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Abstract. In these years, grid computing is probably the most promising  ap-
proach  for building large scale and cost effective applications.  However, this 
very popular approach  needs  a sophisticated  software infrastructure to address 
several requirements.  One of these requirements is the ability to sustain a pre-
dictable  performance in front to the fluctuations  related to the dynamic nature 
of a grid.  In this paper we describe design and realization  of a Performance 
Contract System, a software infrastructure that manages the computational ker-
nel of a grid  application with the aim  to  face such aspect of the grid comput-
ing, as well as the strategies and the experiences to integrate it in a grid-
enabling component-based programming  environment still under development. 

1   Introduction 

As stated in [7], a Grid is  a  system that “… coordinates resources that are not subject 
to centralized control, … using standard, open, general purpose protocols and inter-
faces,… to deliver non trivial qualities of services”.  That means  that a Grid infra-
structure is built on the top of a collection of disparate and distributed  resources 
(computers, databases, network, software …) with functionalities  greater than the 
simple sum of those addends [8].  The “added value”  is a software architecture aimed 
to deliver good Quality of Service (QoS), so a stronger attention has been recently 
given on the technologies enabling it (see for example [10]).  Inside this software in-
frastructure, a significant part, known as  Performance Contracts System,  is devoted 
to the aspects related  to the response time and to the delivered performance. Grid top-
ics related to  performance contract systems have been widely studied in the last 
years, mainly in the GraDS project (see for example  [1,2]). Other papers (see [15])  
report studies about   the forecast of the performances in distributed computing envi-
ronment, by using algorithms simulating an ideal customer, opportunely defined by 
means of some rules of behavior,  in terms of use of the resources.  A Performance 
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Contract of an application for a computational grid  by means of the computational  
cost of the algorithm is defined in [19] and then it is checked  and validated.  

Approaches that make use of statistical data , on the other hand,  are introduced  in 
[13,22 ]. Results related to the development of performance contracts based on the fit-
ting of runtime data are reported, finally, in [16]. With regard to  the run time moni-
toring, several  tools for distributed applications are available and  they  will be 
shortly described in Section 4 [ 18,20,27]. A statistical analysis that, instead of check-
ing   all the software modules of the application, uses  only some meaningful sections 
of the application itself, is developed in [17]. 

This paper is therefore organized  as follows: in Section 2 we outline our  Perform-
ance Contracts System and its role in a grid application; in Section 3 we introduce the 
software environment in which the Performance Contract System will be integrated; 
finally, in Section 4, we  show some computational results about  the definition of the 
performance contract and the related monitoring of a parallel routine that is part of a 
medical imaging application.  

2   The Role of a Performance Contract System in a  
     Grid Application 

One of the aspects of grid computing is the simple and transparent use of the compu-
tational resources of a distributed system [8]. To such aim it is “mandatory”, in some 
way,   the presence of several  software units, that are  side by side to the  application. 
Among  the tasks of such software modules there are, for example, the selection of the 
resources, the development of the performance contract, its monitoring and the man-
agement of  possible violations of the contract itself. The module that manages all ac-
tivities is the  Application Manager (AM), whose outline (or workflow) is  depicted in 
Fig. 1.  Its main software component are: 

1. Resource broker. This component selects the computational  resources on the ba-
sis of information about  the application (e.g. the dimension of the problem), the 
user (e.g. the time to solution, that is the maximum amount of  time to complete 
the application), the state of the grid (e.g. resources available in that moment) and  
finally, information about previous executions (e.g. performances caught up on a 
machine already used).  See [6,14] for an example of  selection of the computa-
tional  resources. 

2. Contract developer. This component has in charge the definition of the Perform-
ance Contract on the basis of the resources selected in step 1 without other input 
from the user. These information are combined with those related  to  the compu-
tational features of the application (e.g.  the computational cost) as well as to the 
performance of previous executions (e.g. stored in a “historical performance da-
tabase”); more details  related to these aspects are reported in the sequel. 

3. Monitor of the application.  This is a key software item for a reliable grid-enabled 
application, because the actual performance can be very different from that one 
specified in the Performance Contract. The dynamic nature of distributed re-
sources not under the same centralized control, can do these values very different 
among them. Some existing tool for the monitoring of distributed application are 
shortly described in the next Section. 
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4. Manager of the violation policy. This is the software item aimed to take the suit-
able actions in case of violation of the Performance Contract. Typical actions are 
the migration of the application on other resources, redefinition of the terms of 
the contract or  the addition of other computational resources. See [23] for an ex-
ample of migration strategy. 

 

 

 

 

 

 

 

 

Fig. 1. Workflow of the Application Manager 

A Performance Contracts System is the set of all software units  of the Application 
Manager related to the performance contract and its monitoring. The definition of a 
Performance Contract is not a new one (see for example [26]), but in a grid environ-
ment it assumes a key role.  A performance contract can be defined as a forecast of 
the performances of an application on  given  computational  resource. More pre-
cisely,  assigned: 

• some computational  resources (e.g. processors,  memories,  networks...) 
• with given capability  (e.g. computation speed, memory bandwidth...) 
• and an application with given characteristics (e.g. dimension of the problem, 

amount of I/O, number of operations..)  
a Performance Contract states  

• the achievement of  a fixed  performances 

There are several way to express a Performance Contract  depending on  the kind 
of application. Typical examples are the attainment of F operations/sec,  the execution 
of I  iterations/sec, transfer of B bytes/sec or the time necessary to compute a compu-
tational step (e.g. one  frame in a image reconstruction problem). Obviously the 
choice among them depends on the features of the application. 

Once selected the computational  resources, the definition of the performance  con-
tract is essentially based on the following information: 

1. use of a performance model based on the features of the application and of 
the selected computational resources.  To be realistic,  the definition of the 
model must take into account the computational cost of the algorithm, as 
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well as the workload of the resources, the fraction of peak performance actu-
ally obtainable, values of benchmarks, and so on. Such approach can be de-
fined Performance Model Approach, and it is used,  for  example, in [19]. 

2. use of data related  to the performances  of previous executions.  As an ex-
ample, it is  possible to  use a database in which, for every computational re-
source selected in the  time, average  performances  actually obtained, and 
the standard deviation (that can be used as estimate of the eventual deviation 
from the average value), are stored. The described approach can be defined 
Historical Approach Performance, and it is used, for example, in [22]. 

As previously said, because of the dynamic nature of a computational grid, during 
the execution of the application it is  necessary to periodically check the actually ob-
tained performances in order to compare them  with those ones stated in the contract. 
Such monitoring  is carried out by means of  a suitable tool defined as  process moni-
tor: a sufficiently frequent check allows to take suitable actions (e.g..  migrating from 
a resource overloaded to another one, with the definition  of a new contract; adding 
new computing resources, …). Tools like Automated Instrumentation and Monitoring 
System (AIMS) [27], Autopilot [20], Paradyn [18] or the commercial tool  Vampir 
make this control.  We note that  all of them are based  on the concept of instrumenta-
tion  of the code, that is  on the insertion of calls to library functions able to capture 
given information from  the running code and to transmit them to a process monitor or 
a visualization tool.  

3   A Grid-Oriented Component Based Programming Environment 

Component programming model is a well known paradigm to develop applications. 
This approach, that can be considered as an evolution of the object-oriented model, 
that allow to build applications by binding independent software modules (the com-
ponents) that interact with other components means of well defined interfaces (the 
ports) according a set of specific rules of the programming environment (the frame-
work). The separation  of the support code  implemented into the framework from the 
application code into the components  allows to the user to focus the attention  on the 
application, avoiding to deal with environment dependent details [5]. 
    Because the components describing the application can be implemented  onto  
separate hardware and software environments, the component programming model is 
also a very promising approach to develop grid oriented programming environments 
[11,12 ]. So a new grid oriented component based programming environment is one 
of the goals of Grid.it  Italian research project  [24], where  we are currently working 
to integrate a Performance Contracts System into the  programming environment.  

As already mentioned, the key role of the framework is to shade the details of the 
programming environment, by exposing   only the services required to implement the 
components. In a grid oriented programming environment, therefore, beyond to the 
classical services related to the cycle life of the components (instantiation, resource 
allocation, …), the framework has to provide   more sophisticated grid oriented ser-
vices like  resources discovery, remote data access as well the actions concerning the 
application structuring and rescheduling. As already said in Section 2, in a grid en-
abled application, these services are in charge of the  Application Manager, that in 
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this context has a natural implementation in the framework. It is important to note that 
the  middleware  Globus [9] will be integrated  in the framework in order to address 
the problems related to the access of the geographically distributed resources.  In the 
Grid.it  programming model, the components are  supplied with several types  of 
ports [24]: 

1. Remote Procedure Calls (RPC) interfaces. These are the classical CCA-like ports 
mainly for client-server applications [5].  These interfaces define the kind of ser-
vices that the component provides or uses. 

2. Stream interfaces. This kind of interfaces allows the unidirectional communica-
tion of a data stream between two components. This kind of interfaces allows  a 
better use of the bandwidth in case of high latency  networks. 

3. Events interfaces. These  interfaces  are used for the interaction of the compo-
nents with the framework. The asynchronous events of a computational grid (e.g. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

configuration ports              RPC/streams ports   events ports 
 

Fig. 2. Integration of the Performance Contract System in to the Grid.it environment 

 
the failure of resources) can be  communicated to the components through these 
interfaces in order to take eventual actions for the rescheduling of the application 
on different resources. 

4. Configuration interfaces. These interfaces allow to the Application Manager  to  
access and to modify information and data inside the components and can be 
used for the reconfiguration steps (e.g. stop and restart of the application on other 
resources). 

In order  to integrate the Performance Contracts System, described in Section 2, 
into the Grid.it programming environment we firstly note that,   while the application 
can be developed assembling the components directly by using the RPC or the 
streams interfaces, the software units composing the Performance Contract Systems  
(monitor and contract developer) and all related files and data structure can be di-
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rectly implemented in the framework interacting with the application through the 
configuration interfaces  
    In Fig. 2 is shown an example of application with three components (namely C1, 
C2 and C3). The components exchanges their  data by means of the streams port 
(black line) while the monitor and the contract developer access the data into the 
components by means the configuration ports (dotted lines). 

More precisely, referring to the integration of the monitor  in the environment, it 
is possible to add the components with proper scripting annotation, specific for the 
application (e.g. number of floating point operations in each iteration, number of 
communications,…), reporting which  data have to be monitored. These information 
are accessed by the monitor through the configuration ports and are combined with 
the information directly acquired from the middleware implemented in the frame-
work (e.g. number of processors to be use, kind of networks,…) and/or from the per-
formances database, in order to define the Performance Contract. Through the same 
ports, the components provide to the monitor the run time  values of the data to be 
monitored, in order to realize  the  monitoring process. In such a way the monitor can 
be  based on a general purpose and application-independent template depicted in  
Fig. 3. An analogous approach can be used for the Performance Contract Developer. 

 
! Acquire from the components the data to be monitored through the configura-

tion interfaces 
! Acquire from the middleware the features of the resources to be use 
! Acquire from the Performance Contract the values  to be monitored 
! Define the step time to get run time data from the components 
! For each step time  

• Get run time values of the data to be monitored through the configu-
ration interfaces 

• Test the values with the Performance Contract 
• if violation occurs apply violation policies 

! endfor 
 

Fig. 3. Template for a general purpose monitor for grid applications 

4   Computational Experiments 

Our experiments were carried out on a preliminary version (ASSIST-CL 1.2) of the 
Grid.it environment [25]. The ASSIST programming model is based on a combination 
of the concepts of structured parallel programming and component-based program-
ming. An ASSIST program is structured as a graph, where the nodes are the compo-
nents and the edges are the component abstract interfaces, defined in terms of typed 
I/O streams. The basic unit of an ASSIST program is a component named  parmod 
(parallel module), which allows to represent different forms of parallel computation. 
The user interface of the ASSIST environment is a coordination language, named 
ASSIST-cl.  

A layered software architecture has been implemented  to support the above pro-
gramming model on the target hardware architectures, including SMPs, MPPs, and 
NOWs. An ASSIST-cl code is compiled and then it is loaded and run onto the target 
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architecture by a Coordination Language Abstract Machine (CLAM). The CLAM is 
decoupled from the target hardware by a run-time support, named  Hardware Ab-
straction Layer Interface (HALI), which currently exports functionalities from the un-
derling software layers. The ASSIST compiler translates ASSIST-cl source code into 
C++/HALI processes and threads, using predefined implementation templates.  In 
running this code, the CLAM uses all the facilities provided by HALI, making no as-
sumptions on the existence of other software running on the same nodes and compet-
ing to use the same resources.  Finally the ACE library supplies  standard routines to 
exchange data between processing elements with different architectures [21]. This is 
the layer of software that will be substituted  with the middleware Globus in the 
Grid.it programming environment (see also the following Fig. 4). 

To monitor the contract, we used the Autopilot library . This  is a software envi-
ronment  for the adaptive run time control of geographically distributed applications. 
Such package is  constituted by software items that  allow to communicate data of  
programs in execution to a process  monitor. Such software items are said sensors.  
Usually the sensors are used to capture the data related to the effective performance 
of the computational kernel to be monitored, in order to compare them with those 
stated in the Performance Contract. Further it is possible to use separate  sensors in 
each process of a distributed application, so that the monitor is able to determine ex-
actly which component of the application eventually causes the violation. Further, 
Autopilot is able  to modify the value of variables of the executing applications, by 
means of the so-called actuator : the presence of the actuators is fundamental  for 
example in a migration  step. It is important to note also that Autopilot library does 
not introduce significant overhead in the software environment [20] and it uses the 
same Globus middleware that will be used in the Grid.it environment. In the follow-
ing  Fig. 4 the software architecture to realize our experiments is shown. In such an 
architecture it should be noted the role of the Autopilot library used to realize the 
monitor process, in accordance with  Fig. 2. 
 

 
 
 
 
 
 

 

Fig. 4. Software architecture of ASSIST whit the Autopilot library 

    The computational kernel we used for our tests  is based on the Coniugate Gradi-
ent (CG) algorithm, implemented in a routine of the  the parallel library Meditomo 
realized to be used in the medical imaging application MediGrid [3,4],  that  recon-
structs 64 independent bi-dimensional images,using 10 iterations of CG for every 
image, for a total of 640 iterations. Features of the matrices involved are: sparsity, 

not structure ness, order n =103. For this problem we developed a parmod for the re-
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PTPT ⋅≅1

construction of the 64 images, where the workload  among the processors is distrib-
uted dynamically by using a farm: a parallel construct available in ASSIST. With 
this construct,  each of the 64 images appearing on the input stream of the parmod is 
processed, independently from the other ones,  by the first free processor. 

As previously mentioned, and following a consolidate way, to define  a contract it 
is necessary to know something about the past, in the sense of a historical database 
containing info regarding performances of previous executions.  

Table 1. executions time for the reconstruction of  the 64 images 

 P=1 P=2 P=4 P=8 P=12 
exec time without I/O  (TP) 2494 1261 629 313 234 

 

Table 1 shows  a very simple example of record of such database, reporting the 
execution time TP,  in seconds on P processors, of the computational kernel on a 
dedicated Linux Beowulf  cluster with 12  Pentium 2 processors running at 550 
MHz, connected by a Fast Ethernet switch at 100 Mbit/sec. We emphasize that such 
a times does not consider the  I/O phases before and after each conjugate gradient.  
Such a values confirm however the natural parallelism of our problem, because we 
found that                   . 

On the basis of these data, and referring to the definition given in Section 2, we 
can define the Performance Contract as follow:  

• given  P processors (the computational resources) 
• able to execute the given  application in 2494/P secs (the capability of the re-

sources) 
• and an application based on 640 iterations of the Coniugate Gradient  
• the Performance Contract, expressed in term of  seconds for one iteration, es-

tablishes that  
• one iteration  of the conjugated gradient has to be  be executed in 

2494/640=3.9  seconds independently from  the number of processors P. 

The monitored data are those ones defined in the Performance Contract, that is the 
execution  time (Wall Clock Time) of one iteration  of the conjugated gradient. By 
integrating the Autopilot sensors in the routine, we were  able to carry out a set of 
experiments on the Beowulf machine,  accessing runtime  by means of the monitor, 
the Wall Clock Time  of the execution of one iteration of the conjugated gradient 
every 40 seconds. After 150 seconds, one of the four processors (Node 1) has been 
overloaded by a process, stranger to the application, that engages the CPU for ap-
proximately 120 seconds before ending. Such overload is aimed to simulate the dy-
namical nature of the computational environment,  in order to check if the perform-
ance contracts system, in this case, is able  to finding the violation of the contract.  

In Figure 5 the results of our test are reported, where on the x-axis is reported the 
time and on the y-axis is reported the execution time for one iteration of the Conju-
gate Gradient as caught by the monitor in 4 processors. Further is reported the value 
of the Performance Contract (PC). It can be view that, when the nodes of the Beo-
wulf are not overloaded with other applications, the monitored values of the execu-
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tion time agree with those stated in the Performance Contract. Moreover it is possible 
to observe that when the Node1 is overloaded with other applications, the actual 
value of the execution time is very different from that received from the monitor. 
Such first experiments confirm that our performance contracts system  is able  to de-
fine a realistic contract, able to preview the performance of the application in normal 
situation, and also to find violations of the contract itself. Such results are encourag-
ing for future developments of the aspects  related to the performance contracts sys-
tem, as for example,   the definition  and implementation of suitable   strategies to 
face violations of the contract itself. 

 
 
 
 
 
 
 
 
 
  
 

 
 
 
 

 

Fig. 5. Results of the monitoring process 
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