
EQUIVARIANT WAVE MAPS

MICHAEL STRUWE

1. Introduction

1.1. Wave maps. Let (N, h) be a complete, smooth Riemannian manifold of di-
mension k with ∂N = ∅. Usually we will assume N to be compact. The Nash
embedding theorem always permits to regard N as a submanifold of some Eu-
clidean space R

n. The projection πN taking a point p ∈ R
n to its nearest neighbor

πN (p) ∈ N then is uniquely defined and smooth in a tubular neighborhood of N .

The concept of a wave map to the “target” manifold N generalizes the standard
wave equation. Denote space-time coordinates on (m+ 1)-dimensional Minkowski
space R

m+1 as z = (t, x) = (xα), 0 ≤ α ≤ m. For a (C1-)map u : R
m+1 → N ↪→ R

n

and a space-time domain Q let

(1) L(u,Q) =
1

2

∫

Q

∂αu · ∂αu dz,

denote the Lagrangean action of u on Q. Here, ∂α = ∂
∂xα ; moreover, we raise and

lower indices with the Minkowski metric (ηαβ) = diag(−1, 1, . . . , 1) and we tacitly
sum over repeated indices. Finally, we use the standard Euclidean inner product
to compute the expression ∂αu · ∂αu.

Given a vector field ϕ ∈ C∞
0 (Rm+1; Rn), we may use πN to define a 1-parameter

variation of the map u through maps uε = πN (u + εϕ) : R
m+1 → N for |ε| < ε0

with

(2)
∂

∂ε

∣

∣

∣

∣

ε=0

uε = dπN (u)ϕ

and such that uε ≡ u outside the support of ϕ.

Definition 1.1. The map u is a wave map if u is stationary for L in the sense
that

(3)
∂

∂ε

∣

∣

∣

∣

ε=0

L(uε, Q) = 0

for any variation uε of u defined via a vector field ϕ ∈ C∞
0 (Rm+1; Rn) as above and

any open bounded Q such that supp(ϕ) ⊂ Q.

For a wave map u of class C2 we may integrate by parts to compute

(4)
∂

∂ε

∣

∣

∣

∣

ε=0

L(uε, Q) =

∫

Q

∂αu · ∂α(dπN (u)ϕ) dz =

∫

Q

dπN (u)(∂α∂αu) · ϕ dz .
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Since ϕ ∈ C∞
0 (Rm+1); Rn) is arbitrary, we conclude that

(5) Dα∂αu = dπN (u)(∂α∂αu) = 0,

with D denoting the pull-back of the covariant derivative on N . Equation (5) is
independent of the embedding of N and may also be interpreted intrinsically.

Observe that in the case when N = R we have πN = id and equation (5) simply
is the standard wave equation

�u = −∂α∂αu = utt − ∆u = 0,

where ut = ∂tu and with ∆ =
∑m

i=1 ∂
2
i the spatial Laplacian.

Geometrically, equation (5) can easily be interpreted as saying that

(6) �u ⊥ TuN.

Thus, in the case when N = Sk ↪→ R
k+1 equation (5) takes the form �u = λu for

some scalar function λ. Taking account of the fact that |u|2 ≡ 1, we compute

λ = �u · u = −∂α(∂αu · u) + ∂αu · ∂αu = ∂αu · ∂αu = |∇u|2 − |ut|2

and thus find the equation

�u = utt − ∆u = (|∇u|2 − |ut|2)u
for a wave map u : R

m+1 → Sk ↪→ R
k+1.

For an arbitrary closed hypersurface N ⊂ R
n with unit normal vector field ν,

letting w = ν ◦ u and observing that w · ∂αu = 0, likewise from (6) we have the
equation �u = λw for some scalar function

λ = �u · w = −∂α(∂αu · w) + ∂αu · ∂αw = ∂αu · ∂αw.

With B(p) : TpN × TpN → (TpN)⊥ denoting the second fundamental form of N ⊂
R

n at p ∈ N , thus we obtain the extrinsic form of the wave map equation

(7) �u = λw = w∂αu · ∂αw = ν(u)(∂αu · dν(u)∂αu) = B(u)(∂αu, ∂αu).

In components u = (u1, . . . , un) and again using the fact that wj∂αu
j = w·∂αu = 0,

following Hélein [7],and Rivière [17] we can also write this as

(8) �ui = wi∂αw
j∂αu

j = (wi∂αw
j − wj∂αw

i)∂αu
j = Ωij

α ∂αu
j , 1 ≤ i ≤ n,

with an anti-symmetric 1-form Ω = (Ωij) = Ωαdx
α, and similarly for arbitrary

codimension of N .

Note that from any solution u to equation (5) or (7) we can obtain further
solutions by scaling uR(t, x) = u(Rt,Rx) with a constant R > 0.

1.2. The energy identity. The geometric equation (6) immediately implies the
conservation law

(9) 0 = ut · �u =
d

dt
e(u) − div(∇u · ut)

for the energy density and density of momentum

e(u) =
1

2
|du|2 =

|ut|2 + |∇u|2
2

, m(u) = ∇u · ut.
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Since clearly |m(u)| ≤ e(u), from (9) it follows that

(10)

∫

{t}×BR(x0)

e(u(t))dx ≤
∫

{0}×BR+t(x0)

e(u(t))dx

for all x0 ∈ R
m, R > 0, and t > 0. In particular, energy will spread with speed

at most 1, and u(t) will have compact support for any t whenever u(0) and ut(0)
have this property. In this case then, upon integrating equation (9) over the region
[0, t] × R

m we find the identity

(11) E(u(t)) =

∫

{t}×Rm

e(u(t))dx = E(u(0)).

This H1-energy is the only quantity known to be conserved in general.

1.3. The Cauchy problem for wave maps. We study the Cauchy problem for
wave maps with initial data (u, ut)|t=0

∈ Ḣs × Ḣs−1(Rm;TN), where Ḣs for any s
denotes the homogenous Sobolev space. In view of the invariance

||(u, ut)|t=0
||

Ḣ
m
2 ×Ḣ

m
2
−1(Rm;TN)

= ||(uR, uR
t )|t=0

||
Ḣ

m
2 ×Ḣ

m
2
−1(Rm;TN)

under scaling uR(t, x) = u(Rt,Rx) the Ḣ
m
2 × Ḣ

m
2 −1-regularity is critical.

In a long quest towards the full resolution of this problem, finally the initial
value problem for (5) was shown to be globally well-posed for initial data

(12) (u, ut)|t=0
= (u0, u1) ∈ Ḣ

m
2 × Ḣ

m
2 −1(Rm;TN)

that are small in the critical norm.

The break-through was achieved by Tao [27], [28] in the case when N = Sk,
first only for m ≥ 5 and finally for all m ≥ 2. For m ≥ 5, by a variant of Tao’s
method, Klainerman-Rodnianski [10] were able to extend his results to general
targets. These results rely on sophisticated microlocalisation techniques and seem
highly technical. Independently and almost simultaneously with [10], jointly with
Shatah [21] we established well-posedness in any dimension m ≥ 4 and for any
complete Riemannian target manifold N with bounded curvature. Moreover, our
proof proceeds directly in configuration space and does not require any tools from
harmonic analysis other than the Strichartz estimates and its recent improvement
by Keel-Tao [9]. Similar results are due to Nahmod - Stefanov - Uhlenbeck [16]. In
the low-dimensional cases 2 ≤ m ≤ 3 global well-posedness of the Cauchy problem
for (5), (12) for initial data of small critical energy was obtained by Krieger [12],
[13] for wave maps u : R

m+1 → H2 to hyperbolic space H2, and, finally, by Tataru
[33] for general targets. Previous work of Tataru [31], [32] already had shown the
problem to be well-posed for initial data of small energy in a critical Besov space.

For completeness, we recall our results with Shatah [21] in Appendix B.

1.4. The two-dimensional case. Since the H1-energy is the only known con-
served quantity for the wave map system, the case when m = 2 is particularly
interesting. In this dimension the H1-energy is critical and one may hope to obtain
also global results and a characterization of singularities. Indeed, this is possible in
the case of co-rotational wave maps from (1+2)-dimensional Minkowski space into
a target surface of revolution and for rotationally symmetric wave maps on R

1+2.
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In the following we review the known results in these cases and describe some
recent improvements.

2. Co-rotational wave maps

2.1. The co-rotational setting. Let N be a surface of revolution with metric

ds2 = dρ2 + g2(ρ)dθ2,

where θ ∈ S1 and with g ∈ C∞(R) satisfying g(0) = 0, g′(0) = 1. Moreover, we
assume that g is odd and either

(13) g(ρ) > 0 for all ρ > 0

with

(14)

∫ ∞

0

|g(ρ)| dρ = ∞,

or, if N is compact, that g has a first zero ρ1 > 0 where g′(ρ1) = −1, and that g is
periodic with period 2ρ1. Note that in this second case assumption (14) is trivially
satisfied. The case (13) corresponds to non-compact surfaces; condition (14) is a
technical assumption needed to rule out that N contains a “sphere at infinity”.

We regard (ρ, θ) as polar coordinates on N . Letting (r, φ) be the usual polar
coordinates on R

2, we then consider equivariant wave maps u : R × R
2 → N given

by
ρ = h(t, r), θ = φ.

The equation (5) or (7) for a wave map u : R
2+1 → N in this co-rotational case

simplifies to the nonlinear scalar equation

(15) �h+
f(h)

r2
= 0,

where

�h = htt − ∆h = htt −
1

r

(

rhr

)

r
= htt − hrr −

hr

r
and with f(h) = g(h)g′(h). If N = S2, for example, we have g(h) = sin(h) and
f(h) = 1

2sin(2h)

2.2. Results. In [22], Shatah and Tahvildar-Zadeh showed that the initial value
problem for (7) with smooth equivariant data

(16) (u, ut)|t=0
= (u0, u1)

of finite energy admits a unique smooth solution for small time, which may be
extended for all time if the target surface N is geodesically convex.

The latter condition is equivalent to the assumption g′(ρ) ≥ 0 for all ρ > 0. This
condition was later weakened by Grillakis [4] who showed that it suffices to assume

(g(ρ)ρ)′ = g(ρ) + g′(ρ)ρ > 0 for ρ > 0 .

Note that this hypothesis, in particular, implies conditions (13) and (14).

In [24] we improve these results and show that conditions (13) and (14) already
suffice for proving global well-posedness of the Cauchy problem for (15). In fact,
we show that for general target surfaces N satisfying (14) the appearance of a
singularity in (15) is related to the existence of a non-constant harmonic map
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u : S2 → N , thereby confirming a long-standing conjecture about wave maps in this
special, co-rotational case. But if N also satisfies (13), any co-rotational harmonic
map u : S2 → N is constant, and global well-posedness follows.

On the other hand, when N = S2 on the basis of numerical work of Bizon et
al. [1] and Isenberg-Liebling [8] it had been conjectured that for suitable initial
data equivariant wave maps u : R × R

2 → S2 indeed may develop singularities in
finite time. In a penetrating analysis, Krieger-Schlag-Tataru [14] and Rodnianski-
Sterbenz [18] recently were able to confirm this conjecture also theoretically and
give a rigorous proof of blow-up.

2.3. Blow-up criterion. By the results of Shatah-Tahvildar-Zadeh [22] singular-
ities of co-rotational maps may be detected by measuring their energy

E(u(t), R) =
1

2

∫

BR(0)

|Du(t)|2 dx,

with |Du|2 = |ut|2 + |∇u|2. In terms of h = h(t) we have

E(u(t), R) = π

∫ R

0

(

|Dh|2 +
g2(h)

r2
)

rdr.

We also let

E(u(t)) = lim
R→∞

E(u(t), R).

By [22] there exists a number ε0 = ε0(N) > 0 such that the Cauchy problem for
co-rotational wave maps for smooth data with energy E(u(0)) < ε0 admits a global
smooth solution. By finite speed of propagation, similarly we obtain well-posedness
of the Cauchy problem for time t ≤ R, provided E(u(0), R) < ε0.

Conversely, let u : [0, t0[×R
2 → N be a smooth co-rotational wave map. Then

z0 = (t0, 0) is a (first) singularity and t0 is the blow-up time of u if and only if there
holds

(17) inf
0≤t<t0

E(u(t), t0 − t) ≥ ε0 > 0.

In fact, for any map u satisfying (17) the space-time gradientDu cannot be bounded
near the origin (0, 0). On the other hand, negating condition (17) we can find a
time t < t0 such that

E(u(t), R) < ε0

for some R > t0− t and the results quoted above will allow us to extend u smoothly
as a solution to (5) on a neighborhood of z0 = (t0, 0). Observe that, by symmetry,
u can only blow up at the origin.

2.4. Characterization of blow-up and well-posedness. We can now state the
main result from [24].

Theorem 2.1. Let u be a smooth co-rotational solution to (7) blowing up at time
t0. Then there exist sequences Ri ↓ 0, ti ↑ t0(i→ ∞) such that

ui(t, x) = u(ti +Rit, Rix) → u∞(t, x)

strongly in H1
loc(] − 1, 1[×R

2), where u∞ is a non-constant, time-independent so-
lution of (7) giving rise to a non-constant, smooth co-rotational harmonic map
u : S2 → N .
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As a consequence, for target manifolds that do not admit non-constant co-
rotational harmonic spheres in [24] we obtain global existence of smooth solutions
to the Cauchy problem (7), (12) for smooth co-rotational data.

Theorem 2.2. Suppose N is a surface of revolution with metric ds2 = dρ2 +
g2(ρ)dθ2 satisfying (13) and (14). Then for any smooth co-rotational data the
Cauchy problem (7), (12) admits a unique global smooth solution.

As we shall see below, similar results also hold true in the case of radially sym-
metric wave maps u = u(t, r) from R

1+2 to an arbitrary closed target manifold;
confer [25], [26].

We now recall the proofs of Theorems 2.1 and 2.2.

2.5. Notation. Let u : [0, t0[×R
2 → N be a smooth co-rotational wave map blow-

ing up at time t0 and let h = h(t, r) be the associated solution of (15).

For convenience we shift and reverse time and then scale our space-time coordi-
nate z = (t, x) so that in our new coordinates u is an equivariant solution to (7) on
]0, 1]× R

2 blowing up at the origin.

Letting

KT = {z = (t, x); 0 ≤ |x| ≤ t ≤ T}
be the forward light cone with vertex at the origin, truncated at height T , with
lateral boundary

MT = {(t, x) ∈ KT ; |x| = t},
we also introduce the flux

Flux(u, T ) =
1

2

∫

MT

|D||u|2 do = π

∫ T

0

(

|ht + hr|2 +
g2(h)

r2

)

∣

∣

t=r
r dr.

Here, |D||u|2 denotes the energy of all derivatives in directions tangent to MT .

2.6. Basic estimates. We recall the energy bounds and decay estimates for (7)
from [22]; these can also be found in [20], Chapter 8.1. Upon integrating the
conservation law (9) over a truncated cone KT0 \KT for 0 < T ≤ T0 ≤ 1 we then
find the identity

∫

{T}×BT (0)

e dx+
1

2

∫

MT0\MT

|D||u|2 do =

∫

{T0}×BT0 (0)

e dx .

From this we deduce the energy inequality

(18) E(u(t), R) ≤ E(u(t+ τ), R + |τ |).
for any t, τ, R > 0. (Of course, in the present case we only consider values such
that 0 < t, t+ τ ≤ 1.)

Moreover, we conclude that

lim
T↓0

∫

{T}×BT (0)

e dx

exists and we have decay of the flux

(19) Flux(u, T ) → 0 as T ↓ 0.
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Condition (14) together with the energy inequality implies the uniform bounds

(20) sup
r<R

|h(t, r)| ≤ C(E(u(t), R)) for any R > 0

for the function h associated with u, where C(s) → 0 as s→ 0. Indeed, let

G(s)) =

∫ s

0

|g(ρ)| dρ.

Since (14) implies that G(s) → ∞ as s→ ∞ it then suffices to estimate

G(|h(t, R)|) =

∫ R

0

(G(|h(t, r)|)r dr ≤
∫ R

0

|g(h(t, r))||hr(t, r)| dr

≤ 1

2

∫ R

0

(

|hr|2 +
g2(h(t, r))

r2
)

rdr ≤ CE(u(t), R) .

Moreover we have exterior energy decay: For any 0 < λ ≤ 1 as t→ 0 there holds

(21) E(u(t), t) −E(u(t), λt) → 0.

An immediate consequence of (21) is the decay of time derivatives: Suppose that
N satisfies (14). Then

(22)
1

T

∫

KT

|ut|2 dz → 0 as T → 0.

These estimates seem particular to the equivariant setting. The (lengthy) proof of
(21) and the derivation of (22) are given in the appendix.

Finally, as is also well-known, in view of the uniform energy bounds (18) above,
we have uniform Hölder continuity away from x = 0.

Lemma 2.3. For any r0 > 0, any (t, r) and (s, q) with 2r0 ≤ q ≤ s < t ≤ 1, 2r0 ≤
r ≤ t there holds

(23) |h(t, r) − h(s, q)|2 ≤ C(|r − q| + |t− s|)
with a constant C depending only on the energy E(u(1), 1) and r0.

Proof. Given r0 > 0, for any t and r0 ≤ r′ < r ≤ t ≤ 1 by Hölder’s inequality and
(18) we have

|h(t, r) − h(t, r′)|2 ≤
(
∫ r

r′
|hr| dr′′

)2

≤ r − r′

r′
·
∫ r

r′
|hr|2 r′′ dr′′ ≤ C

r − r′

r0
,

while for any s < t and r0 ≤ r′ ≤ s we find

|h(s, r′) − h(t, r′)|2 ≤
(
∫ t

s

|ht(t
′, r′)| dt′

)2

≤ t− s

r0

∫ t

s

|ht(t
′, r′)|2 r′ dt′.

Combining these inequalities, for any (t, r) and (s, q) with 2r0 ≤ q ≤ s < t ≤
1, 2r0 ≤ r ≤ t and any r′ with r0 ≤ r′ ≤ r1 := inf{q, r} we find

|h(t, r) − h(s, q)|2 ≤ C
r − r′ + q − r′

r0
+ 2

t− s

r0

∫ t

s

|ht(t
′, r′)|2 r′ dt′.

Taking the average with respect to r′ ∈ [r1 −min{r0, |r−q|+ |t−s|}, r1], we obtain
the claim. �
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2.7. Proofs of Theorems 2.1 and 2.2. Fix a number ε1 = ε1(N) > 0 to be
determined below. For 0 < t ≤ 1 then choose R = R(t) > 0 so that

(24) ε1 ≤ E(u(t), 6R(t)) ≤ 2ε1.

Applying the energy inequality (18), for any |τ | ≤ 5R we have

(25) E(u(t+ τ), R) ≤ E(u(t), 6R) ≤ 2ε1

and similarly

(26) ε1 ≤ E(u(t+ τ), 6R+ |τ |) ≤ E(u(t+ τ), 11R).

We will choose ε1 so that 2ε1 < ε0. Then, in particular, from (17) and (24) we
deduce the inequality

(27) 6R(t) < t

for all t. In fact, we obtain a much stronger result.

Lemma 2.4. R(t)/t→ 0 as t→ 0.

Proof. Suppose by contradiction that for some sequence ti ↓ 0 (i → ∞) with
associated radii Ri = R(ti) there holds 6Ri ≥ λti for some constant λ > 0. Then
from (17) and (24) we deduce that

0 < ε0 − 2ε1 ≤ E(u(ti), ti) −E(u(ti), 6Ri) ≤ E(u(ti), ti) −E(u(ti), λti),

contradicting (21) for large i ∈ N. �

The following lemma is the main new technical ingredient in our work [24].

Consider the intervals ΛR(t)(t) =]t−R(t), t+R(t)[, 0 < t ≤ 1. By Vitali’s theorem
we can find a countable subfamily of disjoint intervals Λi = ΛR(ti)(ti), i ∈ N, such
that ]0, 1] ⊂ ∪∞

i=1Λ
∗
i , where Λ∗

i = Λ5R(ti)(ti). Observe that (27) implies

(28) inf Λ∗
i = ti − 5R(ti) > R(ti) =: Ri

for each i. For any τ > 0 the interval [τ, 1] is covered by finitely many intervals Λ∗
i

which, however, fail to cover ]0, 1] completely in view of (28). Therefore, we may
assume that ti → 0 as i→ ∞.

Lemma 2.5. With the above notations there holds

lim inf
i→∞

1

Ri

∫

Λi

∫

Bt(0)

|ut|2 dx dt = 0.

Proof. Negating the assertion, we can find a number δ > 0 and an index i0 ∈ N

such that

(29)

∫

Λi

∫

Bt(0)

|ut|2 dx dt ≥ δRi for i ≥ i0.

Given 0 < T < inf ∪i<i0Λ
∗
i , let I0 = {i ; inf Λ∗

i < T} ⊂ {i0, i0 + 1, . . . }. Observe
that

]0, T [⊂ ∪i∈I0Λ
∗
i .

By (28) we have
Ri < inf Λ∗

i = ti − 5Ri < T

and therefore
ti +Ri < T + 6Ri < 7T
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for all i ∈ I0. It follows that

(30) ∪i∈I0Λi ⊂]0, 7T ].

By choice of I0, our assumption (29), and in view of (30) we now obtain that

δT ≤ δ
∑

i∈I0

diam Λ∗
i = 10 δ

∑

i∈I0

Ri ≤ 10
∑

i∈I0

∫

Λi

∫

Bt(0)

|ut|2 dx dt

= 10

∫

∪i∈I0Λi

∫

Bt(0)

|ut|2 dx dt ≤ 10

∫

K7T

|ut|2 dz,
(31)

where we also used the fact that the intervals Λi are disjoint. But for small T > 0
this contradicts (22), thus proving the lemma. �

Proof of Theorem 2.1. i) Letting

ui(t, x) = u(ti +Rit, Rix), i ∈ N,

from Lemma 2.5 for a suitable subsequence we obtain

(32)

∫ 1

−1

∫

Bri
(0)

|∂tui|2 dx dt → 0 as i→ ∞,

where ri = ti/Ri − 1 → ∞ as i → ∞ on account of Lemma 2.4. Relabelling, we
may assume that (32) holds true for the original sequence (ui).

Moreover, the energy inequality (18) implies the uniform bound

(33) E(ui(t), ri) ≤ E(u(1), 1) =: E0

for all i ∈ N and |t| ≤ 1.

Hence we may extract a further subsequence such that ui ⇁ u∞ weakly in H1
loc

and locally uniformly away from x = 0 on [−1, 1] × R
2 as i → ∞, and similarly

for the associated functions hi. Their limit h∞ then is associated with u∞ and is a
time-independent solution of (15) away from x = 0. It follows that u∞(t, x) = u(x)
is a time-independent solution of (7) on ]−1, 1[×(R2\{0}); that is, u : R

2\{0} → N
is a smooth, co-rotational harmonic map with finite energy

E(u) =

∫

R2

|∇u|2 dx ≤ lim inf
i→∞

sup
|t|≤1

E(ui(t), ri) ≤ E0.

By [19] then u extends to a smooth harmonic map u : R
2 → N . Since R

2 is
conformal to S2 \ {p0} by stereographic projection from any point p0 ∈ S2 and
since the composition of a harmonic map with a conformal transformation again
yields a harmonic map with the same energy, we may thus regard u as a harmonic
map from S2 \ {p0} to N . Finally, recalling that E(u) < ∞ and again using [19],
we see that the map u extends to a smooth equivariant harmonic map u : S2 → N .

ii) To show that u is non-constant we now establish strong convergence

ui → u∞ in H1
loc(] − 1, 1[×R

2)

as i→ ∞. Recalling (25), we have

E(ui(t), 1) ≤ 2ε1, E(u∞(t), 1) ≤ 2ε1
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uniformly in i and |t| ≤ 1. Hence, from (20) for sufficiently small ε1 > 0 the images
of B1(0) under ui(t) or u∞ are all contained in a fixed coordinate system around
the center of symmetry O ∈ N . In addition, we can achieve that

(34) sup
|t|,|x|≤1

|B(ui)||ui − u∞| ≤ 1

4

uniformly in i ∈ N, provided ε1 > 0 is chosen sufficiently small.

For any ϕ ∈ C∞
0 (] − 1, 1[×R

2) with 0 ≤ ϕ ≤ 1 then, upon multiplying the
equation (7) for ui by (ui − u∞)ϕ and integrating by parts we obtain

(35)

∫

R1+2

|D(ui − u∞)|2ϕdz ≤
∫

R1+2

|B(ui)||Dui|2|ui − u∞|ϕdz + I,

with error

|I | ≤ C

∫

R1+2

(|∂tui|2ϕ+ |Dui||ui − u∞||Dϕ|) dz

+
∑

α

|
∫

R1+2

∂αu∞∂α(ui − u∞)ϕdz| → 0 as i→ ∞

in view of (32) and since ui → u∞ strongly in L2
loc by Rellich’s theorem.

Now we estimate

|Dui|2 ≤ 2|D(ui − u∞)|2 + 2|Du∞|2

and observe that
∫

R1+2

|Du∞|2|ui − u∞|ϕdz → 0

as i → ∞ by bounded almost everywhere convergence ui → u∞ and Lebesgue’s
theorem on dominated convergence. Also recalling (34), we thus may absorb the
first term on the right of (35) on the left to obtain that

∫

R1+2

|D(ui − u∞)|2ϕdz → 0

as i→ ∞. Since ϕ as above is arbitrary, this yields the desired convergence ui → u∞
in H1

loc(] − 1, 1[×R
2).

But, recalling (26), we also have the uniform lower bound

ε1 ≤ E(ui(t), 11)

for all i ∈ N and |t| ≤ 1 and we conclude that u∞ 6≡ const, as claimed. Therefore,
also u : S2 → N is non-constant, and the proof of Theorem 2.1 is complete. �

Proof of Theorem 2.2. In view of Theorem 2.1 it suffices to show that any
co-rotational harmonic map u : S2 → N with finite energy is constant. Let u be
such a map, viewed as a map u : R

2 → N . Also consider the associated distance
function ρ = h(r), a time-independent solution of (15). The image u(S2) being
compact there exists r0 > 0 such that

|h(r0)| = max
r>0

|h(r)|.

Hence hr(r0) = 0 and therefore ur(x) = 0 for any x ∈ ∂Br0(0).

Since any harmonic map u : R
2 → N with finite energy is conformal, the van-

ishing of ur implies that also uφ vanishes along ∂Br0(0), and we conclude that
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u ≡ const on ∂Br0(0). Equivariance of u then implies that g(h(r0)) = 0 and hence
h(r0) = 0 on account of (13). But then h ≡ 0 by choice of r0, and u ≡ const ≡ O,
as desired. �

3. Radially symmetric wave maps

Next, we show that the Cauchy problem for radially symmetric wave maps
u(t, x) = u(t, |x|) from the (1 + 2)-dimensional Minkowski space to an arbitrary
smooth, compact Riemannian manifold without boundary is globally well-posed
for arbitrary smooth, radially symmetric data.

3.1. The result. Again let N be a smooth, compact Riemmanian k-manifold
without boundary, isometrically embedded in R

n. Given smooth, radially sym-
metric data (u0, u1) = (u0(|x|), u1(|x|)) : R

2 → TN , by a result of Christodoulou-
Tahvildar-Zadeh [2] there is a unique smooth solution u = (u1, . . . , un) = u(t, |x|)
for small time to the Cauchy problem for the equation

(36) �u = utt − ∆u = B(u)(∂αu, ∂
αu) ⊥ TuN,

with initial data

(37) (u, ut)|t=0
= (u0, u1).

Here B again denotes the second fundamental form of N .

As shown by Christodoulou-Tahvildar-Zadeh [2], the solution may be extended
globally, if the energy of u is small or if the range of u is contained in a convex part
of the target N . Either condition, however, turns out to be unnecessary. In fact,
by using the blow-up analysis from [24] that we presented in the second chapter, in
[25], [26] we showed that the local solution may be extended globally for any target
manifold.

Theorem 3.1. Let N ⊂ R
n be a smooth, compact Riemannian manifold without

boundary. Then for any radially symmetric data (u0, u1) = (u0(|x|), u1(|x|)) ∈
C∞(R2;TN) there exists a unique, smooth solution u = u(t, |x|) to the Cauchy
problem (36), (37), defined for all time.

The regularity requirements on the data may be relaxed; we consider smooth
data mainly for ease of exposition.

Summarizing the ideas of the proof, as in the co-rotational symmetric setting of
[24] that we described in the second chapter, again we argue indirectly. Thus, we
suppose that the local solution u to (36), (37) becomes singular in finite time. As
before we then obtain a sequence of rescaled solutions ul on the region ]− 1, 1[×R

2

with energy bounds and such that ∂tul → 0 in L2
loc(]− 1, 1[×R

2). Finally, rephras-
ing the wave map equation intrinsically and imposing the exponential gauge, we
establish energy decay. But this contradicts the blow-up criterion of Christodoulou
and Tahvildar-Zadeh [2] and completes the proof. (The use of the exponential
gauge was suggested to me by Jalal Shatah.)
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3.2. Basic estimates. Let u = u(t, |x|) : [0, t0[×R
2 → N ⊂ R

n be a smooth ra-
dially symmetric wave map blowing up at time t0. Necessarily, blow-up occurs at
x = 0. As before, upon shifting and reversing time and then scaling our space-time
coordinates suitably, we may assume that u is a smooth radial solution to (36) on
]0, 1]× R

2 blowing up at the origin. Again let

KT = {z = (t, x); 0 ≤ |x| ≤ t ≤ T}
be the truncated forward light cone from the origin with lateral boundary

MT = {(t, x) ∈ KT ; |x| = t}.
Denoting as

e =
1

2
|Du|2 =

1

2
(|ut|2 + |ur|2), f =

1

2
|D||u|2 =

1

2
|ut + ur|2

the energy and flux density of u, and letting

E(u,R) =

∫

BR(0)

e dx, Flux(u, T ) =

∫

MT

f do

be the local energy and the flux through MT , then from [2], [22] we have the
following results just as in the co-rotational setting. The identity (9) again leads
to the energy inequality: For any t, τ, R > 0 there holds

(38) E(u(t), R) ≤ E(u(t+ τ), R + |τ |).
(Again, we only consider values such that 0 < t, t + τ ≤ 1. Together with [2] this
yields the blow-up criterion: There exists ε0 = ε0(N) > 0 such that

(39) E(u(t), t) ≥ ε0 for all 0 < t ≤ 1 .

Moreover, we have flux decay:

(40) F lux(u, T ) → 0 as T → 0.

As shown in the Appendix, similar to (21) and (22) we also have exterior energy
decay and decay of time derivatives: For any 0 < λ ≤ 1 as t→ 0 there holds

(41) E(u(t), t) −E(u(t), λt) → 0,

and

(42)
1

T

∫

KT

|ut|2 dz → 0 as T → 0.

Moreover, as shown in Lemma 2.3, the function u is locally uniformly Hölder con-
tinuous on ]0, 1] ×B1(0) away from x = 0.

Fix a number 0 < ε1 = ε1(N) < ε0/2 as determined below. For 0 < t ≤ 1 we
again choose R = R(t) so that

(43) ε1 ≤ E(u(t), 6R) ≤ 2ε1.

Then from (38) for any |τ | ≤ 5R we have

(44) E(u(t+ τ), R) ≤ E(u(t), 6R) ≤ 2ε1 < ε0

and similarly

(45) ε1 ≤ E(u(t+ τ), 6R+ |τ |) ≤ E(u(t+ τ), 11R).

In particular, combining (39) and (43) we deduce the inequality

(46) 6R(t) ≤ t
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for all t. In fact, from (39), (41), and (43) as in Lemma 2.4 we even obtain that

(47) R(t)/t→ 0 as t ↓ 0.

As in Lemma 2.5 we consider the intervals ΛR(t)(t) =]t−R(t), t+R(t)[, 0 < t ≤ 1.
An application of Vitali’s covering theorem and (42) then yields a sequence tl → 0
with corresponding radii Rl = R(tl) such that

1

Rl

∫

Λl

(

∫

Bt(0)

|ut|2 dx
)

dt → 0

as l → ∞, where Λl = ΛRl
(tl), l ∈ N. Rescale, letting

ul(t, x) = u(tl +Rlt, Rlx), l ∈ N.

Observe that ul solves (36) on [−1, 1]× R
2 with

(48)

∫ 1

−1

(

∫

Dl(t)

|∂tul|2 dx
)

dt→ 0 as l → ∞,

where
Dl(t) = {x;Rl|x| ≤ tl + Rlt}

exhausts R
2 as l → ∞ uniformly in |t| ≤ 1 on account of (47).

Moreover, from (38), (39), (44), and (45) we have the uniform energy estimates

(49)
1

2
E(ul(t), 1) ≤ ε1 ≤ E(ul(t), 11)

and

(50) ε0 ≤ 1

2

∫

Dl(t)

|Dul|2 dx = E(u(tl +Rlt), tl +Rlt) ≤ E(u(1), 1) =: E0,

uniformly for |t| ≤ 1 and sufficiently large l ∈ N. Hence, we may assume that
ul ⇁ u∞ weakly in H1

loc(] − 1, 1[×R
2) and locally uniformly away from x = 0,

where u∞(t, x) = u∞(|x|) is a time-independent radial map u∞ : R
2 → N with

finite energy E(u∞) ≤ E0.

Lemma 3.2. We have u∞ ≡ const, and Dul → 0 in L2
loc(] − 1, 1[×(R2 \ {0}) as

l → ∞.

Proof. We claim that u∞ is smooth and harmonic. Indeed, fix any function
ϕ ∈ C∞

0 (] − 1, 1[×R
2) vanishing near x = 0. Upon multiplying (36) by (ul − u∞)ϕ

and integrating by parts, we then have
∫

R1+2

|D(ul − u∞)|2ϕdz =

∫

R1+2

〈B(ul)(∂αul, ∂
αul), ul − u∞〉ϕdz + I,

where

|I | ≤ 2

∫

R1+2

|∂tul|2ϕdz +

∫

R1+2

|Dul||ul − u∞||Dϕ| dz

+

∣

∣

∣

∣

∫

R1+2

Du∞ ·D(ul − u∞)ϕdz

∣

∣

∣

∣

→ 0

as l → ∞. Observing that (ul − u∞)ϕ→ 0 uniformly, moreover, we have
∫

R1+2

〈B(ul)(∂αul, ∂
αul), ul − u∞〉ϕdz → 0
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as l → ∞, and ul → u∞ strongly in H1
loc(]− 1, 1[×R

2 \ {0}). Thus, we may pass to
the distribution limit in equation (36) for ul and find that u∞ is weakly harmonic
on R

2 \ {0}. Since u∞ has finite energy, by results of [19] then u∞ is smooth and
extends to a smooth, radially symmetric harmonic map u∞ : R

2 → N .

Next recall that a harmonic map u∞ : R
2 → N with finite energy is conformal;

in particular, there holds |∂ru∞| = 1
r |∂φu∞| ≡ 0, and u∞ must be constant. �

Finally we note the following estimate similar to [2], Lemma 4.

Lemma 3.3. For any ψ = ψ(t) ∈ C∞
0 (] − 1, 1[) there holds

∫ 1

−1

∫

B1(0)

|∂tul|2ψ| log |x|| dx dt =

∫ 1

−1

∫

B1(0)

e(ul)ψ dx dt+ o(1),

where o(1) → 0 as l → ∞.

Proof. In radial coordinates r = |x|, equation (36) for u = ul may be written in
the form

(51) utt −
1

r
∂r(rur) ⊥ TuN.

Multiplying by urψr
2 log r, we obtain

0 =
d

dt

(

〈ut, ur〉ψr2 log r
)

− d

dr

( |ut|2 + |ur|2
2

ψr2 log r

)

+ |ut|2ψr log r − 〈ut, ur〉ψtr
2 log r + e(u)rψ.

Upon integrating this identity over the domain 0 < r < 1, |t| < 1 and observing
that the boundary terms vanish, we find
∫ 1

−1

∫ 1

0

|ut|2ψr log r dr dt+

∫ 1

−1

∫ 1

0

e(u)rψ dr dt =

∫ 1

−1

∫ 1

0

〈ut, ur〉ψtr
2 log r dr dt.

In view of (48), (50), and Hölder’s inequality the last term may be estimated
∣

∣

∣

∣

∫ 1

−1

∫ 1

0

〈ut, ur〉ψtr
2 log r dr dt

∣

∣

∣

∣

2

=

∣

∣

∣

∣

1

2π

∫ 1

−1

∫

B1(0)

〈ut, ur〉ψtr log r dx dt

∣

∣

∣

∣

2

≤ C

∫ 1

−1

∫

B1(0)

|ut|2 dx dt ·
∫ 1

−1

∫

B1(0)

|ur|2 dx dt → 0 as l → ∞,

proving the claim. �

3.3. Intrinsic setting. Recalling (5), in terms of the pull-back covariant derivative
D in u∗TN we may write equation (51) as

(52) Dtut −
1

r
Dr(rur) = 0.

As was observed by Christodoulou-Tahvildar-Zadeh [2] and Hélein [7], with no loss
of generality, we may assume that TN is parallelizable; that is, there exist smooth
vector fields e1, . . . , ek such that at each p ∈ N the collection e1(p), . . . , ek(p) is an
orthonormal basis for TpN ; see [2], [7]. Given a (smooth) solution map u = u(t, r)

of (52) we then obtain a frame ei = Rj
i (ej ◦ u), 1 ≤ i ≤ k, for the pull-back bundle,

where R = R(t, r) = (Rj
i ) is a smooth map from R

1+2 into SO(k).
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Denoting

(53) Dei = Aj
i ej

with a matrix-valued connection 1-form A = A0 dt+A1 dr, we compute the curva-
ture F of D via the commutation relation

DαDβea −DβDαea = Dα(Ab
a,βeb) −Dβ(Ab

a,αeb)

= (∂αA
c
a,β − ∂βA

c
a,α +Ac

b,αA
b
a,β −Ac

b,βA
b
a,α)ec = F c

a,αβec,

or, more concisely,

dA+
1

2
[A,A] = F.

Moreover, we now impose the “exponential gauge” condition A1 = 0. This yields
the relation

∗dA = −∂rA0 = F01.

If we normalize A0(t, 1) = 0 for all t, from this relation we obtain

A0 =

∫ 1

r

F01 ds.

Observing that

(54) |F01| ≤ C|du|2,
from (49) we then deduce the estimate

|A0| ≤ a0 :=

∫ 1

r

|F01| ds ≤ C

∫ 1

r

|du|2 ds ≤ Cε1r
−1.

Note that in the exponential gauge for any fixed time t the frame field e = e(t, r)
is obtained by parallel transport along the curve γ(r) = u(t, r) from the frame
e(t, 1) at r = 1.

Expressing du as

du = ut dt+ ur dr = qiei,

where q = q0 dt + q1 dr is a vector-valued 1-form with coefficients q = (qi)1≤i≤k,
from (53) we have

Dα∂βu = Dα(qa
βea) = (∂αq

c
β +Ac

a,αq
a
β)ec.

With the shorthand notation

Dαqβ = (∂α +Aα)qβ

we then may write equation (52) in the form

(55) Dtq0 −
1

r
Dr(rq1) = ∂tq0 +A0q0 −

1

r
∂r(rq1) = 0.

Moreover, the commutation relation Dα∂βu−Dβ∂αu = 0 translates into the equa-
tion Drq0 = Dtq1; that is,

(56) ∂rq0 = ∂tq1 +A0q1.

Finally there holds

(57) |q0| = |ut|, |q1| = |ur|.
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3.4. Proof of Theorem 3.1. By using Lemma 3.3 we show that (48) for suffi-
ciently small ε1 > 0 leads to a contradiction with (49).

Fix a cut-off function 0 ≤ ϕ = ϕ(r) ≤ 1 in C∞
0 ([0, 1[) such that ϕ(r) = 1 for

r ≤ 1/2. Also fix 0 ≤ ψ = ψ(t) ≤ 1 in C∞
0 (]−1, 1[) such that ψ(t) = 1 for |t| ≤ 1/2.

For u = ul with associated 1-forms q, let

Q = Ql =

∫ 1

r

q1ϕds.

Note that by Hölder’s inequality and (49) we can estimate

(58) |Q|2 ≤
(
∫ 1

r

|q| ds
)2

≤
∫ 1

r

s|q|2 ds ·
∫ 1

r

ds

s
≤ 4ε1 log(

1

r
).

We will also use the bound

(59)

(
∫ r

0

s|q|ϕds
)2

≤
∫ r

0

s|q|2 ds ·
∫ r

0

s ds ≤ 2ε1r
2

resulting from (49). Similarly, we have

(
∫ r

0

s|q0|| log s|1/2ϕds

)2

≤ r2

2

∫ 1

0

s|q0|2| log s| ds,

which in view of (49), (54), and Lemma 3.3 allows to estimate

∫ 1

−1

∫ 1

0

(
∫ r

0

s|q0|| log s|1/2ϕds

)

|F01|ψ dr dt

≤
∫ 1

−1

(
∫ 1

0

s|q0|2| log s| ds
)1/2(∫ 1

0

r|F01| dr
)

ψ dt

≤ Cε1

(
∫ 1

−1

∫ 1

0

s|q0|2| log s|ψ ds dt
)1/2

≤ Cε
3/2
1 .

(60)

Also note that Lemma 3.2 implies

∫ 1

−1

∫ 1

0

r| log r|1/2|q|ψ dr dt ≤ C

(
∫ 1

−1

∫

B1(0)

r| log r||Du|2ψ dx dt
)1/2

→ 0(61)

as l → ∞.

Using the function Qϕψr as a multiplier, from (56) then we obtain

∫ 1

−1

∫ 1

0

∂tq0Qϕψr dr dt = −
∫ 1

−1

∫ 1

0

q0

(
∫ 1

r

∂tq1ϕds

)

ϕψr dr dt+ I

=

∫ 1

−1

∫ 1

0

|q0|2ϕ2ψr dr dt+

∫ 1

−1

∫ 1

0

q0

(
∫ 1

r

A0q1ϕds

)

ϕψr dr dt+ II,

where, in view of (58), and (61),

|I | = |
∫ 1

−1

∫ 1

0

q0Qϕψtr dr dt| ≤ C

∫ 1

−1

∫ 1

0

r|q0|| log r|1/2|ψt| dr dt → 0
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as l → ∞. Similarly,

|II | ≤ |I | + |
∫ 1

−1

∫ 1

0

q0

(
∫ 1

r

q0∂rϕds

)

ϕψr dr dt|

≤ C

∫ 1

−1

∫ 1

0

r|q0|| log r|1/2ψ dr dt → 0.

On the other hand, noting that

1

r
∂r(rq1)rQ = ∂r(rq1Q) + r|q1|2ϕ,

we obtain
∫ 1

−1

∫ 1

0

1

r
∂r(rq1)rQϕψ dr dt =

∫ 1

−1

∫ 1

0

r|q1|2ϕ2ψ dr dt+ III,

where, by (58) and (61),

|III | ≤
∫ 1

−1

∫ 1

0

r|q1||Q||ϕr|ψ dr dt ≤ C

∫ 1

−1

∫ 1

0

r| log r|1/2|q1|ψ dr dt→ 0

as l → ∞. Thus, from (55) we deduce the identity

∫ 1

−1

∫ 1

0

r(|q1|2 − |q0|2)ϕ2ψ dr dt+ o(1)

=

∫ 1

−1

∫ 1

0

q0

(
∫ 1

r

A0q1ϕds

)

ϕψr dr dt+

∫ 1

−1

∫ 1

0

A0q0

(
∫ 1

r

q1ϕds

)

ϕψr dr dt,

where o(1) → 0 as l → ∞. Using (59), (54) and repeated integration by parts, we
find
∫ 1

−1

∫ 1

0

q0

(
∫ 1

r

A0q1ϕds

)

ϕψr dr dt =

∫ 1

−1

∫ 1

0

(
∫ r

0

q0ϕs ds

)

A0q1ϕψ dr dt

≤ Cε
1/2
1

∫ 1

−1

∫ 1

0

ra0|q1|ϕψ dr dt = Cε
1/2
1

∫ 1

−1

∫ 1

0

r|q1|ϕ
(
∫ 1

r

|F01| ds
)

ψ dr dt

= Cε
1/2
1

∫ 1

−1

∫ 1

0

(
∫ r

0

s|q1|ϕds
)

|F01|ψ dr dt ≤ Cε1

∫ 1

−1

∫ 1

0

r|F01|ψ dr dt

≤ Cε1

∫ 1

−1

∫ 1

0

r|du|2ψ dr dt ≤ Cε21.

Similarly, we estimate, now using (58) and (60),

∫ 1

−1

∫ 1

0

A0q0

(
∫ 1

r

q1ϕds

)

ϕψr dr dt ≤ Cε
1/2
1

∫ 1

−1

∫ 1

0

a0|q0|| log r|1/2ϕψr dr dt

= Cε
1/2
1

∫ 1

−1

∫ 1

0

r|q0|| log r|1/2ϕ

(
∫ 1

r

|F01| ds
)

ψ dr dt

= Cε
1/2
1

∫ 1

−1

∫ 1

0

(
∫ r

0

s|q0|| log s|1/2ϕds

)

|F01|ψ dr dt ≤ Cε21.
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But then from (49), Lemma 3.2, and (48), with error o(1) → 0 as l → ∞ we obtain

ε1 ≤ 1

2

∫ 1

−1

∫

B11(0)

|Du|2ψ dx dt ≤ π

∫ 1

−1

∫ 1

0

r|q|2ϕ2ψ dr dt+ o(1)

≤ π

∫ 1

−1

∫ 1

0

r(|q1|2 − |q0|2)ϕ2ψ dr dt+ o(1) ≤ Cε21 + o(1),

which is impossible for sufficiently small ε1 > 0 and large l. The proof of Theorem
3.1 is complete.

4. Open problem

The above results naturally give rise to the question whether it is possible to
characterize blow-up of smooth wave maps u : [0, T [×R

2 → N at a first blow-up
point (T, x0) in a fashion similar to Theorem 2.1, leading to global well-posedness
of the Cauchy problem for arbitrarily large smooth data in cases where the target
manifold N does not support a non-constant harmonic sphere. Recent results of
Tao [29], [30] also point in this direction.

Appendix A: Exterior energy decay

In this Appendix we recall the proof of the following lemma which is fundamental
for the treatment of the equivariant and rotationally symmetric case.

Lemma 5.1. Let u be a radially symmetric solution of (36) or a co-rotational wave
map on K = K1 which is smooth away from the origin. Then for any 0 < λ ≤ 1
as t→ 0 there holds

E(u(t), t) −E(u(t), λt) → 0.

Proof. We follow the presentation in [20]. Therefore in the following we change
time t to −t.

With the notation

(62) e =
1

2
(|ur|2 + |ut|2), m = ur · ut, l =

1

2
(|ur|2 − |ut|2)

for a radially symmetric solution u of (36) we compute

(63)
∂

∂t
(rm) − ∂

∂r
(re) = rur · (utt −

1

r
(rur)r) + l = l,

thereby observing the geometric interpretation (51) of (36) and the fact that ur ∈
TuN . Moreover, recalling the equation (9) we have

(64)
∂

∂t
(re) − ∂

∂r
(rm) = 0.

Similarly, for a co-rotational wave map u with associated function h solving (15)
we let

e =
1

2
(|ur|2 + |ut|2) =

1

2
(|hr|2 + |ht|2 +

g2(h)

r2
), m = hr · ht,

L =
1

2
(|hr|2 +

g2(h)

r2
− |ht|2) −

2

r
f(h)hr

(65)
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and we compute

(66) ∂t(re) − ∂r(rm) = 0, ∂t(rm) − ∂r(re) = L.

Changing coordinates to

(67) η = t+ r , ξ = t− r ,

and introducing
A2 = r(e+m), B2 = r(e −m) ,

identities (63), (64) turn into

∂ξA2 = l ,

∂ηB2 = −l ,
where

r2l2 ≤ A2B2 .

Likewise, (66) can be written as

∂ξA2 = L ,

∂ηB2 = −L ,
where now, with F = g2/2, and using the fact that |h| ≤ C(E0) by (20) to bound
f2(h) ≤ CF (h),

L2 ≤ 3

4

(

h2
t − h2

r

)2
+

12

r2
h2

rf
2(h) +

3

r4
F 2(h)

≤ C

[

1

4
(h2

t − h2
r)

2 +
1

r2
(h2

t + h2
r)F (h) +

1

r4
F 2(h)

]

=
C

r2
A2B2 .

Thus in both cases we get the inequalities

(68) |∂ξA| ≤ C

r
B , |∂ηB| ≤

C

r
A .

Upon integrating (68) on a rectangle Γ = [η, 0] × [ξ0, ξ], as shown in Figure 1,
we obtain

-6���

��

@@I

@
@

@
@

@
@

@
@

E
E
E
E
E
E
E
E

��

@
@

@
@��

@
@

@
@

r
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ξ0

r=λ|t|

Γ

←(η,ξ)

Figure 1. Domain of integration Γ.

A(η, ξ) ≤ A(η, ξ0) + C

∫ ξ

ξ0

B(0, ξ′)

η − ξ′
dξ′ + C2

∫ ξ

ξ0

∫ 0

η

A(η′, ξ′)

(η − ξ′)(η′ − ξ′)
dη′ dξ′ .
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First we estimate the second term on the right.

∫ ξ

ξ0

B(0, ξ′)

η − ξ′
dξ′ ≤

(

∫ ξ

ξ0

B2(0, ξ′) dξ′

)1/2(
∫ ξ

ξ0

dξ′

(η − ξ′)2

)1/2

= (Flux(ξ0) − Flux(ξ))
1/2

√

1

η − ξ
− 1

η − ξ0

≤ C

√

Flux(ξ0)

|η − ξ| .

Letting

(69) a(η, ξ) = sup
η≤η′≤0

√

η′ − ξA(η′, ξ) ,

the third term may be bounded

∫ ξ

ξ0

∫ 0

η

A(η′, ξ′)

(η − ξ′)(η′ − ξ′)
dη′ dξ′ ≤

∫ ξ

ξ0

∫ 0

η

a(η, ξ′)

(η − ξ′)(η′ − ξ′)3/2
dη′ dξ′

≤
∫ ξ

ξ0

a(η, ξ′)

η − ξ′

(

1√
η − ξ′

− 1√−ξ′
)

dξ′ ≤
∫ ξ

ξ0

a(η, ξ′)
η

ξ′(η − ξ′)3/2
dξ′ .

(70)

Also observing that

(71) sup
η≤η′≤0

√

η′ − ξA(η′, ξ0) ≤ sup
η≤η′≤0

√
η′ − ξ√
η′ − ξ0

a(η, ξ0) =

√−ξ√−ξ0
a(η, ξ0)

with constants C1, C2 we then obtain

a(η, ξ) ≤
√−ξ√−ξ0

a(η, ξ0) + C1

√

Flux(ξ0) + C2

∫ ξ

ξ0

a(η, ξ′)
η

ξ′(η − ξ′)
dξ′ .

Setting

(72) ρ(ξ′) =
η

ξ′(η − ξ′)
,

and letting

(73) F (ξ) =

∫ ξ

ξ0

a(η, ξ′)ρ(ξ′) dξ′, G(ξ) =

√−ξ√−ξ0
a(η, ξ0) + C1

√

Flux(ξ0) ,

for any fixed η we then find the differential inequality

(74) F ′ ≤ Gρ+ C2Fρ in [ξ0, λ
′η] ,

where λ′ = (1 + λ)/(1 − λ) > 1. Applying Gronwall’s lemma we obtain

(75) F (ξ) ≤
∫ ξ

ξ0

G(ξ′)ρ(ξ′)e
C2

R ξ

ξ′
ρ(ξ′′)dξ′′

dξ′ .

But for ξ0 ≤ ξ′ ≤ ξ = λ′η we have
∫ ξ

ξ′
ρ(ξ′′)dξ′′ =

∫ ξ

ξ′

η

ξ′′(η − ξ′′)
dξ′′ = log

ξ(η − ξ′)

ξ′(η − ξ)
= log

ξ(ξ − λ′ξ′)

ξ′(ξ − λ′ξ)
≤ log

λ′

λ′ − 1
.
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Figure 2. Triangular region ∆.

Hence we can estimate

a(η, ξ) ≤ G+ C2F

≤
√−ξ√−ξ0

a(η, ξ0) + C1

√

Flux(ξ0)

+ C3

∫ ξ

ξ0

(√−ξ′√−ξ0
a(η, ξ0) + C1

√

Flux(ξ0)

)

η

ξ′(η − ξ′)
dξ′ ,

(76)

where C3 = eC2 log λ′

λ′−1 . We also know that

a(η, ξ0) ≤ sup
η≤η′≤0

√

η′ − ξ0 sup
η≤η′≤0

A(η′, ξ0) ≤ C(ξ0)
√

−ξ0 ,

because u is assumed to be regular away from the origin, implying that A is bounded
by a constant depending on ξ0. Now, given ε > 0, we can fix ξ0 < 0 small enough
such that C

√

Flux(ξ0) < ε. Then,

a(ξ/λ′, ξ) ≤ C(ξ0)
√

−ξ + ε+ C(ξ0)

∫ ξ

ξ0

ξ/λ′√−ξ′(ξ/λ′ − ξ′)
dξ′ + Cε

≤ C(ξ0)
√

−ξ + Cε ≤ Cε

for ξ < 0 small enough. Therefore,

A(η, ξ) ≤ a(ξ/λ′, ξ)√
η − ξ

≤ Cε√
η − ξ

for (η, ξ) small enough inside Kλ
ext. Hence,

∫ 0

η

A2(η′, ξ)dη′ ≤ Cε2
∫ 0

ξ/λ′

dη′

η′ − ξ
= Cε2 log

1

(λ′ − 1)
= Cε2 .

Finally, if we integrate the energy identity (64)) on the triangle ∆ (as shown in
Figure 2 with vertices at (η, ξ), (0, ξ), and (0, η + ξ), with η = ξ/λ′ as before), we
obtain

0 = −
∫ |t|

λ|t|

e(r, t)r dr −
∫ 0

η

r(e+m)dη′ +

∫ ξ

ξ+η

r(e−m)dξ′ = I + II+ III .

As t → 0 we proved that II → 0; moreover, III → 0 because it is the flux, and
therefore I → 0. �

As consequence we obtain the decay of time derivatives.
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Corollary 5.2. Let u be a radially symmetric solution of (36) or a co-rotational
wave map on K = K1 which is smooth away from the origin. In the latter case
also suppose that N satisfies (14). Then

1

T

∫

KT

|ut|2 dz → 0 as T → 0.

Proof. Again we change time t to −t. Multiply the identity (63), (66), respectively,
by r and integrate on the truncated cone

K−ε
T = {(t, x); t ≤ −ε, |x| ≤ −t ≤ −T},

and let ε→ 0 to obtain
∣

∣

∣

∣

∫∫

K0
T

u2
t r dr dt−

∫ |T |

0

(utur)
∣

∣

t=T
r2 dr

∣

∣

∣

∣

≤ C|T |Flux(T ) .

Therefore, for any λ ∈]0, 1[ we have

1

|T |

∫ 0

T

∫ −t

0

u2
t r dr dt ≤

1

|T |

∫ |T |

0

|(utur)
∣

∣

t=T
|r2 dr + C Flux(T )

≤ C

|T |

∫ |T |

0

e(T, r)r2 dr + C Flux(T )

≤ C

|T |

(

∫ λ|T |

0

e(T, r)r2 dr +

∫ |T |

λ|T |

e(T, r)r2dr

)

+ C Flux(T )

≤ C(λE0 +Eλ
ext(T ) + Flux(T )) .

Given ε > 0 we then may choose λ > 0 such that the first term on the right is less
then ε/3. By Lemma 5.1 and by decay of the flux the second and third terms also
will be less than ε/3 for T sufficiently close to 0. �

Appendix B: The Cauchy problem for wave maps

In this Appendix we recall the approach presented in [21] for showing global
existence and uniqueness for the Cauchy problem for wave maps from the (1 +m)-
dimensional Minkowski space, m ≥ 4, to any complete Riemannian manifold with
bounded curvature, provided the initial data are small in the critical norm.

We study the Cauchy problem for wave maps u : R
m+1 → N solving the equation

(77) Dα∂αu = 0

with initial data

(78) (u, ut)|t=0
= (u0, u1) ∈ Ḣ

m
2 × Ḣ

m
2 −1(Rm;TN).

Also recall the equivalent extrinsic form of equation (77)

(79) �u = −∂α∂αu = utt − ∆u = B(u)(∂αu, ∂
αu).

With L(2m,2)(Rm) ↪→ L2m(Rm) denoting the Lorentz space, the main result from
[21] may be stated, as follows.
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Theorem 6.1. Suppose N is complete, without boundary and has bounded curva-
ture in the sense that the curvature operator R and the second fundamental form
B and all their derivatives are bounded, and let m ≥ 4. Then there is a constant
ε0 > 0 such that for any (u0, u1) ∈ H

m
2 ×H

m
2 −1(Rm;TN) satisfying

||u0||Ḣ m
2

+ ||u1||Ḣ m
2
−1 < ε0

there exists a unique global solution u ∈ C0(R;H
m
2 ) ∩ C1(R;H

m
2 −1) of (77), (78)

satisfying

(80) sup
t

||du(t)||
Ḣ

m
2
−1 +

∫

R

||du(t)||2L(2m,2)(Rm) dt ≤ Cε0

and preserving any higher regularity of the data.

Terence Tao, and independently also Sergiu Klainerman and Igor Rodnianski
pointed out that estimates similar to the crucial L1

tL
∞
x -estimate in Lemma 6.2

below can also be obtained from bilinear estimates for the wave equation obtained
by Klainerman-Tataru [11]. Tristan Rivière has brought to our attention further
applications of Lorentz spaces in gauge theory related to our use of Lorentz spaces
here. We refer to the Introduction for a further discussion of the result.

6.1. Uniqueness and higher regularity. The condition (80) easily yields unique-
ness when we consider the extrinsic form (79) of the wave map system. Indeed, let
u and v be solutions to (79) of class H

m
2 with u, v ∈ C0(R;H

m
2 ) ∩ C1(R;H

m
2 −1),

and suppose that

u|t=0
= v|t=0

, ut|t=0
= vt|t=0

.

Moreover, we assume (80), that is, in particular,

||du||2L2
t L2m

x
=

∫

R

||du(t)||2L2m(Rm) dt <∞,

and similarly for v. Then w = u− v satisfies

wtt − ∆w = [B(u) − B(v)](∂αu, ∂
αu) +B(v)(∂αu+ ∂αv, ∂

αw).

Multiplying by wt, we obtain

1

2

d

dt
||dw(t)||2L2 = I(t) + II(t),

where by Sobolev’s embedding Ḣ1(Rm) ↪→ L
2m

m−2 (Rm) we can estimate

I(t) =

∫

Rm

〈[B(u) − B(v)](∂αu, ∂
αu), wt〉 dx ≤ C

∫

Rm

|du|2|w||dw| dx

≤ C||du||2L2m ||w||
L

2m
m−2

||dw||L2 ≤ C||du||2L2m ||dw||2L2 .

In order to bound the term II(t), we note that orthogonality 〈B(u)(·, ·), ut〉 = 0 =
〈B(v)(·, ·), vt〉 implies

|〈B(v)(∂αu, ∂
αw), wt〉| = |〈B(v)(∂αu, ∂

αw), ut〉|
= |〈[B(v) −B(u)](∂αu, ∂

αw), ut〉| ≤ C|du|2|w||dw|,
and similarly for the term involving ∂αv.

Thus also this term can be bounded

II(t) ≤ C(||du||2L2m + ||dv||2L2m)||dw||2L2 ,
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yielding the inequality

d

dt
||dw||2L2 ≤ C(||du||2L2m + ||dv||2L2m)||dw||2L2 .

Hence we obtain the uniform estimate

||dw||2L∞t L2
x
≤ ||dw(0)||2L2 · exp(C(||du||2L2

t L2m
x

+ ||dv||2L2
t L2m

x
)).

Since dw(0) = 0, uniqueness follows.

Higher regularity estimates for (smooth) solutions u of (79) satisfying (80) for
sufficiently small ε > 0 can be obtained in similar fashion by differentiating the
intrinsic form of the wave map equation covariantly in spatial directions and using
standard energy estimates; see [21] for details.

6.2. Moving frames and Gauge condition. Our approach requires the con-
struction of a suitable frame for the pull-back bundle u∗TN , as pioneered by
Christodoulou-Tahvildar-Zadeh [2] and Hélein [7]. With no loss of generality, we
may assume that TN is parallelizable, that is, there exist smooth vector fields
e1, . . . , ek such that at each p ∈ N the collection e1(p), . . . , ek(p) is an orthonormal
basis for TpN ; see [2], [7]. Given a (smooth) map u : R

m+1 → N then the vector
fields ea ◦ u, 1 ≤ a ≤ k, yield a smooth orthonormal frame for the pull-back bundle
u∗TN . Moreover, we may freely rotate this frame at any point z = (t, x) ∈ R

m+1

with a matrix (Rb
a) = (Rb

a(z)) ∈ SO(k), thus obtaining the frame

ea = Rb
aeb ◦ u, 1 ≤ a ≤ k.

Expressing du as

(81) du = qaea

with an R
k-valued 1-form q = qα dx

α, then we have

|du|2 = |q|2 =

m
∑

α=0

|qα|2 .

In particular, for 1 ≤ p ≤ ∞ the Lp-norm of du is well-defined, independently of
the choice of “gauge” (Rb

a), and coincides with the Lp-norm of du in the extrinsic
representation of u as a map u : R

m+1 → N ⊂ R
m. Later we will see that if the

gauge R is suitably chosen, and if ε0 > 0 is sufficiently small, also the norms of the
derivatives of du and the derivatives of q agree up to a multiplicative constant.

Letting D = (Dα)0≤α≤m be the pull-back covariant derivative, we have

(82) Dea = Ab
aeb, 1 ≤ a ≤ k,

for some matrix-valued 1-form A = Aαdx
α. Fix a pair of space-time indices 0 ≤

α, β ≤ m. The curvature of D enters in the commutation relation

DαDβea −DβDαea = Dα(Ab
a,βeb) −Dβ(Ab

a,αeb)

= (∂αA
c
a,β − ∂βA

c
a,α +Ac

b,αA
b
a,β −Ac

b,βA
b
a,α)ec = F c

a,αβec,

or

(83) ∂αAβ − ∂βAα + [Aα, Aβ ] = Fαβ = R(∂αu, ∂βu)

for short. (The comma separates the form subscript from the vector subscript and
does not indicate a differential.)
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Following Hélein [7] we choose the columb gauge

(84)

m
∑

i=1

∂iAi = 0.

This results in the equation

(85) ∆Aβ + ∂i[Ai, Aβ ] = ∂iFiβ = ∂i(R(∂iu, ∂βu)), 0 ≤ β ≤ m,

where we tacitly sum over 1 ≤ i ≤ m. Given u : R
m+1 → N with du having

sufficiently small Lm-norm, this equation admits a unique solution A which for any
fixed time we may represent as

(86) Aβ = Gi ∗ ([Ai, Aβ ] − Fiβ),

where

G(x) =
c

|x|m−2

is the fundamental solution to the Laplace operator on R
m and Gi = −∂iG.

Indeed, from (85) and elliptic regularity theory we have the a-priori estimate

||A||Lm ≤ C||A||
Ẇ 1, m

2
≤ C||[A,A]||

L
m
2

+ C||F ||
L

m
2

≤ C||A||2Lm + C||R||L∞ ||du||2Lm ;

confer [5], Section 4.3. For sufficiently small ||A||Lm we may absorb the first term
on the right on the left hand side of this equation to obtain at any fixed time the
estimate with constants C independent of t

(87) ||A||Lm ≤ C||A||
Ẇ 1, m

2
≤ C||du||2Lm ≤ C||du||2

Ḣ
m
2
−1 ≤ Cε0.

For later use we derive further estimates for the connection 1-form A and the
curvature F , assuming that ε0 > 0 is sufficiently small. For the sake of exposition,
we indicate these estimates only in the case when m = 4 and refer to [21] for the
general case. For 1 ≤ s ≤ ∞ again denote as L(p,s)(Rm) the Lorentz space.

Lemma 6.2. Let m = 4, and fix r = 8/5.

(i) For any time t there holds

‖∇2A‖Lr + ‖∇∂0A‖Lr ≤ C‖∇F‖Lr ≤ C‖du‖L8‖du‖Ḣ1 .

(ii) For any time t we have

‖A‖L∞ ≤ C‖du‖2
L(8,2) .

Proof. (i) To estimate ∇2A, observe that equation (85) implies

(88) ‖∇2A‖Lr ≤ C‖∇[A,A]‖Lr + C‖∇F‖Lr .

By Hölder’s inequality and Sobolev’s embedding we can estimate

‖∇[A,A]‖Lr ≤ 2‖∇A‖Lr1‖A‖Lm ≤ C‖∇2A‖Lr‖A‖Lm ,

where
1

r1
=

1

r
− 1

m
=

3

8
.

From (87) and (88) then, for sufficiently small ε0 > 0 we obtain

‖∇2A‖Lr ≤ C‖∇F‖Lr .
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The term ∇F only involves terms of the form R(∇∂αu, ∂βu) and ∇R(∂αu, ∂βu)
and therefore may be estimated

|∇F | ≤ C(|∇du||du| + |du|3).
Letting q = 8 = 2m, so that 1/r = 5/8 = 1/q + 1/2, upon estimating

‖∇F‖Lr ≤ C(‖∇du‖L2‖du‖Lq + ‖du‖2
L4‖du‖Lq) ,

from Sobolev’s embedding ‖du‖L4 ≤ C‖du‖Ḣ1 ≤ C we conclude that

‖∇2A‖Lr ≤ C‖∇F‖Lr ≤ C‖du‖L8‖du‖Ḣ1 .

To estimate ∇∂0A we note that the equations

∂0Ai = ∂iA0 + [Ai, A0] + F0i

and
∆∂0A0 + ∂i∂0[Ai, A0] = ∂i∂0Fi0 ,

from (85) make exchanging of time derivative by spatial derivative possible and
thus imply the desired estimate.

(ii) By the Sobolev embedding into Lorentz spaces and i), we have

‖A‖L(8,2) ≤ C‖A‖
L(8, 8

5
) ≤ ‖A‖

Ẇ 2, 8
5
≤ C‖du‖L8 .

Therefore, and since for any m ≥ 4 we have Gi ∈ L( m
m−1 ,∞), the dual of L(m,1),

using the representation of A given by (86) we obtain

‖A‖L∞ ≤ C(‖[A,A]‖L(4,1) + ‖F‖L(4,1)) ≤ C(‖A‖2
L(8,2) + ‖du‖2

L(8,2)) ≤ C‖du‖2
L(8,2) ,

as claimed. �

6.3. Equivalence of Norms. Estimate (87) implies the equivalence of the extrin-
sic H`-norm of du and the H`-norm of q for any `, provided ε0 > 0 is sufficiently
small. To see this consider a vector field W in u∗TN whose coordinates in the
frame {ea} are given by

W = Qaea = Qe

with
‖W‖L2 = ‖Q‖L2 .

The extrinsic partial derivative of W can be computed from the covariant derivative
and the second fundamental form B as

DkW = ∂kW +B(u)(∂ku,W ) = (∂kQ+AQ)e ;

that is,
∂kW = (∂kQ+AQ)e−B(u)(∂ku,Qe).

Therefore from (12), Sobolev embedding, and boundedness of the second funda-
mental form B we obtain

∣

∣ ||∂W ||L2 − ||∂Q||L2

∣

∣ ≤ C‖AQ‖L2 + ‖duQ‖L2

≤ C(‖A‖Lm + ‖du‖Lm)‖∂Q‖L2 ≤ Cε0‖∂Q‖L2 .

By linearity of the map Q 7→ W and interpolation we conclude the equivalence
of the Hs-norms of Q and W for all 0 ≤ s ≤ 1. The same argument establishes
the equivalence of the covariant and extrinsic Hs-norms of W for 0 ≤ s ≤ 1. By
applying this argument iteratively to W = ∇`du for ` = 0, 1, . . . , we then obtain
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the equivalence of the Hs-norm of du and Hs-norm of q for any s ≥ 0, provided
ε0 > 0 is sufficiently small.

6.4. A priori bounds. In order to obtain the a-priori bounds from which we may
derive existence, we represent a local smooth solution u of (77), (78) in terms of
the 1-form q given by (81), where the frame (ea) is in Coulomb gauge.

From (82) then we have the equations

0 = Dα∂βu−Dβ∂αu = (Dαqβ −Dβqα)e,

where we denote

(89) Dαqβ = (∂α +Aα)qβ ;

in components, this is

Dα(qa
βea) = (∂αq

c
β +Ac

a,αq
a
β)ec.

Again the comma separates the form subscript from the vector subscript and does
not indicate a differential.

That is, we have

(90) Dαqβ −Dβqα = 0.

Moreover, the wave map equation (77) yields the equation

(91) Dαqα = 0.

Differentiating (91) with respect to xβ and using (83), (90), we derive the covariant
wave equation

0 = DβD
αqα = DαDβqα + Fα

β qα = DαDαqβ + Fα
β qα.

Expanding this identity using (89), we obtain

(∂2
t − ∆)qβ = 2Aα∂αqβ + (∂αAα)qβ +AαAαqβ + Fα

β qα =: hβ .(92)

We can estimate q in terms of the initial data and h by using the Strichartz
estimate for the linear wave equation

(93) �v = h, v|t=0
= f, vt|t=0

= g.

Again denoting as Ḣγ = (
√
−∆)−γL2(Rm) the homogeneous Sobolev space, and

as L(p,r)(Rm) the Lorentz space, from Keel-Tao [9], Corollary 1.3, if h = 0 for any
T > 0 we have

||v||
L2([0,T ];L

2(m−1)
m−3 (Rm))

+ ||v||C0([0,T ];Ḣγ (Rm)) + ||vt||C0([0,T ];Ḣγ−1(Rm))

≤ C(||f ||Ḣγ (Rm) + ||g||Ḣγ−1(Rm)).

where γ = m+1
2(m−1) . If m = 4, we have γ = 5

6 and the preceding becomes

||v||L2([0,T ];L6(R4)) + ||v||C0([0,T ];Ḣ5/6(R4)) + ||vt||C0([0,T ];Ḣ−1/6(R4))

≤ C(||f ||Ḣ5/6(R4) + ||g||Ḣ−1/6(R4)).
(94)

By real interpolation between this estimate and the analogous estimate for deriva-
tives of v, and using the embedding (in the notation of [9])

(L2
tL

6
x, L

2
t Ẇ

1,6
x ) 1

6 ,2 ↪→ L2
tL

(8,2)
x ,
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we obtain

(95) ||v||
L2

t L
(8,2)
x

+ ||dv||C0([0,T ];L2) ≤ C(||f ||Ḣ1 + ||g||L2).

By Duhamel’s principle, for general h it then follows that

(96) ||v||
L2

t L
(8,2)
x

+ ||dv||C0
t L2

x
≤ C(||f ||Ḣ1 + ||g||L2 + ||h||L1

t L2
x
).

(The crucial gain of the Lorentz exponent by real interpolation was already observed
by Keel and Tao [9] but was omitted in the final statement of their theorem.)

We will apply estimate (96) to equation (92) on any time interval [0, T ] such
that ||du||Ḣ1 remains sufficiently small, uniformly for 0 < t < T . Also using the
equivalence of the Hs-norms of du and q for s ≤ 1 on any such time interval, we
obtain

||du||C0
t Ḣ1

x
+ ||du||

L2
t L

(8,2)
x

≤ C(||dq||C0
t L2

x
+ ||q||

L2
t L

(8,2)
x

)

≤ C(||dq(0)||L2 + ||h||L1
t L2

x
) ≤ C(||du(0)||Ḣ1 + ||h||L1

t L2
x
)

≤ C(||u0||Ḣ2 + ||u1||Ḣ1 + ||h||L1
t L2

x
) .

To estimate the various terms in h we observe that by Lemma 6.2 at any time t
with r1 = 8/3 we have

||h||L2 ≤ 2‖A∂q‖L2 + ‖∂Aq‖L2 + ‖A2q‖L2 + ‖Fq‖L2

≤ 2‖A‖L∞‖q‖Ḣ1 +
(

‖∇A‖Lr1 + ‖A2‖Lr1 + ‖F‖Lr1

)

‖q‖L8 .

But Lemma 6.2 with r = 8/5 implies

‖∇A‖Lr1 + ‖A2‖Lr1 + ‖F‖Lr1 ≤ C(‖∇2A‖Lr + ‖∇(A2)‖Lr + ‖∇F‖Lr)

≤ C‖du‖L8‖du‖Ḣ1 .

Here we also used Sobolev’s embedding and (87) to bound

‖∇(A2)‖Lr ≤ C‖∇A‖Lr1‖A‖L4 ≤ C‖∇2A‖Lr .

From Lemma 6.2 we then obtain

||h||L2 ≤ C‖q‖L8‖du‖L8‖du‖Ḣ1 + 2‖A‖L∞‖q‖Ḣ1 ≤ C‖du‖2
L(8,2)‖du‖Ḣ1 .

Using these estimates, we can bound h by

||h||L1
t L2

x
≤ C||du||2

L2
t L

(8,2)
x

‖du‖L∞t Ḣ1
x

and we conclude that

||du||L∞t Ḣ1 + ||du||
L2

t L
(8,2)
x

≤ C(||u0||Ḣ2 + ||u1||Ḣ1 + ||du||2
L2

t L
(8,2)
x

‖du‖L∞t Ḣ1
x
) .

A global priori bound on ||du||L∞t Ḣ1
x

+ ||du||L2
t L8

x
thus follows, provided ||u0||Ḣ2 +

||u1||Ḣ1 is sufficiently small.
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6.5. Existence. Recall that C∞×C∞(Rm;TN) is dense inH
m
2 ×H m

2 −1(Rm;TN).

We can thus find smooth data (u
(k)
0 , u

(k)
1 ) → (u0, u1) in H

m
2 × H

m
2 −1(Rm;TN).

The local solutions u(k) to the Cauchy problem for (77) with data (u
(k)
0 , u

(k)
1 ) by

our a-priori bounds and regularity results for sufficiently small energy

||u0||2Ḣ m
2

+ ||u1||2Ḣ m
2
−1 < ε0

then may be extended as smooth solutions to (77), (78) for all time and will satisfy
the uniform estimates

||du(k)||
C0

t Ḣ
m
2
−1

x

+ ||du(k)||L2
t L2m

x
≤ C(||u(k)

0 ||
Ḣ

m
2

+ ||u(k)
1 ||

Ḣ
m
2
−1) < Cε0

for sufficiently large k.

Hence as k → ∞ a subsequence u(k) ⇁ u weakly in H
m
2

loc(R
m+1), where

||du||
C0

t Ḣ
m
2
−1 + ||du||L2

t L2m
x

≤ C(||u0||Ḣ m
2

+ ||u1||Ḣ m
2
−1) .

Since m
2 ≥ 2, by Rellich’s theorem for a further subsequence du(k) → du converges

pointwise almost everywhere, and u solves (77), (78), as claimed.
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