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Abstract. An automorphism α of a group G is called a noetherian automor-
phism if for each ascending chain

X1 < X2 < . . . < Xn < Xn+1 < . . .

of subgroups of G there is a positive integer m such that Xα
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is investigated in this paper.
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1. Introduction

A power automorphism of a group G is an automorphism mapping every subgroup
of G onto itself, and the set PAut G of all power automorphisms of G is an abelian
normal subgroup of the full automorphism group Aut G of G. The structure of the
group PAut G has been widely investigated by Cooper [2]. Power automorphisms
play a relevant role in many questions, but when the attention is especially focused
on infinite groups, it could be necessary to know the behaviour of automorphisms
leaving invariant all subgroups which are large in some suitable sense. This point
of view was in particular adopted in [3], and more recently in [1], where the group
IAut G consisting of all automorphisms of a group G fixing every infinite subgroup
is studied. It turns out that in many cases the group IAut G coincides with PAut G;
moreover, IAut G is always metabelian, provided that G contains an infinite abelian
subgroup.

We shall say that an automorphism α of a group G is a noetherian automor-
phism if for each ascending chain

X1 < X2 < . . . < Xn < Xn+1 < . . .

of subgroups of G there is a positive integer m such that Xα
n = Xn for all n ≥ m.

Clearly, the set NAut G of all noetherian automorphisms of G is a normal subgroup
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of Aut G, and NAut G contains the group PAut G; note also that if G is any group
satisfying the maximal condition on subgroups, then NAut G = Aut G.

The aim of this article is to describe the structure of NAut G. In particular, it
is proved in Section 2 that NAut G = IAut G for any infinite locally finite group G.
The study of noetherian automorphisms of abelian groups and locally nilpotent
groups is the subject of Section 3 and Section 4, respectively, while the final Sec-
tion 5 deals with the derived length of the group of noetherian automorphisms of
a soluble group.

Most of our notation is standard and can for instance be found in [10]. In
particular, Dr

i∈I
Gi denotes the direct product of the groups Gi’s.

2. Noetherian automorphisms of locally finite groups

We start with an easy remark, that will be very useful in our consideration.

Lemma 2.1. Let G be a group and let α be a noetherian automorphism of G. If X
is a subgroup of G which is not finitely generated, then Xα = X.

Proof. Let x be any element of X . As X is not finitely generated, there exist
infinitely many elements x1, x2, . . . , xn, . . . of X such that

〈x〉 < 〈x, x1〉 < 〈x, x1, x2〉 < . . . < 〈x, x1, x2, . . . , xn〉 < . . .

Thus
〈x, x1, x2, . . . , xm〉α = 〈x, x1, x2, . . . , xm〉

for some positive integer m, so that xα ∈ X and hence Xα is contained in X . The
same argument applied to the noetherian automorphism α−1 shows that X ≤ Xα,
and hence Xα = X . �

Recall that a group is called radical if it has an ascending (normal) series
with locally nilpotent factors. It was proved in [3] that if G is a locally finite non-
Černikov group, then IAut G = PAut G provided that G contains a locally radical
subgroup of finite index. Our next lemma shows that this latter hypothesis can
be dropped out; the proof here depends ultimately on the classification of finite
simple groups.

Lemma 2.2. Let G be a locally finite group. If G is not a Černikov group, then
IAut G = PAut G.

Proof. Suppose first that G contains an element x of prime power order such
that the centralizer CG(x) is a Černikov group. Then G is a finite extension of a
locally soluble group (see [6], Theorem 1), and hence IAut G = PAut G (see [3],
Theorem A). Therefore it can be assumed that for each element y of G with
prime power order the subgroup CG(y) is not a Černikov group, so that CG(y)
contains an abelian subgroup A which does not satisfy the minimal condition
on subgroups (see [11]). The socle S of A is infinite, and so B = 〈y, S〉 is an
infinite abelian residually finite subgroup of G; thus IAut B = PAut B (see [3],
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Lemma 2.1) and hence 〈y〉α = 〈y〉 for any automorphism α in IAut G. Therefore
IAut G = PAut G. �

It follows in particular from Lemma 2.1 that any noetherian automorphism
of a locally finite group G fixes all infinite subgroups of G, so that in this case
NAut G is a subgroup of IAut G. We shall prove that these groups of automor-
phisms coincide for all locally finite groups.

Lemma 2.3. If G is a divisible abelian group, then IAut G = PAut G.

Proof. Let x be any element of G. Then G contains a divisible subgroup X of rank 1
such that x ∈ X (see [4], p.107). Since all subgroups of X are characteristic, it
follows that 〈x〉 is fixed by any element of IAut G. Therefore IAut G = PAut G. �

Theorem 2.4. If G is a locally finite group, then NAut G = IAut G.

Proof. If G is not a Černikov group, it follows from Lemma 2.2 that

NAut G = IAut G = PAut G.

Suppose that G is a Černikov group, and assume by contradiction that there exists
an automorphism α ∈ IAut G which is not noetherian. Then G contains infinitely
many subgroups X1, X2, . . . , Xn, . . . such that

X1 < X2 < . . . < Xn < . . .

and Xα
n �= Xn for all n. Obviously, each Xn must be finite, while

X =
⋃

n∈N

Xn

is an infinite subgroup of G and so Xα = X . Let D be the largest divisible
abelian subgroup of X . As X/D is finite, there is a positive integer m such that
XkD = XmD for all k ≥ m. Moreover, Xα

m is a finite subgroup of X and hence
Xα

m ≤ Xt for some t ≥ m. As

Xt = XmD ∩ Xt = Xm(D ∩ Xt)

and the subgroup D ∩ Xt is fixed by α by Lemma 2.3, it follows that

Xα
t = Xα

m(D ∩ Xt) ≤ Xt.

Therefore Xα
t = Xt, and this contradiction proves that NAut G = IAut G. �

As an obvious consequence of Theorem 2.4 and Lemma 2.2, we have the
following result.

Corollary 2.5. Let G be a locally finite group. If G is not a Černikov group, then
NAut G = PAut G.

Corollary 2.6. If G is an infinite locally finite group, then the group NAut G is
metabelian.

Proof. It follows from Theorem 2.4 and from Corollary 2.4 of [3]. �
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3. Noetherian automorphisms of abelian groups

Let p be a prime number, and consider the direct product G = P × 〈a〉, where P
is a group of type p∞ and 〈a〉 is an infinite cyclic group. It is easy to see that
the automorphism α of G defined by xα = x for all x ∈ P and aα = ay, where y
is a fixed non-trivial element of P , is noetherian, but obviously α is not a power
automorphism. The main result of this section shows that for abelian groups this
is one of the few situations in which PAut G is properly contained in NAut G.

Lemma 3.1. Let G be a torsion-free abelian group which is not finitely generated.
Then NAut G = PAut G.

Proof. Assume by contradiction that G admits a noetherian automorphism α that
is not a power automorphism, so that a subgroup X of G can be chosen which is
maximal with respect to the condition Xα �= X . Then X is finitely generated by
Lemma 2.1, and so G/X is infinite. Since any subgroup of G properly containing X
is fixed by α, the group G/X cannot contain non-trivial subgroups with trivial
intersection. Thus G/X is a group of type p∞ for some prime number p. Let
X = 〈x1〉 × . . . × 〈xt〉, and put

Xi,q = 〈xi〉 ×
(
Dr
j �=i

〈xq
j 〉

)
,

for i = 1, . . . , t and for all primes q �= p. Then

G/Xi,q = X/Xi,q × Bi,q/Xi,q,

where Bi,q/Xi,q is a group of type p∞. Clearly Bi,q is not finitely generated, so
that Bα

i,q = Bi,q and hence also

Bi =
⋂

q �=p

Bi,q

is a subgroup of G fixed by α. Moreover,

Bi ∩ X =
⋂

q �=p

(Bi,q ∩ X) =
⋂

q �=p

Xi,q = 〈xi〉,

so that Bi has rank 1. Since α is noetherian, there exists a finite subgroup Ci/〈xi〉
of Bi/〈xi〉 such that Cα

i = Ci; clearly, Ci is cyclic and hence also 〈xi〉 is fixed by α.
Therefore Xα = X and this contradiction proves the lemma. �

Theorem 3.2. Let G be an abelian group such that NAut G �= PAut G. Then ei-
ther G is finitely generated or G is the direct product of a finitely generated group
and a group of type p∞ for some prime number p.

Proof. Let α be a noetherian automorphism of G that is not a power auto-
morphism, and consider the subgroup T of G consisting of all elements of fi-
nite order. Suppose first that T is not a Černikov group, so that in particular
NAut T = PAut T by Corollary 2.5. The socle S of T is infinite, and so S = S1×S2
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where both S1 and S2 are infinite. If a is any element of infinite order of G, the sub-
groups 〈a, S1〉 and 〈a, S2〉 are fixed by α by Lemma 2.1; as 〈a, S1〉 ∩ 〈a, S2〉 = 〈a〉,
it follows that 〈a〉α = 〈a〉, a contradiction because α is not a power automorphism.

Therefore T is a Černikov group, and G = T × A, where A is a torsion-free
subgroup. Assume that T is not a finite extension of a group of type p∞, so that T
contains Prüfer subgroups P1 and P2 such that 〈P1, P2〉 = P1 × P2. In this case

NAut T = IAut T = PAut T,

(see [3], Proposition 2.5) and the argument used above can be repeated to show
that α fixes all infinite cyclic subgroups of G, so that α is a power automorphism.
This contradiction shows that T is a finite extension of a group of type p∞.

Assume finally that A is not finitely generated, so that in particular Aα = A
and NAut A = PAut A by Lemma 3.1. If x is any element of T , there exist infinitely
many elements a1, . . . , an, . . . of A such that

〈x, a1〉 < 〈x, a1, a2〉 < . . . < 〈x, a1, a2, . . . , an〉 < . . . ,

and so 〈x, a1, . . . , at〉α = 〈x, a1, . . . , at〉 for a suitable positive integer t. As 〈x〉 is a
characteristic subgroup of 〈x, a1, . . . , at〉, it follows that 〈x〉α = 〈x〉 and α induces
a power automorphism on T . Therefore G contains an element of infinite order u
such that 〈u〉α �= 〈u〉. If A has infinite rank, there exist subgroups B1 and B2 of A
that are not finitely generated and such that B1∩B2 = 〈B1, B2〉∩ 〈u〉 = {1}; then
〈u〉 = 〈u, B1〉 ∩ 〈u, B2〉 is fixed by α by Lemma 2.1, a contradiction. Thus A must
have finite rank r. Let G be so that r is smallest possible with respect to the above
properties. Consider a positive integer k such that uk ∈ A, so that 〈uk〉α = 〈uk〉
and α induces on Ḡ = G/〈uk〉 a noetherian automorphism which is not a power
automorphism. In particular NAut Ḡ �= PAut Ḡ and the group Ḡ is not a finite
extension of a Prüfer group; on the other hand, the torsion-free rank of Ḡ is r− 1,
and the minimal choice of r produces the final contradiction. �

4. Noetherian automorphisms of locally nilpotent groups

Let X be a class of groups which is closed with respect to forming subgroups
and extensions. We shall say that X is a BZ-class if every soluble group which
is not in X contains an abelian non-X subgroup. An easy example of BZ-class
is provided by the class consisting of all finite groups. Moreover, two relevant
theorems by Mal’cev and by Baer and Zaicev prove that the class of groups with
the maximal condition on subgroups and that of minimax groups are BZ-classes
(see for instance [10] Part 1, Theorem 3.31 and Part 2, Theorem 10.35).

Lemma 4.1. Let X be a BZ-class of groups and let G be a nilpotent group which
does not belong to X. Then for each element x of G the centralizer CG(x) is not
an X-group.

Proof. It can obviously be assumed that Z(G) belongs to X, so that G/Z(G)
cannot be an X-group. By induction on the nilpotency class of G, we have that
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also the centralizer C/Z(G) = CG/Z(G)(xZ(G)) is not in X and so it contains an
abelian non-X subgroup A/Z(G) since X is a BZ-class. As the map

ϕ : a ∈ A �−→ [a, x] ∈ Z(G)

is a homomorphism with kerϕ = CA(x), the group A/CA(x) belongs to X, and so
CA(x) is not in X. Therefore CG(x) is not an X-group. �

Our next result extends Lemma 3.1 to the case of nilpotent groups.

Proposition 4.2. Let G be a torsion-free nilpotent group which is not finitely gene-
rated. Then NAut G = PAut G.

Proof. Let x be any element of G. As groups satisfying the maximal condition on
subgroups form a BZ-class, it follows from Lemma 4.1 that the centralizer CG(x)
is not finitely generated, and so it contains an abelian subgroup A that also is
not finitely generated. By Lemma 3.1 we have that NAut 〈x, A〉 = PAut 〈x, A〉,
so that in particular 〈x〉α = 〈x〉 for any noetherian automorphism α of G. Thus
NAut G = PAut G. �

Let G be a group and let Γ be a group of automorphisms of G. Recall that Γ
stabilizes a finite normal series

{1} = X0 < X1 < . . . < Xt = G

if [Xi, Γ] ≤ Xi−1 for each i = 1, . . . , t; in this case a well known result by L.A.
Kalužnin proves that Γ is nilpotent with class at most t − 1 (see for instance [7],
Theorem 1.C.1). For our pourposes we need certain informations on radical groups
of automorphisms of soluble minimax groups that were already known for hyper-
abelian groups of automorphisms.

Lemma 4.3. Let G be a torsion-free abelian minimax group and let Γ be a radical
group of automorphisms of G. Then Γ is a soluble minimax group.

Proof. Each abelian subgroup of Γ is minimax (see [10] Part 2, Corollary to
Lemma 10.37) and hence Γ itself is a soluble minimax group (see [10] Part 2,
Theorem 10.35). �

Lemma 4.4. Let G be a soluble residually finite minimax group and let Γ be a
radical group of automorphisms of G. Then Γ is likewise a soluble residually finite
minimax group.

Proof. The group G has a finite characteristic series

{1} = K0 < K1 < . . . < Kt ≤ Kt+1 = G

such that G/Kt is finite and Ki/Ki−1 is torsion-free abelian for each i = 1, . . . , t
(see [10] Part 2, Theorem 3.39.3). Consider in Γ the normal subgroup

Λ =
t+1⋂

i=1

CΓ(Ki/Ki−1).
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As by Lemma 4.3 the group Γ/CΓ(Ki/Ki−1) is soluble for i = 1, . . . , t and
Γ/CΓ(G/Kt) is finite, it follows that also the factor group Γ/Λ is soluble. On
the other hand, Λ stabilizes a series of finite length of G, so that Λ is nilpotent
and Γ is a soluble group. Thus Γ is also residually finite and minimax (see [8],
Theorem 3). �

We will also need the following lemma, which is a special case of a result by
L.A. Kurdachenko and H. Smith (see [9], Lemma 3.2).

Lemma 4.5. Let G be a metabelian group whose derived subgroup G′ satisfies the
minimal condition on subgroups. If there exists an element x ∈ G \ G′ such that
the centralizer CG(x) is minimax, then also G is minimax.

Recall that the Baer radical of a group G is the subgroup generated by all
abelian subnormal subgroups of G, and that G is a Baer group if it coincides with
its Baer radical. Clearly, all Baer groups are locally nilpotent.

Lemma 4.6. Let G be a radical group and let x be any element of the Baer radical
of G. If G is not minimax, then either 〈x〉G is a periodic divisible abelian group
or CG(x) contains an abelian non-minimax subgroup.

Proof. If 〈x〉 is a normal subgroup of G, the group G/CG(x) is finite, so that
CG(x) cannot be minimax and hence it contains an abelian non-minimax subgroup
(see [10] Part 2, Theorem 10.35). Assume that 〈x〉 is not normal in G and suppose
first that the normal closure 〈x〉G is minimax. Without loss of generality, it can
be assumed that 〈x〉G properly contains its finite residual J . Put Ḡ = G/J . Then
Ḡ/CḠ(〈x̄〉Ḡ) is minimax by Lemma 4.4, so that CḠ(〈x̄〉Ḡ) is not minimax and
hence contains an abelian non-minimax subgroup Ā. As the subgroup B̄ = 〈x̄, Ā〉
is abelian, the derived subgroup B′ of B is contained in J and so it is an abelian
group satisfying the minimal condition on subgroups. Moreover, x lies in B \ B′

and so CB(x) contains an abelian non-minimax subgroup by Lemma 4.5. Suppose
now that 〈x〉G is not a minimax group. Then by induction on the defect of 〈x〉
in G, we have that either CG(〈x〉G) contains an abelian non-minimax subgroup or
〈x〉G,2 = 〈x〉〈x〉G

is a periodic divisible abelian subgroup; in this latter case also
〈x〉G = (〈x〉G,2)G is periodic divisible abelian (see [10] Part 1, Lemma 4.46). The
lemma is proved. �

We can now prove the following result, that should be seen in relation to
Theorem 3.2.

Theorem 4.7. Let G a Baer group which is not minimax. Then NAut G = PAut G.

Proof. Let α be any noetherian automorphism of G. Consider an element x of G,
and assume first that the normal closure 〈x〉G is a periodic divisible abelian group.
Then α fixes 〈x〉G by Lemma 2.1 and it follows from Lemma 2.3 and Theorem
2.4 that NAut (〈x〉G) = PAut (〈x〉G); in particular, 〈x〉α = 〈x〉. Suppose now
that 〈x〉G is not a periodic divisible abelian group, so that by Lemma 4.6 the
centralizer CG(x) contains an abelian non-minimax subgroup A. Then the abelian
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subgroup 〈x, A〉 is not finitely generated and so it is fixed by α by Lemma 2.1;
moreover, it follows from Theorem 3.2 that NAut 〈x, A〉 = PAut 〈x, A〉 and hence
〈x〉α = 〈x〉. Therefore α is a power automorphism of G and NAut G = PAut G. �

In the last part of this section we prove that the above theorem also holds
for locally nilpotent groups, provided that they are assumed to have finite abelian
section rank.

Proposition 4.8. Let G be a group and let H be the Hirsch-Plotkin radical of G. If
NAut G �= PAut G, then the set of primes π(H) is finite.

Proof. Assume by contradiction that the set π = π(H) is infinite, so that in
particular the subgroup T consisting of all elements of finite order of H is not a
Černikov group. By hypothesis there exist a noetherian automorphism α and an
element x of G such that 〈x〉α �= 〈x〉. Clearly the subgroup 〈x, T 〉 is not finitely
generated, so that it is fixed by α by Lemma 2.1 and it follows from Corollary 2.5
that x must have infinite order. Let π = ρ∪σ, where both ρ and σ are infinite and
ρ ∩ σ = ∅. Write ρ = {p1, p2, . . . , pn, . . .} and σ = {q1, q2, . . . , qn, . . .}; moreover,
for each positive integer n put

Pn = Dr
i≤n

Tpi and Qn = Dr
i≤n

Tqi .

Clearly, 〈x, Pn〉 < 〈x, Pn+1〉 and 〈x, Qn〉 < 〈x, Qn+1〉 for all n and hence there exist
positive integers r, s such that 〈x, Pr〉 and 〈x, Qs〉 are fixed by α. Thus α leaves
invariant also 〈x〉 = 〈x, Pr〉∩ 〈x, Qs〉 and this contradiction proves the lemma. �

Theorem 4.9. Let G be a locally nilpotent group with finite abelian section rank.
If G is not minimax, then NAut G = PAut G.

Proof. Assume by contradiction that NAut G �= PAut G, so that there exist a
noetherian automorphism α and an element x of G such that 〈x〉α �= 〈x〉. By
Proposition 4.8 the subgroup T consisting of all elements of finite order of G has
finitely many Sylow subgroups; then T is a Černikov group and G/T is a torsion-
free nilpotent group (see [10] Part 2, p.38). Let J be the finite residual of T ; as
T/J is finite, also the group G/J is nilpotent and it follows from Lemma 4.1
that the centralizer CG/J(xJ) contains an abelian non-minimax subgroup A/J .
Put B = 〈x, A〉. Since B/J is abelian, the derived subgroup B′ of B is contained
in J ; moreover, NAut J = PAut J by Lemma 2.3 and Theorem 2.4, so that x
does not belong to J . Application of Lemma 4.5 yields now that the centralizer
CB(x) is not minimax, so that it also contains an abelian non-minimax subgroup C
(see [10] Part 2, Theorem 10.35). Then 〈x, C〉 is an abelian non-minimax group
and so 〈x〉α = 〈x〉 by Theorem 3.2. This contradiction completes the proof of the
theorem. �

In contrast to Theorem 3.2, it can be observed that there exists a locally
nilpotent Černikov group G which is not a finite extension of a Prüfer subgroup
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and such that NAut G is not abelian (and so in particular NAut G �= PAut G). To
see this, let

P = 〈x0, x1, . . . , xn, . . . |x0 = 1, x3
n+1 = xn〉

and
Q = 〈y0, y1, . . . , yn, . . . | y0 = 1, y3

n+1 = yn〉
be two groups of type 3∞, and put H = P × Q. Consider the semidirect product
G = 〈z〉�H , where z3 = 1, xz

n = yn and yz
n = x−1

n y−1
n for all n, and let α be the

automorphism of G defined by zα = zx1y
−1
1 and hα = h for all h ∈ H . Since G

does not contain normal subgroups of type 3∞, every infinite subgroup of G either
contains or is contained in H ; it follows that α fixes all infinite subgroups of G, so
that in particular α is a noetherian automorphism of G which is not in PAut G.
Moreover, α does not commute with the noetherian automorphism β of G defined
by zβ = z and hβ = h−1 for all h ∈ H .

5. Noetherian automorphisms of soluble groups

The aim of this section is to prove that (with the obvious exceptions) the group
of all noetherian automorphisms of a soluble group is likewise soluble, and that it
is possible to bound the derived length of such group.

Lemma 5.1. Let G be a group whose chief factors are abelian. If G contains a
divisible abelian non-trivial subgroup D, then the derived subgroup of NAut G acts
trivially on DG and G/DG. In particular, the group NAut G is metabelian.

Proof. If g is any element of G, the subgroup Dg is fixed by all noetherian auto-
morphisms of G by Lemma 2.1, and it follows from Theorem 3.2 that Γ = NAut G
acts on Dg as a group of power automorphisms. Thus the derived subgroup Γ′ of Γ
acts trivially on the normal closure DG of D. Let x be any element of G and assume
by contradiction that the subgroup H = 〈x, DG〉 is finitely generated. Then DG is
the normal closure in G of a finite subset, and hence it contains a maximal proper
G-invariant subgroup K. As the chief factor DG/K is abelian, the group H/K is
metabelian and so also residually finite (see [10] Part 2, Theorem 9.51). This is a
contradiction since DG has no proper subgroups of finite index. It follows that H
cannot be finitely generated, so that H is fixed by all noetherian automorphsms
of G by Lemma 2.1 and hence Γ induces a group of power automorphisms on
G/DG. Therefore Γ′ acts trivially also on G/DG. In particular, the group Γ is
metabelian. �

Observe that, under the assumptions of Lemma 5.1, it cannot be proved that
NAut G is abelian, even when G is abelian. In fact, if the group G = P ×A is the
direct product of a group P of type p∞ and a group A of order p (where p is an
odd prime), then NAut G is isomorphic to Aut P × Hol A and in particular it is
not abelian (see [1]).
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Lemma 5.2. Let G be a group and let J be the finite residual of G. If Γ is the group
of all automorphisms of G fixing every subgroup of finite index, then [G, Γ′] ≤ J .

Proof. Let N be any normal subgroup of finite index of G. Then N is fixed by Γ
and Γ induces on G/N a group of power automorphisms. In particular, Γ′ acts
trivially on G/N and hence [G, Γ′] ≤ J . �

Lemma 5.3. Let G be a soluble group with derived length k and let Γ be the group
of all noetherian automorphisms of G fixing every subgroup of finite index. If G is
not polycyclic, then Γ′ stabilizes a finite normal series of length at most k + 1.

Proof. Suppose first that G is abelian. Clearly, it is enough to consider the case
NAut G �= PAut G, so that by Theorem 3.2 we have G = P×E, where P is a Prüfer
group and E is finitely generated. Then Γ′ acts trivially on G/P by Lemma 5.2 and
so it stabilizes the series {1} < P < G. Suppose now that k > 1. By Lemma 5.1 it
can be assumed that G does not contain divisible abelian non-trivial subgroups.
Let A be the smallest non-trivial term of the derived series of G. Suppose that A
is finitely generated. Then G/CG(A) is polycyclic (see [10] Part 1, Theorem 3.27)
and CG(A) must contain an abelian subgroup B which is not finitely generated
(see [10] Part 1, Theorem 3.31). Then the abelian subgroup H = AB is fixed by Γ
and NAut H = PAut H , so that in particular Γ′ acts trivially on H and hence
[A, Γ′] = {1}. On the other hand, if A is not finitely generated, it follows from
Theorem 3.2 that Γ/CΓ(A) is abelian and so [A, Γ′] = {1} also in this case. If G/A
is polycyclic, it follows from Lemma 5.2 that Γ′ acts trivially on G/A. Assume
finally that G/A is not polycyclic. By induction on k we have that Γ′ stabilizes a
finite normal series of G/A with length at most k, and hence Γ′ also stabilizes a
finite normal series of G with length at most k + 1. �

We can now prove the main result of this section.

Theorem 5.4. Let G be a soluble group with derived length k. If G is not finitely
generated, then the derived subgroup of NAut G is nilpotent of class at most k. In
particular, the group NAut G is soluble with derived length at most k + 1.

Proof. By Lemma 2.1 all noetherian automorphisms of G fix every subgroup of
finite index, so that the statement follows from Lemma 5.3. �

We finally note that for certain locally soluble groups the above theorem can
be improved. This holds in particular for all locally polycyclic groups.

Theorem 5.5. Let G be a group whose finitely generated subgroups are soluble of
finite rank. If G is not finitely generated, then the group NAut G is metabelian.

Proof. By Lemma 5.1 and Lemma 5.2 it can be assumed without loss of generality
that the group G is not minimax. Suppose first that G has finite rank, so that
in particular it is hyperabelian (see [10] Part 2, p.178) and hence it contains an
abelian non-minimax subgroup A (see [10] Part 2, Theorem 10.35). It follows from
Lemma 2.1 and Theorem 3.2 that NAut G acts as a group of power automorphisms
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on Ag for each element g of G. In particular, the derived subgroup of Γ = NAut G
acts trivially on the normal closure N = AG of A. If x is any element of G, the
subgroup 〈x, N〉 cannot be finitely generated (see [10] Part 2, Theorem 10.38) and
hence it is fixed by each noetherian automorphism of G. Therefore [G, Γ′] ≤ N , so
that Γ′ is abelian and the group NAut G is metabelian. Assume now that G has
infinite rank, so that it contains an abelian subgroup A of infinite rank (see [5]),
and the above argument can be repeated to obtain that NAut G is metabelian. �
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[5] Yu.M. Gorčakov, The existence of abelian subgroups of infinite rank in locally soluble
groups, Soviet Math. Dokl. 5 (1964), 591–594.

[6] B. Hartley, Fixed points of automorphisms of certain locally finite groups and Cheval-
ley groups, J. London Math. Soc. 37 (1988), 421–436.

[7] O.H. Kegel and B.A.F. Wehrfritz, Locally Finite Groups, North-Holland, Amster-
dam, 1973.

[8] L.A. Kurdachenko and J. Otal, Frattini properties of groups with minimax conjugacy
classes, Quaderni Mat. 8 (2001), 221–237.

[9] L.A. Kurdachenko and H. Smith, Groups with the weak minimal condition for non-
subnormal subgroups, Ann. Mat. Pura Appl. 173 (1997), 299–312.

[10] D.J.S. Robinson, Finiteness Conditions and Generalized Soluble Groups, Springer,
Berlin, 1972.

[11] V.P. Šunkov, On the minimality problem for locally finite groups, Algebra Logic 9
(1970), 137–151.

Fausto De Mari and Francesco de Giovanni
Dipartimento di Matematica e Applicazioni
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