

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 982 – 992, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Performance Contract System in a Grid Enabling,
Component Based Programming Environment*

Pasquale Caruso1, Giuliano Laccetti2, and Marco Lapegna2

1 Institute of High Performance Computing and Networking, Naples branch,
National Research Council – via Cintia Monte S. Angelo, 80126 Naples, Italy

2 Department of Mathematics and Applications,
 University of Naples Federico II – via Cintia Monte S. Angelo, 80126 Naples, Italy

Abstract. In these years, grid computing is probably the most promising ap-
proach for building large scale and cost effective applications. However, this
very popular approach needs a sophisticated software infrastructure to address
several requirements. One of these requirements is the ability to sustain a pre-
dictable performance in front to the fluctuations related to the dynamic nature
of a grid. In this paper we describe design and realization of a Performance
Contract System, a software infrastructure that manages the computational ker-
nel of a grid application with the aim to face such aspect of the grid comput-
ing, as well as the strategies and the experiences to integrate it in a grid-
enabling component-based programming environment still under development.

1 Introduction

As stated in [7], a Grid is a system that “… coordinates resources that are not subject
to centralized control, … using standard, open, general purpose protocols and inter-
faces,… to deliver non trivial qualities of services”. That means that a Grid infra-
structure is built on the top of a collection of disparate and distributed resources
(computers, databases, network, software …) with functionalities greater than the
simple sum of those addends [8]. The “added value” is a software architecture aimed
to deliver good Quality of Service (QoS), so a stronger attention has been recently
given on the technologies enabling it (see for example [10]). Inside this software in-
frastructure, a significant part, known as Performance Contracts System, is devoted
to the aspects related to the response time and to the delivered performance. Grid top-
ics related to performance contract systems have been widely studied in the last
years, mainly in the GraDS project (see for example [1,2]). Other papers (see [15])
report studies about the forecast of the performances in distributed computing envi-
ronment, by using algorithms simulating an ideal customer, opportunely defined by
means of some rules of behavior, in terms of use of the resources. A Performance

* This work has been partially supported by Italian Ministry of Education, University and Re-

search (MIUR) within the activities of the WP9 workpackage “Grid Enabled Scientific Li-
braries” , coordinated by A. Murli, part of the MIUR FIRB RBNE01KNFP Grid.it project
“Enabling Platforms for High-Performance Computational Grids Oriented to Scalable Vir-
tual Organizations”.

 A Performance Contract System 983

Contract of an application for a computational grid by means of the computational
cost of the algorithm is defined in [19] and then it is checked and validated.

Approaches that make use of statistical data , on the other hand, are introduced in
[13,22]. Results related to the development of performance contracts based on the fit-
ting of runtime data are reported, finally, in [16]. With regard to the run time moni-
toring, several tools for distributed applications are available and they will be
shortly described in Section 4 [18,20,27]. A statistical analysis that, instead of check-
ing all the software modules of the application, uses only some meaningful sections
of the application itself, is developed in [17].

This paper is therefore organized as follows: in Section 2 we outline our Perform-
ance Contracts System and its role in a grid application; in Section 3 we introduce the
software environment in which the Performance Contract System will be integrated;
finally, in Section 4, we show some computational results about the definition of the
performance contract and the related monitoring of a parallel routine that is part of a
medical imaging application.

2 The Role of a Performance Contract System in a
 Grid Application

One of the aspects of grid computing is the simple and transparent use of the compu-
tational resources of a distributed system [8]. To such aim it is “mandatory”, in some
way, the presence of several software units, that are side by side to the application.
Among the tasks of such software modules there are, for example, the selection of the
resources, the development of the performance contract, its monitoring and the man-
agement of possible violations of the contract itself. The module that manages all ac-
tivities is the Application Manager (AM), whose outline (or workflow) is depicted in
Fig. 1. Its main software component are:

1. Resource broker. This component selects the computational resources on the ba-
sis of information about the application (e.g. the dimension of the problem), the
user (e.g. the time to solution, that is the maximum amount of time to complete
the application), the state of the grid (e.g. resources available in that moment) and
finally, information about previous executions (e.g. performances caught up on a
machine already used). See [6,14] for an example of selection of the computa-
tional resources.

2. Contract developer. This component has in charge the definition of the Perform-
ance Contract on the basis of the resources selected in step 1 without other input
from the user. These information are combined with those related to the compu-
tational features of the application (e.g. the computational cost) as well as to the
performance of previous executions (e.g. stored in a “historical performance da-
tabase”); more details related to these aspects are reported in the sequel.

3. Monitor of the application. This is a key software item for a reliable grid-enabled
application, because the actual performance can be very different from that one
specified in the Performance Contract. The dynamic nature of distributed re-
sources not under the same centralized control, can do these values very different
among them. Some existing tool for the monitoring of distributed application are
shortly described in the next Section.

984 P. Caruso, G. Laccetti, and M. Lapegna

4. Manager of the violation policy. This is the software item aimed to take the suit-
able actions in case of violation of the Performance Contract. Typical actions are
the migration of the application on other resources, redefinition of the terms of
the contract or the addition of other computational resources. See [23] for an ex-
ample of migration strategy.

Fig. 1. Workflow of the Application Manager

A Performance Contracts System is the set of all software units of the Application
Manager related to the performance contract and its monitoring. The definition of a
Performance Contract is not a new one (see for example [26]), but in a grid environ-
ment it assumes a key role. A performance contract can be defined as a forecast of
the performances of an application on given computational resource. More pre-
cisely, assigned:

• some computational resources (e.g. processors, memories, networks...)
• with given capability (e.g. computation speed, memory bandwidth...)
• and an application with given characteristics (e.g. dimension of the problem,

amount of I/O, number of operations..)
a Performance Contract states

• the achievement of a fixed performances

There are several way to express a Performance Contract depending on the kind
of application. Typical examples are the attainment of F operations/sec, the execution
of I iterations/sec, transfer of B bytes/sec or the time necessary to compute a compu-
tational step (e.g. one frame in a image reconstruction problem). Obviously the
choice among them depends on the features of the application.

Once selected the computational resources, the definition of the performance con-
tract is essentially based on the following information:

1. use of a performance model based on the features of the application and of
the selected computational resources. To be realistic, the definition of the
model must take into account the computational cost of the algorithm, as

resource
selection

application
& user info

Network

performance
database

contract
development

application
 execution

violations
management

resources performance
contract monitoring

application

data
store
load

end

Stop/restart
application

 A Performance Contract System 985

well as the workload of the resources, the fraction of peak performance actu-
ally obtainable, values of benchmarks, and so on. Such approach can be de-
fined Performance Model Approach, and it is used, for example, in [19].

2. use of data related to the performances of previous executions. As an ex-
ample, it is possible to use a database in which, for every computational re-
source selected in the time, average performances actually obtained, and
the standard deviation (that can be used as estimate of the eventual deviation
from the average value), are stored. The described approach can be defined
Historical Approach Performance, and it is used, for example, in [22].

As previously said, because of the dynamic nature of a computational grid, during
the execution of the application it is necessary to periodically check the actually ob-
tained performances in order to compare them with those ones stated in the contract.
Such monitoring is carried out by means of a suitable tool defined as process moni-
tor: a sufficiently frequent check allows to take suitable actions (e.g.. migrating from
a resource overloaded to another one, with the definition of a new contract; adding
new computing resources, …). Tools like Automated Instrumentation and Monitoring
System (AIMS) [27], Autopilot [20], Paradyn [18] or the commercial tool Vampir
make this control. We note that all of them are based on the concept of instrumenta-
tion of the code, that is on the insertion of calls to library functions able to capture
given information from the running code and to transmit them to a process monitor or
a visualization tool.

3 A Grid-Oriented Component Based Programming Environment

Component programming model is a well known paradigm to develop applications.
This approach, that can be considered as an evolution of the object-oriented model,
that allow to build applications by binding independent software modules (the com-
ponents) that interact with other components means of well defined interfaces (the
ports) according a set of specific rules of the programming environment (the frame-
work). The separation of the support code implemented into the framework from the
application code into the components allows to the user to focus the attention on the
application, avoiding to deal with environment dependent details [5].
 Because the components describing the application can be implemented onto
separate hardware and software environments, the component programming model is
also a very promising approach to develop grid oriented programming environments
[11,12]. So a new grid oriented component based programming environment is one
of the goals of Grid.it Italian research project [24], where we are currently working
to integrate a Performance Contracts System into the programming environment.

As already mentioned, the key role of the framework is to shade the details of the
programming environment, by exposing only the services required to implement the
components. In a grid oriented programming environment, therefore, beyond to the
classical services related to the cycle life of the components (instantiation, resource
allocation, …), the framework has to provide more sophisticated grid oriented ser-
vices like resources discovery, remote data access as well the actions concerning the
application structuring and rescheduling. As already said in Section 2, in a grid en-
abled application, these services are in charge of the Application Manager, that in

986 P. Caruso, G. Laccetti, and M. Lapegna

this context has a natural implementation in the framework. It is important to note that
the middleware Globus [9] will be integrated in the framework in order to address
the problems related to the access of the geographically distributed resources. In the
Grid.it programming model, the components are supplied with several types of
ports [24]:

1. Remote Procedure Calls (RPC) interfaces. These are the classical CCA-like ports
mainly for client-server applications [5]. These interfaces define the kind of ser-
vices that the component provides or uses.

2. Stream interfaces. This kind of interfaces allows the unidirectional communica-
tion of a data stream between two components. This kind of interfaces allows a
better use of the bandwidth in case of high latency networks.

3. Events interfaces. These interfaces are used for the interaction of the compo-
nents with the framework. The asynchronous events of a computational grid (e.g.

configuration ports RPC/streams ports events ports

Fig. 2. Integration of the Performance Contract System in to the Grid.it environment

the failure of resources) can be communicated to the components through these
interfaces in order to take eventual actions for the rescheduling of the application
on different resources.

4. Configuration interfaces. These interfaces allow to the Application Manager to
access and to modify information and data inside the components and can be
used for the reconfiguration steps (e.g. stop and restart of the application on other
resources).

In order to integrate the Performance Contracts System, described in Section 2,
into the Grid.it programming environment we firstly note that, while the application
can be developed assembling the components directly by using the RPC or the
streams interfaces, the software units composing the Performance Contract Systems
(monitor and contract developer) and all related files and data structure can be di-

contr. devel.

monitor
framework

C2C1

C3

 A Performance Contract System 987

rectly implemented in the framework interacting with the application through the
configuration interfaces
 In Fig. 2 is shown an example of application with three components (namely C1,
C2 and C3). The components exchanges their data by means of the streams port
(black line) while the monitor and the contract developer access the data into the
components by means the configuration ports (dotted lines).

More precisely, referring to the integration of the monitor in the environment, it
is possible to add the components with proper scripting annotation, specific for the
application (e.g. number of floating point operations in each iteration, number of
communications,…), reporting which data have to be monitored. These information
are accessed by the monitor through the configuration ports and are combined with
the information directly acquired from the middleware implemented in the frame-
work (e.g. number of processors to be use, kind of networks,…) and/or from the per-
formances database, in order to define the Performance Contract. Through the same
ports, the components provide to the monitor the run time values of the data to be
monitored, in order to realize the monitoring process. In such a way the monitor can
be based on a general purpose and application-independent template depicted in
Fig. 3. An analogous approach can be used for the Performance Contract Developer.

! Acquire from the components the data to be monitored through the configura-

tion interfaces
! Acquire from the middleware the features of the resources to be use
! Acquire from the Performance Contract the values to be monitored
! Define the step time to get run time data from the components
! For each step time

• Get run time values of the data to be monitored through the configu-
ration interfaces

• Test the values with the Performance Contract
• if violation occurs apply violation policies

! endfor

Fig. 3. Template for a general purpose monitor for grid applications

4 Computational Experiments

Our experiments were carried out on a preliminary version (ASSIST-CL 1.2) of the
Grid.it environment [25]. The ASSIST programming model is based on a combination
of the concepts of structured parallel programming and component-based program-
ming. An ASSIST program is structured as a graph, where the nodes are the compo-
nents and the edges are the component abstract interfaces, defined in terms of typed
I/O streams. The basic unit of an ASSIST program is a component named parmod
(parallel module), which allows to represent different forms of parallel computation.
The user interface of the ASSIST environment is a coordination language, named
ASSIST-cl.

A layered software architecture has been implemented to support the above pro-
gramming model on the target hardware architectures, including SMPs, MPPs, and
NOWs. An ASSIST-cl code is compiled and then it is loaded and run onto the target

988 P. Caruso, G. Laccetti, and M. Lapegna

architecture by a Coordination Language Abstract Machine (CLAM). The CLAM is
decoupled from the target hardware by a run-time support, named Hardware Ab-
straction Layer Interface (HALI), which currently exports functionalities from the un-
derling software layers. The ASSIST compiler translates ASSIST-cl source code into
C++/HALI processes and threads, using predefined implementation templates. In
running this code, the CLAM uses all the facilities provided by HALI, making no as-
sumptions on the existence of other software running on the same nodes and compet-
ing to use the same resources. Finally the ACE library supplies standard routines to
exchange data between processing elements with different architectures [21]. This is
the layer of software that will be substituted with the middleware Globus in the
Grid.it programming environment (see also the following Fig. 4).

To monitor the contract, we used the Autopilot library . This is a software envi-
ronment for the adaptive run time control of geographically distributed applications.
Such package is constituted by software items that allow to communicate data of
programs in execution to a process monitor. Such software items are said sensors.
Usually the sensors are used to capture the data related to the effective performance
of the computational kernel to be monitored, in order to compare them with those
stated in the Performance Contract. Further it is possible to use separate sensors in
each process of a distributed application, so that the monitor is able to determine ex-
actly which component of the application eventually causes the violation. Further,
Autopilot is able to modify the value of variables of the executing applications, by
means of the so-called actuator : the presence of the actuators is fundamental for
example in a migration step. It is important to note also that Autopilot library does
not introduce significant overhead in the software environment [20] and it uses the
same Globus middleware that will be used in the Grid.it environment. In the follow-
ing Fig. 4 the software architecture to realize our experiments is shown. In such an
architecture it should be noted the role of the Autopilot library used to realize the
monitor process, in accordance with Fig. 2.

Fig. 4. Software architecture of ASSIST whit the Autopilot library

 The computational kernel we used for our tests is based on the Coniugate Gradi-
ent (CG) algorithm, implemented in a routine of the the parallel library Meditomo
realized to be used in the medical imaging application MediGrid [3,4], that recon-
structs 64 independent bi-dimensional images,using 10 iterations of CG for every
image, for a total of 640 iterations. Features of the matrices involved are: sparsity,

not structure ness, order n =103. For this problem we developed a parmod for the re-

ASSIST-cl application

CLAMAutopilot

HALI

Globus

grid resources

framework

ACE

 A Performance Contract System 989

PTPT ⋅≅1

construction of the 64 images, where the workload among the processors is distrib-
uted dynamically by using a farm: a parallel construct available in ASSIST. With
this construct, each of the 64 images appearing on the input stream of the parmod is
processed, independently from the other ones, by the first free processor.

As previously mentioned, and following a consolidate way, to define a contract it
is necessary to know something about the past, in the sense of a historical database
containing info regarding performances of previous executions.

Table 1. executions time for the reconstruction of the 64 images

 P=1 P=2 P=4 P=8 P=12
exec time without I/O (TP) 2494 1261 629 313 234

Table 1 shows a very simple example of record of such database, reporting the
execution time TP, in seconds on P processors, of the computational kernel on a
dedicated Linux Beowulf cluster with 12 Pentium 2 processors running at 550
MHz, connected by a Fast Ethernet switch at 100 Mbit/sec. We emphasize that such
a times does not consider the I/O phases before and after each conjugate gradient.
Such a values confirm however the natural parallelism of our problem, because we
found that .

On the basis of these data, and referring to the definition given in Section 2, we
can define the Performance Contract as follow:

• given P processors (the computational resources)
• able to execute the given application in 2494/P secs (the capability of the re-

sources)
• and an application based on 640 iterations of the Coniugate Gradient
• the Performance Contract, expressed in term of seconds for one iteration, es-

tablishes that
• one iteration of the conjugated gradient has to be be executed in

2494/640=3.9 seconds independently from the number of processors P.

The monitored data are those ones defined in the Performance Contract, that is the
execution time (Wall Clock Time) of one iteration of the conjugated gradient. By
integrating the Autopilot sensors in the routine, we were able to carry out a set of
experiments on the Beowulf machine, accessing runtime by means of the monitor,
the Wall Clock Time of the execution of one iteration of the conjugated gradient
every 40 seconds. After 150 seconds, one of the four processors (Node 1) has been
overloaded by a process, stranger to the application, that engages the CPU for ap-
proximately 120 seconds before ending. Such overload is aimed to simulate the dy-
namical nature of the computational environment, in order to check if the perform-
ance contracts system, in this case, is able to finding the violation of the contract.

In Figure 5 the results of our test are reported, where on the x-axis is reported the
time and on the y-axis is reported the execution time for one iteration of the Conju-
gate Gradient as caught by the monitor in 4 processors. Further is reported the value
of the Performance Contract (PC). It can be view that, when the nodes of the Beo-
wulf are not overloaded with other applications, the monitored values of the execu-

990 P. Caruso, G. Laccetti, and M. Lapegna

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

9,00

20 60 100 140 180 220 260 300 340
time(seconds)

ti
m

e
(s

ec
s)

 f
o

r
1

it
er

at
io

n
 o

f
th

e
C

G

node1 node2 node3 node4

tion time agree with those stated in the Performance Contract. Moreover it is possible
to observe that when the Node1 is overloaded with other applications, the actual
value of the execution time is very different from that received from the monitor.
Such first experiments confirm that our performance contracts system is able to de-
fine a realistic contract, able to preview the performance of the application in normal
situation, and also to find violations of the contract itself. Such results are encourag-
ing for future developments of the aspects related to the performance contracts sys-
tem, as for example, the definition and implementation of suitable strategies to
face violations of the contract itself.

Fig. 5. Results of the monitoring process

References

1. R. Aydt, C. Mendes, D. Reed, F. Vraalsen - Specifyng and Monitoring GRADS contracts
- available to the URL http://hipersoft.cs.rice.edu/grads/publications/grid2001.pdf

2. F. Berman, To Chien, K. Cooper, J. Dongarra, I. Foster, D. Gannon, L. Johnson, K.
Kennedy, C. Kasselman, J. Mellor-Crummey, D. Reed, L. Torczon, R. Wolsky - The
Grads Project: Software support for High Performance Grid Applications - Int. Journal
on High Performance Applications. Vol 15 (2001), pp. 327-344.

3. M. Bertero,P.Bonetto, L.Carracciuolo, L.D’Amore, A.Formiconi, M.Guarracino,
G.Laccetti, A.Murli, and G.Oliva – A Grid-Based RPC System for Medical Imaging - Par-
allel and Distributed Scientific and Engineering Computing: Practice and Experiences,
Advances in Computation: Theory and Practice, vol. 15, Y.Pan and L.Yang (eds.), 2004,
pp. 189-204.

4. P. Boccacci, P. Calvini, L. Carracciuolo, L, D’Amore, A. Murli - Parallel Software for 3D
SPECT imaging based on the 2D + 1 approximation of collimator blur – Ann. Univ.
Ferrara, sez. VII, Sci. Mat. Vol. XLV, 2000

5. CCA Forum Home page. http://www.cca-forum.org

PC

contract violation

 A Performance Contract System 991

6. K. Cooper et al. – New Grid Scheduling and Rescheduling Methods in GraDS Project –
available at URL http://citeseer.ist.psu.edu/697420.html

7. I. Foster - What is the Grid? A three point checklist - available at URL http://www-
fp.mcs.anl.gov/~foster/Article/WhatIsTheGrid.pdf

8. I. Foster , C.Kesselman - The Grid: Blueprint for a New Computing Infrastructure - Mor-
gan and Kaufman 1998

9. I. Foster , C.Kesselman - Globus: a metacomputing infrastructure toolkit - Int. Journal on
Supercomputing Application, vol. 11 (1997), pp. 115-128

10. I. Foster, C. Kesselman, J. Nick, S. Tuecke – The Physiology of the Grid: an Open Grid
Services Architecture for Distributed Systems Integration. Global Grid Formum, 2002

11. N. Furmento, W. Lee, A. Mayer, S. Newhouse, J. Darlington - ICENI: An Open Grid Ser-
vice Architecture Implemented with Jini – Supercomputing 2002

12. M. Govindaraju, S. Krishnan, K. Chiu, A. Slominski, D. Gannon, and R. Bramley : XCAT
2.0: A Component-Based Programming Model for Grid Web Services.. Technical Report-
TR562, Department of Computer Science, Indiana University. Jun 2002.

13. J. Gehring, T. Reinefeld - MARS, framework for minimizing the job execution time in a
metacomputing environment- Future Generation Computer Systems, vol. 12 (1996), pp.
87-99

14. M.R.Guarracino, G.Laccetti, A.Murli – Application Oriented Brokering in Madical Imag-
ing: Algorithms and Software Architecture – this volume

15. N. Kapadia, J. Fortes, C. Brodley - Predictive Application Modeling Performance in a
Computational Grid Environment - Eighth IEEE Int. Symp. On High Performance Dis-
tributed Computing (1999), pp. 47-54

16. C. Lu, D. Reed - Compact Application Signature for Parallel and Distributed Scientific
Codes - Proc. of Supercomputing 2002, (SC2002), Baltimore

17. C. Mendes, D. Reed - Monitoring Large Systems via Statistical Sampling - Proc. LACSI
Symposium, Fe Saint, 2002

18. B. Miller, M. Callaghan, J. Cargille, J. Hollingsworth, R. Bruce Irvin, K. Karavanic, K.
Kunchithapadam, T. Newhall - The Paradyn Parallel Performance Measurement Tools -
IEEE Computer vol. 28 (1995) pp. 37-46

19. F. Petitet, S. Blackford, J. Dongarra, B. Ellis, G. Fagg, K. Roche, S. Vadhiyar - Numeri-
cal Libraries and the Grid: The GrADS Experiment with ScaLAPACK, - Technical report
UT-CS-01-460, 2001

20. R. Ribler, J. Vetter, H. Simitci, D. Reed - Autopilot: Adaptive Control of Distributed Ap-
plications - Proc. of High Performance Distributed Computing Conference, 1998, pp.
172-179

21. D.C.Schmidt, T. Harrison, E. Al-Shaer – Object Oriented components for high speed net-
work programming – in proc. of 1st conf. on OO technology and systems (1995)

22. W. Smith, I Foster V. Taylor. - Predicting application run times using historical informa-
tion. - Proc. Of the IPPS/SPDP' 98 workshop on job scheduling strategies for parallel
processing (1998)

23. S. Vadhiar and J. Dongarra – A performance oriented migration framework for the grid -
Proceedings of the 3st International Symposium on Cluster Computing and the Grid, 2003

24. M. Vanneschi – High Performance Grid Programming Environments: The Grid.it
ASSIST Approach , invited lecture, ICCSA 2004.

25. M. Vanneschi – The programming model of ASSIST, an environment for parallel and dis-
tributed portable applications – Parallel Computing, vol. 28 (2000), pp. 1709-1731

992 P. Caruso, G. Laccetti, and M. Lapegna

26. F.Vraalsen, R. Aydt, C. Mendes, D. Reed – Performance contracts: predicting and moni-
toring application behaviour – Proc. IEEE/ACM Second Intern. Workshop on Grid Com-
puting, Denver, 2001, Springer Verlag LNCS, vol. 2242, pp. 154-165

27. J. C. Yan, M. Schmidt and C. Schulbach. "The Automated Instrumentation and Monitor-
ing System (AIMS) -- Version 3.2 Users' Guide". NAS Technical Report. NAS-97-001,
January 1999

	Introduction
	The Role of a Performance Contract System in a
	A Grid-Oriented Component Based Programming Environment
	Computational Experiments
	References

