Ricercatrice di Analisi
Matematica presso l'Università degli Studi di Napoli "Federico II"
Dipartimento di
Matematica ed
Applicazioni "R. Caccioppoli" - Monte Sant'Angelo - Via Cinthia 80126
Napoli Italia
Studio 20 II liv.
Telefono/Phone 081-675685
(+39081675685)
- Fax 081-7662106 (+390817662106)
E-Mail michela.procesi@dma.unina.it
|
 |
Esercitazioni di Fondamenti di Matematica per Chimica Industriale
(Prof. Giarrusso)
Esercitazioni di Fondamenti di Analisi Superiore mod. I e II (Prof.
Coti Zelati)
per tutte le informazioni si veda il sito del prof.
Coti Zelati.Ricevimento: mercoledi ore 14 (se possiblie prendere appuntamento via mail)
- Born in Rome 21-3-1973
- Graduated in Physics at University of Rome ''La Sapienza''
, May 1997
- PhD in Mathematics at University of Rome ''La Sapienza''
February 2002
Positions
- ''Assegno di Ricerca'' at SISSA (Trieste), April 2002-
Sept. 2004
- ''Assegno di Ricerca'' at the University of Rome III, March
2005- Sept. 2006
- Post. Doc. grant '' Francesco Severi'' INdAM, Oct. 2006-Oct.
2007
- Reasercher of Mathematical Analysis at University Federico
II of Naples, since november 2007.
Main Reaserch
Interests
[1] A. Degasperis e M. Procesi “A test in Asymptotic Integrability of 1 + 1 wave equations”,
in Proceedings of the international conference in Tiruchirapalli India, Feb 1998 pp.17-23
[2] A. Degasperis e M. Procesi“Asymptotic Integrability”, in Proceedings of the Inter-
national Workshop on Symmetry and Perturbation Theory SPT’98, A. Degasperis, G.
Gaeta ed. World Scientific Press pp. 23-37
[3] M. Procesi“Exponentially small splitting and Arnold diffusion for multiple time scale
systems” Rev. Math. Phys. 15, 4 (2003), pp. 339-386
[4] G. Gentile, V. Mastropietro, M. Procesi ''Periodic solutions of completely resonant
nonlinear wave equations'' Comm. Math. Phys. 256, 2 (2005), pp. 437–490
[5] M. Procesi, Quasi-periodic solutions for completely resonant nonlinear wave equations in 1D and 2D.
Discr. Cont. Dyn. Syst. A 13, ,3 (2005) pp. 541–552
[6] G. Gentile, M. Procesi, Conservation of resonant periodic solutions for the one
dimensional nonlinear Schr¨dinger equation; Comm. Math. Phys. 262, 3 (2006), pp 533–553
[7] M. Berti, M. Procesi Quasi-periodic oscillations for wave equations under periodic forcing;
Rendiconti Mat. Acc. Naz. Lincei. s.9 16 (2005) pp. 109-116.
[8] M. Berti, M. Procesi Quasi-periodic solutions of completely resonant forced wave equations
Comm. in PDE’s Comm. in PDE’s 31, 6 (2006), pp.959-985
[9] V. Mastropietro, M. Procesi .“ Lindstedt series for periodic solutions of beam equations
under quadratic and velocity dependent nonlinearities ” Comm. Pure Appl. Anal. 5, 1, (2006) pp. 1-28
[10] G. Gentile, M. Procesi Periodic solutions for the Schrodinger equation with non-
local smoothing nonlinearities in higher dimension. to appear in Journal of PDEs
[11] G. Gentile, M. Procesi Periodic solutions for a class of nonlinear partial differential
equations in higher dimension.(preprint)
[12] M. Procesi, Families of quasi-periodic solutions for completely resonant wave
equations in 1D and 2D. (in preparation)