG(g)

)
> Z then

CG(g) = I. Thus Z2 ≤ C, but C = Z(I) ' Z2/Z, so we have a contradiction. Hence G ' D8. �

If G is a p-group with cyclic centre Z and G ' AutG then the main result of [1] applies, as
remarked earlier, thus Autc G is the set of all mappings g ∈ G 7→ ggε ∈ G with ε ranging over
Hom(G, Z). This suggests a description of Z(Aut G), in a slightly more general setting.

Lemma 4.3. Let G be a finite p-group such that Z = Z(G) is cyclic and Z(Aut G) ' Z. Then
there exists an epimorphism ε : G � Z such that Z(Aut G) is generated by ε∗ : g ∈ G 7→ ggε ∈ G.
If K = ker ε then K is characteristic in G and G/K is (Aut G)-isomorphic to Z. Moreover:

(i) either Z ≤ K or exp(G/ZG′) = |K ∩ Z| < |Z|;
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(ii) if p = 2 then |K ∩ Z| > 2.

Proof. Let |Z| = pλ. We know that Z(Aut G) (which is contained in Autc G) is generated by an
automorphism defined as ε∗ for some suitable ε ∈ Hom(G, Z). We have to show that im ε = Z.
For every t ∈ N we have (ε∗)t =

∑t
i=0

(
t
i

)
εi; let us compute this power for t = pλ−1—as we know

ε∗ has order pλ and so (ε∗)pλ−1 6= 1. Let i be an integer such that 1 ≤ i ≤ pλ−1. If p divides i

exactly r times (i.e., pr | i but pr+1 - i) then p divides
(
pλ−1

i

)
exactly λ − 1 − r times; moreover,

since pr divides i we have r < 2r ≤ pr ≤ i, so r + 1 ≤ i and λ − 1 − r ≥ λ − i. Let K = ker ε.
Since K ∩ Z 6= 1 then Zε < Z. By an easy induction argument, im εi ≤ Zpi−1

(which proves that
ελ+1 = 0), and im εi ≤ Zpi

if im ε < Z. In this latter case, then, pλ−iεi = 0 if i ≤ λ; it follows
that (ε∗)pλ−1

= 1+
∑λ

i=1

(
pλ−1

i

)
εi = 1, and this is a contradiction. Therefore ε is an epimorphism,

as we wanted to show. As a consequence, G/K ' Z. Also, from the fact that ε∗ ∈ Z(Aut G) it
follows that K is characteristic in G and G/K is (AutG)-isomorphic to Z.

We still have to check (i) and (ii). Let pµ = |K∩Z| and note that pµ = |G/KZ| ≤ exp(G/ZG′).
As an immediate consequence of what has just been proved, CAut G(Z,G/Z) also centralizes G/K,
hence the image of every homomorphism from G/Z to Z is contained in K ∩Z. Thus G/ZG′Gpλ

has exponent pµ, and (i) follows. To prove (ii) we can repeat the above computation for (ε∗)pλ−1

by looking at the terms
(
pλ−1

i

)
εi again. Earlier arguments show that if i is an integer such that

2 ≤ i ≤ pλ−1 and p divides i exactly r times then
(
pλ−1

i

)
εi = 0 unless λ − 1 − r = λ − i or,

equivalently, r + 1 = 2r = pr = i, which amounts to saying that r = 1 and p = 2 = i. Thus, if
p = 2 then (ε∗)2

λ−1
= 1 + 2λ−1ε + 2λ−2(2λ−1 − 1)ε2. Now let x be a generator of G modulo K.

Then 〈xε〉 = Z, hence x2λ−1ε is the nontrivial element of Z[2]. But Z[2] also contains y = x2λ−2ε2
,

because im ε2 ≤ Z2. Since (ε∗)2
λ−1 6= 1 then y = 1. Thus im ε2 < Z2, which means that (ii)

holds. �

Another piece of information on Z(Aut G), under more general hypotheses, comes from the
next lemma.

Lemma 4.4. Let G be a finite p-group, and let ζ ∈ AutG. If ζ centralizes all automorphisms
of G of order p, then ζ acts like a power automorphism on G/Φ(G) and on Z(G)[p]. In particular,
if ζ also has p-power order then it centralizes G/Φ(G) and Z(G)[p].

Proof. We may assume that |G| > p. Let M lG. Then M contains a minimal normal subgroup N
of G, and G has an automorphism α of order p centralizing M and G/N . Then Mζ =

(
CG(α)

)
ζ =

CG(αζ) = CG(α) = M . It follows that ζ induces a power automorphism on G/Φ(G). The proof
for the socle Z(G)[p] is similar: if N is a minimal normal subgroup of G, choose any maximal
subgroup M of G containing N . Define α as above, then from N = [G, α] and αζ = α it follows
that N ζ = N , and hence the statement. �

Corollary 4.5. Let G be a finite p-group such that Z(G) is cyclic and Z(Aut G) ' Z(G). Then
Z(G) ≤ Φ(G).

Proof. Lemma 4.3 shows that Z(G) = [G, Z(Aut G)], Lemma 4.4 that [G, Z(Aut G)] ≤ Φ(G). �

The hypothesis that Z(Aut G) and Z(G) have the same order is needed in this corollary. Indeed,
there are examples of p-groups G such that Aut G is a p-group and both Z(G) and Z(Aut G) are
cyclic, yet Z(G) � Φ(G). The easiest examples are the cyclic groups of order 2 or 4; a more
interesting one is the following: let H be the holomorph of C8, and let G be the central product
HZ, where Z ' C4 and Z2 = Z(H), so Z = Z(G) and |G| = 26. Then |AutG| = 29 and
|Z(Aut G)| = 2, but Z � Φ(G).

We pause for a further remark on what was discussed in the previous section. Corollary 3.3
makes sure that, even without extra hypotheses on the centre, the second upper central factor of
the groups that we are dealing with cannot have order p. A slight improvement is the following.

Lemma 4.6. Let G be a finite nontrivial p-group such that G ' AutG. If G 6' D8 then
|Z2(G)/Z(G)| > p2.
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Proof. Let G be a counterexample, hence |Z2(G)/Z(G)| = p2. By Lemma 3.1, in the notation used
there, as Z < C and |C| < |Z2| we have Z l C; since rk(C) ≥ d̄r this implies that Z is cyclic and
d̄ = 2. Hence Z ≤ Φ := Φ(G) by Corollary 4.5, and so d(G) = 2. Also, I∩Z < Z(I) by Lemma 3.1
and |Z(I)| = p2, so |G/IΦ| ≤ |G/IZ| = |I∩Z| = p; thus I � Φ and G/I is cyclic, of order pλ = |Z|.
By [1] we have that pλ+1 = |C| = |Hom(G, Z)|; as λ > 1 by Theorem 4.2, then Gab ' Cpτ × Cp

for some integer τ ≥ λ. Let K be the characteristic subgroup of G such that G/K ' Z introduced
in Lemma 4.3. Then K ∩ Φ = G′Gpλ

and so K ∩ Z = K ∩ Φ ∩ Z = G′Gpλ ∩ Z ≤ I ∩ Z;
thus |K ∩ Z| = p. Hence by Lemma 4.3 (or also by a direct argument) exp(G/ZG′) = p, that
is: ZG′ = Φ. Therefore CAut G(Z,G/Z) ' Hom(G/Φ, Z) has order p2. Hence G has a normal
subgroup S—corresponding to CAut G(Z) in an isomorphism AutG → G mapping InnG onto I—
such that |S ∩ C| = p2 = |I ∩ C| and I < S, that the latter inclusion is strict is a consequence
of the already quoted Gaschütz-Schmid Theorem, or also of the fact that G/S embeds in Aut(Z)
and so |G/S| < |G/I|. Then S ∩ C = I ∩ C, hence S ∩ IC = I(S ∩ C) = I; as G/I is cyclic this
proves that IC = I, which is a contradiction since IC l G. �

Together with Theorem 4.2 this yields:

Corollary 4.7. Let G be a finite nontrivial p-group such that G ' AutG. If G has coclass at
most 3 then G ' D8.

Consider again the special case of groups with cyclic centre. The next lemma gives strong
information on the embedding of InnG in Aut G in this case, showing that InnG is cyclic modulo
the commutator subgroup of AutG.

Lemma 4.8. Let G be a finite p-group such that G ' AutG and Z = Z(G) is cyclic. Let
I ' InnG be defined as in Lemma 3.1. Then both G/[G, AutG] and I/[I,G] are cyclic.

Proof. That G/[G, Aut G] is cyclic follows from Lemma 2.2: if M is the subgroup defined there
M/[G, Aut G] is the only maximal subgroup of G/[G, AutG]. By applying the natural conjugation
epimorphism ∼: G � InnG, since [G, Aut G]∼ = [InnG, Aut G] we see that InnG/[Inn G, AutG]
is cyclic, but this quotient is isomorphic to I/[I,G] because of the isomorphisms from AutG to G
mapping InnG onto I. �

Lemma 4.9. Let G be a nontrivial finite p-group such that G ' AutG. If Z(G) is cyclic and
G 6' D8 then G has exactly one characteristic subgroup V which is elementary abelian of rank 2.
Moreover,

(i) CG(V ) is the only characteristic maximal subgroup of G;
(ii) G has a characteristic subgroup L such that G/L is cyclic of order p2, and V ≤ Z(L)∩Φ(G).

Proof. We first establish the uniqueness of V . Suppose that V is as required in the first part of the
statement. Then V � Z := Z(G) and so |G/CG(V )| = p. Lemma 2.2 shows that G has exactly
one characteristic maximal subgroup M ; since CG(V ) is characteristic then M = CG(V ) (thus
after proving that such a V does exist we will have proved (i) as well). If V1 is a characteristic
subgroup of G isomorphic to V then, by the same reason, M = CG(V1). Let A = V V1. Since A is
characteristic A ≤ Z(M), by Lemma 2.2 again. Also, both V and V1 lie in Z2(G), but not in Z,
hence 1 6= [G, A] ≤ A∩Z, and |A∩Z| = p. Thus we are in position to apply Lemmas 1.3 and 1.5
to G/M and A; we obtain that 1 = rk(G/M) = rk(A)− 1, so rk(A) = 2. Therefore V = V1, and
uniqueness is proved.

Next we note that Φ := Φ(G) is not cyclic. In fact G has an elementary abelian normal
subgroup E of rank d(G), as CAut G(Φ, G/Z[p]) ' G/Φ. If Φ is cyclic then |G/EΦ| = |E ∩Φ| ≤ p,
thus G/E is cyclic; but then G′ ≤ E ∩Φ, hence G has class 2, which is false by Theorem 2.4. Now
we may apply [6], Hilfssatz III.7.5: since Φ is a noncyclic normal subgroup of G o AutG and is
contained in the Frattini subgroup of the latter then Φ contains a subgroup V with the required
property: it is characteristic in G and isomorphic to Cp × Cp.

Finally, it follows from Theorem 4.2 and Lemma 4.3 that G has a characteristic subgroup L
such that G/L is cyclic of order p2, and LlM . If L is cyclic, then M = V L and since V ≤ Z(M)
then M is abelian, but this is a contradiction by Proposition 3.4. Thus L is not cyclic. As
M = Gp[G, AutG] by Lemma 4.8, we have L ≤ M ≤ Φ(G o Aut G), so, by the same Hilfssatz
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used above, we can find a subgroup of the required type inside L, but then this subgroup is V , by
uniqueness. So V ≤ Z(L), and the proof is complete. �

5. Ranks of abelian subgroups

The main theme of this section is computing (maximal) ranks of abelian subgroups in normal
sections of the group that we are studying. The first relevant information is that G has a normal
abelian subgroup of rank greater than d(G).

Proposition 5.1. Let G be a finite nontrivial p-group such that G ' AutG. If G 6' D8 then
mkG(G) > d(G).

Proof. If Z(G) is not cyclic the result follows from Lemma 3.1 in a straightforward way: in the
notation used there mkG(G) ≥ mkG(C) ≥ d̄r ≥ 2d̄, and 2d̄ > d since 1 < d̄ ≥ d − 1. We may
therefore assume that Z := Z(G) is cyclic. We can choose characteristic subgroups L and V in G
such as in Lemma 4.9. Then CAut G

(
L∩Φ(G), G/V

)
' Der

(
G/L∩Φ(G), V

)
is elementary abelian

of rank d + 1 by Lemmas 1.3 and 1.5. The result follows. �

Since rk(G) = d(G) for every powerful p-group G, we have:

Corollary 5.2. Let G be a finite nontrivial powerful p-group. Then G 6' AutG.

Lemma 4.9 shows that in the groups that we are considering the second centre cannot be cyclic,
nor can the Frattini subgroup, if the centre is cyclic. Both these remarks can be improved upon.
We start with the first, the second is deferred since the argument for the Frattini subgroup will
be made simpler after the proof of Theorem 5.4.

Proposition 5.3. Let G be a finite nontrivial p-group such that G ' AutG. If G 6' D8 then
mkG

(
Z2(G)

)
≥ 3.

Proof. Suppose first that Z := Z(G) is not cyclic. We may obviously assume that Z has rank 2.
Proposition 5.1 implies that G has a normal elementary abelian subgroup E of rank 3 con-
taining Z[p]. Then E ≤ Z2(G) and the result is proved in this case. Now suppose that Z is
cyclic. Let L and V be characteristic subgroups of G such that V ' Cp × Cp, G/L ' Cp2 and
V ≤ Z(L) ∩ Φ(G) (see Lemma 4.9). Then Γ := CAut G(L ∩ Φ(G), G/V ), which is abelian, con-
tains Γ1 := Γ ∩ Autc G = CAut G(Φ(G), G/Z[p]) ' G/Φ(G) and Γ2 := CAut G(L,G/V ) ' V (see
Lemma 1.1). Thus Γ1∩Z2(Aut G) has rank at least 2. Moreover Γ1∩Γ2 = CAut G(LΦ(G), G/Z[p]),
and since LΦ(G) is the characteristic maximal subgroup of G, Lemma 2.2 shows that Γ1 ∩Γ2 is in
Z(Aut G) and so has order p. Hence Γ2 � Γ1, thus

(
Γ1 ∩ Z2(Aut G)

)
Γ2 is an elementary abelian

subgroup of Z2(Aut G) of rank at least 3 and normal in Aut G. Thus the proposition is proved. �

The main result in this section is the following theorem.

Theorem 5.4. Let G be a finite p-group of class 3 with cyclic centre. Then G 6' Aut G.

Proof. Let us fix some notation first. Let Z = Z(G), Z2 = Z2(G) and γ3 = γ3(G). Throughout
the proof A will always denote a (suitably chosen) elementary abelian G-invariant subgroup of Z2

not contained in Z, and, for any choice of A, we will let B = CG(A), n = rk(A) and t =
rk

(
AΦ(G)/Φ(G)

)
. Then [G, A] = CA(G) = Z[p] and G/B embeds in Hom(A/Z[p], Z[p]), so

Φ(G) ≤ B, and we will be in position to apply Lemma 1.3 or Lemma 1.5 to A. Thus rk(G/B) =
n− 1. We also set d = d(G), m = mk(G) and s = rk(G′). We argue by contradiction and suppose
that G ' AutG. Hence we can choose normal subgroups I and C of G as in Lemma 3.1, so
I ' InnG and C = CG(I) ' Autc G. We have:

d− t ≥ 2, s ≤ 1 +
(

d

2

)
, d ≤ s + 1, m ≤ s + 2. (1)

The first two inequalities are obvious, since G has class 3 (hence G/A is not cyclic) and γ3 is cyclic.
The remaining two are consequences of the fact that I/[I,G] is cyclic (see Lemma 4.8). We have
d(I) ≤ 1 + rk([I,G]) ≤ 1 + s, but d(I) = d because Z ≤ Φ(G) by Corollary 4.5. Finally, I ' G/Z
has an elementary abelian subgroup of rank m− 1; as I/[I,G] is cyclic then [I,G] has an abelian
subgroup of rank m− 2, hence s ≥ m− 2.
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Consider the case when p 6= 2. Then, by Lemma 1.3, Aut G has an abelian subgroup of
rank d− t+

(
n
2

)
, namely CAut G(AΦ(G), G/A), hence m ≥ d− t+

(
n
2

)
. By Proposition 5.3 we may

choose A such that n = 3, so that m ≥ d − t + 3 ≥ 5. Thus s ≥ m − 2 ≥ 3. On the other hand,
if we choose G′[p] for A, then n = s and t = 0. Thus s + 2 ≥ m ≥ d +

(
s
2

)
, hence s ≥

(
s
2

)
and so

s = 3, but also d = 2. This is a contradiction, by (1). Therefore we may assume that p is 2.
The proof in this case relies on Lemma 1.5. Let W = AG′G4 and set w = rk(AG2/W ) and

b = rk(B2W/W ). By considering CAut G(W,G/A), and thanks to Lemma 1.5 we obtain a lower
bound for m:

m ≥ d− t +
(

n− 1
2

)
+ w − b. (2)

It is clear that w ≥ b. Also, b is the rank of the image of the endomorphism g ∈ B/W 7→ g2 ∈ B/W ,
whose kernel contains AG2/W , hence b ≤ rk(B/AG2). Since d = rk(G/G2) = t + rk(B/AG2) +
rk(G/B) and the last summand equals n− 1, it follows that

0 ≤ b ≤ d− t− n + 1 and m ≥ w +
(

n

2

)
; (3)

the second part follows from the first and from (2). Recall that G/G′ has a cyclic quotient of
size |Z| > 2, by Lemma 4.3. Thus, by choosing G′[p] for A we have w > 0 and n = s, hence
s + 2 ≥ m ≥ 1 +

(
s
2

)
, by employing (1) too. Therefore:

s ≤ 3 and m ≤ 5. (4)

As a consequence, mkG(Z2) = 3, for we know from Proposition 5.3 that mkG(Z2) ≥ 3, and if this
inequality were strict then we could choose A such that n = 4, so (3) would give m ≥ w + 6, in
contradiction to (4).

From now on we shall assume that A has been chosen such that n = 3. Note that G′[2] ≤ A,
since [G′, A] = 1 and rk(A) = mkG(Z2). We consider the possibility of low values for w. We have:

w ≤ 1 =⇒ [G2, G] ≤ γ3 and |γ3| = exp(G′/γ3) = 2. (5)

In fact w = rk(AG2/AG′), hence if w ≤ 1 then G/AG′ is the direct product of a cyclic group
by an elementary abelian one. Let R/γ3 = Z(G/γ3). Then AG′ ≤ R (recall that [G, A] ≤
Z[2] ≤ γ3); since G/R must have a noncyclic homocyclic direct factor of exponent exp(G/R)
(see for instance [3], Lemma 1.6) it follows that AG2 ≤ R. Thus exp(G′/γ3) = exp(G/R) = 2,
a fortiori exp(G/Z2) = 2, so exp(γ3) = 2; since γ3 is cyclic (5) follows. Our next aim will be
showing that w 6= 0, that is to say, W < AG2. So, assume that w = 0. Then G2 ≤ W , hence
G2 ≤ AG′. By using Lemma 4.3 again we deduce that exp(Gab) = |Z| = 4, and Z ≤ K, where
K is a characteristic subgroup of G such that G/K is (AutG)-isomorphic to Z. Then every
central automorphism of G acts trivially on G/K and so on Z, hence Autc G ' Hom(G/Z, Z).
On the other hand, by [1], |Autc G| = |Hom(G, Z)|. It follows that Z is in the kernel of every
homomorphism from G to Z, hence Z ≤ G′, and Autc G ' Gab. From Lemma 3.1 we know
that |C| < |Z2|; more precisely the argument there shows that |Z2|/|C| = |G/IC| > 1. Since
|C| = |Gab| then |G′| > |G/Z2| ≥ 4. By (5), on the other hand, |G′| ≤ 2s+1, hence s ≥ 2.
Now G′[2] = A ∩ G′ and |AG′/G′| = |A/G′[2]| ≤ 2. But G′ < G2 ≤ AG′, thus G2 = AG′ and∣∣A/G′[2]

∣∣ = 2, that is, s = 2. Earlier inequalities now give that |G′| = 8 and |G/Z2| = 4, and also
|G/IC| = |Z2|/|Gab| = 2. By using (5) we deduce that |G′/γ3| > 2 and hence also that G2 = AG′

does not have index 4 in G. Thus d > 2. Also, since Z ≤ G′ then G′ = ZG′[2]. Therefore CG(G′) is
a characteristic subgroup of index 2 in G, hence it is M , the only characteristic maximal subgroup
of G (see Lemma 2.2). Clearly G′ ≤ I, as |G/I| = |Z| = 4, hence C = CG(I) ≤ M , while
I � M , since G′ � Z(I) because I/G′ is cyclic by Lemma 4.8. In particular, M 6= IC. Now,
Z2 ≤ M , by the uniqueness of M . If Z2 � IC then G = Z2IC, because IC is maximal, and
so [I,G] = [I, Z2]I ′ ≤ Z(I). This is a contradiction, by Lemma 4.8 again. Therefore Z2 ≤ IC;
as |G/Z2| = 4 then Z2 = IC ∩ M , and therefore C ≤ Z2. Now C ' Gab, so A1 := C[2] is an
elementary abelian G-invariant subgroup of Z2 of rank d > 2 (in other words, A1 is a possible
choice for A). Hence G/CG(A1) should have rank d − 1, but A1 is centralized by IC, which is
maximal in G. This contradiction establishes our claim:

w > 0. (6)
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If t = 0 (that is, if A ≤ G2) then A ≤ Z(G2), and since rk(A) = 3 = mkG(Z2) then A is the socle
of Z(G2)∩Z2, hence it is characteristic in G. Then also W is characteristic, so CAut G(W,G/A) C
AutG and it follows that the lower bounds for m found in (2) and (3) also hold for m′ := mkG(G)
in place of m. Moreover, if S/W = (G/W )[2] then both S and B are characteristic in G, and
S < G by (6). Hence, by Lemma 2.2, both S and B are contained in M , as defined above, so
that SB < G. Since w = rk(G/S) and b = rk(SB/S) we can draw the following conclusion:

if t = 0 then:

w > b, m ≥ m′ ≥ d + 1 + w − b ≥ d + 2, m′ ≥ w + 3 ≥ 4.
(7)

The next step in the proof consists in computing d, s and m. If d > 3 then s ≥ d− 1 ≥ 3 by (1).
Then A = G′[2]. Hence t = 0 and the middle chain of inequalities in (7) gives m > 5, which is
impossible by (4). Thus d ∈ {2, 3}. Suppose that d = 2. Then s ≤ 2 and m ≤ 4 by (1). On the
other hand |G/G2| = 4 = |G/B|, hence B = G2, so A ≤ G2, i.e., t = 0, and (7) applies to show
that m′ = 4 and w = 1. Thus G2 = Z2, by (5), so A = G2[2], and G has an elementary abelian
normal subgroup E of rank 4. Since EG2 < G and mkG(G2) = 3 then E ∩G2 has rank 3, hence
E ∩ G2 = A, but this is a contradiction since E � G2 = CG(A). Therefore d = 3. Now the first
half of (3) translates into 0 ≤ b ≤ 1 − t, hence t ≤ 1. We shall prove that m = 5—we already
know that m ≤ 5, by (4). If t = 0 this immediately follows from (7); similarly m = 5 if w ≥ 2, by
the second part of (3). So we may assume that t = 1 and w = 1. Then from (5) it follows that
AG2/γ3 is a central subgroup of index 4 in G/γ3, and hence |G′| = 4. This is a contradiction,
by an argument already used for (1): as I/[I,G] is cyclic, 3 = d = d(I) = rk(I/I ′) and I ′ 6= 1,
we must have

∣∣[I,G]
∣∣ > 4. Therefore m = 5. Then s = 3 by (1) and (4). As above, this implies

that A = G′[2], thus t = 0 and m′ = 5 by (7), that also yields w − b = 1. Furthermore Z2 ≤ G2,
otherwise rk(G/Z2) = 2, hence G′Z/Z is cyclic and s = rk(G′) = 2. Now let E be an elementary
abelian normal subgroup of rank 5 in G. As rk(G/Z2) = 3 we have that rk(E ∩Z2) ≥ 2. If A � E
then AE cannot be abelian (otherwise it would have rank 6) and E is maximal in AE. Then
AE ∩Z = E ∩Z = Z[2] = [A,E]. Hence AEZ/Z is elementary abelian of rank 5, and mk(I) = 5.
Then, since I/[I,G] is cyclic, rk(G′) ≥ rk[I,G] ≥ 4, a contradiction. Therefore A ≤ E. It follows
that E ≤ B = CG(A); since |B/G2| = 2 then rk(E ∩ G2) > 3 and so G2 6= Z2. Then w > 1
by (5), so w = 2 by (3). If E � G2 then B = EG2, so B/W has exponent 2 and b = 0. This is
impossible, since we showed that w − b = 1. Therefore E ≤ G2. Now rk(G2/G′) = w = 2 and it
follows that EG′/G′ is the socle of G2/G′. Since G′ ≤ Z2 ≤ G2 and EG′ ∩ Z2 = AG′ = G′, then
Z2 = G′. We have: exp(Gab) = exp(G/Z2) = exp(γ3) = |γ3| ≤ |Z|; on the other hand G has a
quotient isomorphic to Z, by Lemma 4.3, hence exp(Gab) = |Z| and γ3 = Z. It also follows that
exp(Z2/Z) = exp(G′/γ3) = |Z|. Let |Z| = 2λ. Then, as w = 2 and Gab = G/Z2 has a noncyclic
homocyclic subgroup of exponent 2λ we have that Gab ' C2λ × C2λ × C2. Then Z2/Z = G′/γ3 is
a cyclic extension of an elementary abelian group; since it has rank 3 at most |Z2/Z| ≤ 2λ+2. All
central automorphisms act trivially on the commutator subgroup, hence C ' Hom(Gab, Z) ' Gab.
As 1 < |G/IC| = |Z2|/|C| we obtain that |Z2/Z| = 2λ+2, thus Z(I) ' Z2/Z ' C2λ ×C2 ×C2, and
|G/IC| = 2. Now Z(I) = I ′ ≤ G′, as Z2 = G′. Thus A is the socle of Z(I). Then IC centralizes A,
and this is a contradiction, since |G/B| = 4. This completes the proof of the theorem. �

Proposition 5.5. Let G be a finite nontrivial p-group such that G ' Aut G and G 6' D8. Let
E be an elementary abelian normal subgroup of G of maximal rank. Then |E ∩ Φ(G)| > p2. In
particular, mkG

(
Φ(G)

)
≥ 3.

Proof. Let Φ = Φ(G) and d = d(G). Suppose that |E∩Φ| ≤ p2. Since EΦ < G and so |E/E∩Φ| ≤
pd−1, and since rk(E) = mkG(G) > d by Proposition 5.1, it follows that mkG(G) = d + 1 and
|E ∩ Φ| = p2, thus |G/EΦ| = p, so G/E is cyclic. Therefore G′ ≤ E ∩ Φ and G′ = E ∩ Φ
by Theorem 2.4; also, |G/CG(G′)| = p, hence CG(G′) = EΦ. Since Φ/G′ ' EΦ/E is cyclic,
Φ is abelian. Now G has class 3, therefore Z := Z(G) is not cyclic, by Theorem 5.4. Since
mkG(G) = d + 1 it follows from Lemma 3.1 that Z has rank 2 and d(G/Z[p]) = d − 1, so p = 2,
and also that d ≤ 3. This also means that G has a direct factor of order 2, since it is not abelian
then d = 3. Hence F := Z[2]Φ has index 4 in G. Now G/E is cyclic and E is not maximal in G,
because it is abelian (see Proposition 3.4), so there exists a subgroup L C G such that E ≤ L and
G/L is cyclic of order 4. Let Σ = CAut G(L ∩ F,G/Z[2]G′); it is abelian since Z[2]G′ ≤ L ∩ F .
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Then Σ contains CAut G(F,G/Z[2]), that has rank 4, but also some noncentral automorphisms in
CAut G(L, G/G′), as follows from Lemma 1.1. Hence rk(Σ) > 4, so G has an elementary abelian
subgroup A of rank 5. As AΦ < G then A ∩Φ has rank 3 at least. But rk(Φ) ≤ 3, for rk(G′) = 2
and Φ/G′ is cyclic. Then A = Φ[2] ≥ G′, so A C G. On the other hand mkG(G) = d + 1 = 4,
hence we have reached a contradiction. Thus the proof is complete. �

As an application of our results we can show that ‘small’ p-groups cannot provide new examples
of groups isomorphic to their automorphism groups.

Proposition 5.6. Let G be a finite nontrivial p-group. If G ' AutG and |G| ≤ p7 then G ' D8.

Proof. Suppose that G is not isomorphic to D8. As |Z| > p and |Z2/Z| > p2 (see Theorem 4.2 and
Lemma 4.6; we are still writing Z and Z2 for Z(G) and Z2(G) ), and by Theorems 2.4 and 5.4,
we immediately have that G has order p7 and class 3, its upper central factors are elementary
abelian, |Z| = |G/Z2| = p2 and |Z2/Z| = p3. If Z � Φ(G) then G ' Cp × H for a suitable
group H, and it easily follows that p = 2 and |AutH| < |H|; this is impossible because |H| = p6

(see Remark 3.2). Let I and C = CG(I) be defined as in Lemma 3.1 and look at the embedding
Hom

(
G/Z, Z

)
� C already considered there. Since |C| < |Z2| = p5 (by the same lemma) and

Z ≤ Φ(G) then C is elementary abelian of rank 4 and d(G) = 2, so that Φ(G) = Z2; moreover
the embedding actually is an isomorphism, and this means that Autc G acts trivially on Z2. Now
C � I, because Z(I) ' Z2/Z has rank 3, hence I l IC lG by Lemma 3.1. Also, since C = Z(IC)
then IC/C is not cyclic; therefore C ≤ Φ(G) = Z2, actually C l Z2 and so Z2 is abelian. If p > 2
then Der(G/Z2, C) has rank 6; this follows from Lemmas 1.1 and 1.2 as [I, C] = 1; hence G has an
abelian maximal subgroup. This is impossible by Proposition 3.4, so p = 2. Moreover, as IC l G
and C ≤ Φ(G) then I � Φ(G) and G/I is cyclic. Let x be an element of G such that G = 〈x〉 I,
and let u be any element of C r I. It is not hard to check that the assignments xθ = xu and
yθ = y for all y ∈ I define an automorphism θ of G. Since x2u ∈ I then x2u = (x2u)θ = (xu)2uθ,
and so uθ = uxu = ux; hence xθ2

= xuux = xuxu = xu. Therefore θ2 is the inner automorphism
determined by u. As Aut G/ InnG ' G/I is cyclic this shows that θ ∈ (InnG)(Autc G). Thus
θ = αg̃, for some α ∈ Autc G and g ∈ G, here g̃ denotes the inner automorphism of G determined
by g. Since [I, θ] = [Z2, α] = 1 then g centralizes D = I ∩ Z2. Now CG(D) contains Z2, which is
abelian, and CI(D) = D, because I is not abelian and DlI. Then CG(D)/D is cyclic, since G has
no abelian maximal subgroups it follows that CG(D) = Z2. Therefore g ∈ Z2 and so g̃ ∈ Autc G.
This is a contradiction, because θ /∈ Autc G. �

Remark 5.7. In the previous proof the fact that θ is an automorphism can be also seen as a
special case of Lemma 1.1 and the following, whose proof we do not reproduce here: Let G be
a finite p-group, let A be an elementary abelian normal subgroup of G, and let N be a normal
subgroup of G such that [A,N ] = 1, [A,G] ≤ N and A ≤ NΦ(G). Then to every derivation δ
from G/N to A we can associate an automorphism δ∗ : g ∈ G 7→ g(gN)δ ∈ G, and the mapping
δ ∈ Der(G/N,A) 7→ δ∗ ∈ CAut G(N,G/A) is bijective.

A further remark is that, in the case when p = 2, Proposition 5.6 can also be proved by a
computer-aided direct inspection, which is easy to carry out with a system like GAP (see [4]).
The same procedure can be used to show that no group of order 28 is isomorphic to its own
automorphism group, thus extending the scope of our proposition.

As a matter of fact, Eamon O’Brian has also obtained Proposition 5.6 (for arbitrary primes) as
a side result of a much more sophisticated computer calculation. The author thanks the referee
for pointing out this unpublished work.
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