
Building Services in WSRF

Ben Clifford

GGF Summer School

July 2004

TODOs

This should be a hidden slide

Modify RP exercise to use Query not GMRP
Interop slide
2 hours exercise = 60 slides = 15 slides
per module

Module 1

Overview

WSRF

Globus Alliance WSRF implementation

Overview

4 modules

Each module has:
Slides & talk

Hands on

Covers:
WSRF specification

Globus Alliance implementation of WSRF

History and Motivation (1)

Often we think we want standard APIs
Eg. MPI

But on the grid, we actually want standard
wire protocols

the API can be different on each system

History and Motivation (2)

Open Grid Services Infrastructure (OGSI)
GGF standard
Identified a number of common ‘building
blocks’ used in grid protocols

Inspecting state, creating and removing
state, detecting changes in state, naming
state

Defined standard ways to do these things,
based on web services (defined a thing
called a Grid Service)

History and Motivation (3)

But then…

Realised that this was useful for web
services in general, not just for the grid.

Moved out of GGF, into OASIS

Split the single OGSI specification into a
number of other specifications called
WSRF.

WSRF
WSRF is a framework consisting of a number of

specifications.
WS-Resource Properties *
WS-Resource Lifetime *
WS-Service Groups
WS-Notification
WS-BaseFaults
WS-Renewable References (unpublished)

Other WS specifications such as:
WS-Addressing *

* will be talked about in this tutorial

How WS-RF fits in with other
standards, specifications and protocols.

Internet protocols

Web services

WSRF

Grid stuff Globus (GRAM, MDS)

WSDL, SOAP

HTTP, TCP/IP

WS-Resources

Web services often provide access to state
Job submissions, databases

A WS-Resource is standard way of
representing that state.

In this tutorial, we will be using ‘counter’
resources which are simple accumulators.

WS-Resources

WSRF specifications provide:
XML-based Resource Properties

Lifetime management (creation/destruction) of
resources

Servicegroups, which group together WS-
Resources

Notification
(for example of changes in resource properties)

Faults

Renewable References

Examples of WS-Resources

Files on a file server

Rows in a database

Jobs in a job submission system

Accounts in a bank

Web service

Web service

Web service with WS-Resource

Web Service with WS-Resources

Web Service with WS-Resources

WS-Resources

GT WSRF core

Container
Hosts services

Built on top of Apache Axis

Clients
Interact with services

Build tools
For writing new services

Based around Apache Ant

Files used in the exercise

WSDL and XML Schema:
counter_port_type.wsdl

Java
Several Java source files

Deployment information
deploy-server.wsdd
deploy-jndi-config.xml

Build.xml
Tells Ant how to build and deploy the code

Notes on the exercises

Read notes.txt for information on each exercise.

Only do one exercise at a time, then wait for next
module.

Each exercise consists of uncommenting code
fragments. However, you should READ AND
UNDERSTAND what you are uncommenting.

If you are brave, you can make your own extra
changes too – but be careful not to break
anything!

Exercise 1
Exercise: stand up supplied installation and check it
works.
Install software
Start the container

this will have a counter service and one counter resource.
Interact with the counter resource

Do the exercise now.

C

Exercise 1 overview
One host (your own machine)
One web service running on own machine
One counter resource, which will already exist
Client running on own machine Counter service

One counter resource

Container

Client

C

Exercise 1 overview

Counter service

One counter resource

Container

globus-start-container

Starts up container,
with counter service
and a single counter
resource.

C

Exercise 1 overview

Counter service

One counter resource

Container

Client

show-counter and
increment-counter
clients interact with the
resource through the web
service.

C

Exercise 1 overview

Client

increment-counter invokes
the add operation in
counter_port_type.wsdl

add(1)

Module 2 – Resource Addressing

Endpoint References

Why?

Need some way to refer to web services
and WS-Resources from anywhere on the
network.

Endpoint References

WS-Addressing specification

An Endpoint Reference (EPR) points to a
web service by including a URL.

Endpoint References
WS-Addressing specification
An Endpoint Reference (EPR) points to a web service by including a
URL.

<EPR
xsi:type="ns2:EndpointReferenceType"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ns2="http://schemas.xmlsoap.org/ws/2004/03/addressing”>

<ns2:Address xsi:type="ns2:Address">
http://localhost:8080/wsrf/services/CounterService

</ns2:Address>
</EPR>

Endpoint References

WS-Addressing specification

An Endpoint Reference (EPR) points to a
web service by including a URL.

EPRs can also contain extra information

For WSRF, can include
ReferenceProperties that identify a
resource – will see this later on.

Endpoint References
WS-Addressing specification

An Endpoint Reference (EPR) points to a web
service by including a URL.

EPRs can also contain extra information

For WSRF, can include ReferenceProperties that
identify a resource – will see this later on.

Can also contain other information
Security

Renewable Refence information

Client code fragment

CounterServiceAddressingLocator locator =

new CounterServiceAddressingLocator();

EndpointReferenceType endpoint;

endpoint = EPRUtils.loadEPR(args);

CounterPortType counterPort =
locator.getCounterPortTypePort(endpoint);

counterPort.add(1);

Automatically Generated types

CounterServiceAddressingLocator locator =

new CounterServiceAddressingLocator();

EndpointReferenceType endpoint;

endpoint = EPRUtils.loadEPR(args);

CounterPortType counterPort =
locator.getCounterPortTypePort(endpoint);

counterPort.add(1);

Highlighted types are generated by the build system automatically,
based on XSD and WSDL.

*AddressingLocator

Every WSDL service has a corresponding
AddressingLocator Java class automatically generated.

For the CounterService, we get:
CounterServiceAddressingLocator

An AddressingLocator knows how to take an EPR and
return a java stub for the remote service:

CounterPortType counterPort =
locator.getCounterPortTypePort(endpoint);

*PortType

Every port type has a PortType Java
interface automatically generated.

For the counter port type, we have
CounterPortType

The interface has a method for each
operation on the port type:

counterPort.add(1);

Exercise 2

Talk to someone else’s service on a
different laptop

Modify clients to read an EPR file

Should be able to run the clients against
any machine in the room.

Do the exercise now.

Exercise 2 scenario
Two hosts (your own machine and your friend’s machine)
One web service running on friend’s machine
One counter resource on friend’s machine
Client running on your own machine

Exercise 2 scenario
Client can talk to everyone’s servers – so the situation in
this room looks more like this.

Module 3 – Resource Properties

Resources have Resource Properties

Defined in XML

Resource Properties document in portType

Querying Resource Properties

Why?

Resources represent state

Often we want to inspect that state

In this tutorial, we want to know the value
stored in each counter

show-counter client

XML based

Each resource has a Resource Properties
document.

Defined in XML schema

Each element in the Resource Properties
document is a Resource Property (RP).

Ways to access RPs

Pull
Client can query the RP document

GetResourceProperty

GetMultipleResourceProperties

QueryResourceProperties

Push
Allows services to send changes in their
resources’ RPs to interested parties.

WS-Notification

Not covered in this tutorial

Pull operations

GetResourceProperty
Requests a single resource property by
name

GetMultipleResourceProperties
Requests several resource properties (from
the same resource) by name

QueryResourceProperties
More advanced queries against RP
document.
eg. XPath

Counter example

The counter service’s Resource Property Document
is defined in
schema/core/samples/counter/counter_port_type.wsdl

<xsd:element name="CounterRP">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="tns:Value"

minOccurs="1" maxOccurs="1"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

Operation Providers

WSRF Core allows operations to be
implemented by Operation Providers.

Service writers can include these in WSDD,
rather than writing Java code.

Exercise will involve adding operation
provider to support
QueryResourceProperties operation

Exercise 3

Exercise: add a resource property to the
service to give ‘last incremented time’.
New client to query this RP.

Query own counters and query other
peoples’ counters.

Do the exercise now.

Module 4 – Resource Lifetime

Creating new resources

Destroying old resources

Soft-state lifetime management

Why?

Resources come and go

For example:
jobs in a batch submission system could be
represented as resources

submitting a new job causes a new resource
to be created

when the job is completed, the resource
goes away

Creating new resources

Factory pattern

A web service operation causes a new
resource to come into existence.

For example, in job submission:
submit(JobDescription)

Destroying resources

Two ways:
Immediate Destruction

Scheduled Destruction

Immediate destruction

Destroy the resource now!

Destroy operation

Scheduled Destruction

Scheduled destruction allows soft
management of state.
TerminationTime RP

Keep state alive for as long as we need it,
by calling SetTerminationTime operation
periodically.

Scheduled Destruction

Remote service is ‘self-cleaning’
old unwanted state gets cleaned up
automatically if no-one keeps it alive

Problem: if interested party is
disconnected from network for a long time,
then it cannot extend lifetime and state
may be cleaned up prematurely.

EPRs with ReferenceProperties

If there are several counters accessible
through a service, we need some way to
tell them apart when making calls.

Add ReferenceProperties to EPR with a key
that identifies counter.

EPRs with ReferenceProperties
<EPR

xsi:type="ns2:EndpointReferenceType"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ns2="http://schemas.xmlsoap.org/ws/2004/03/addressing">
<ns2:Address xsi:type="ns2:Address">

http://localhost:8080/wsrf/services/CounterService
</ns2:Address>
<ns2:ReferenceProperties xsi:type="ns2:ReferencePropertiesType">

<ns3:CounterKey
xmlns:ns3="http://counter.com">42</ns3:CounterKey>

</ns2:ReferenceProperties>
</EPR>

Note that the CounterKey field is meaningless to everyone apart from the
service.

EPRs with ReferenceProperties
<EPR

xsi:type="ns2:EndpointReferenceType"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ns2="http://schemas.xmlsoap.org/ws/2004/03/addressing">
<ns2:Address xsi:type="ns2:Address">

http://localhost:8080/wsrf/services/CounterService
</ns2:Address>
<ns2:ReferenceProperties xsi:type="ns2:ReferencePropertiesType">

<ns3:CounterKey
xmlns:ns3="http://counter.com">42</ns3:CounterKey>

</ns2:ReferenceProperties>
</EPR>

Note that the CounterKey field is meaningless to everyone apart from the
service.

EPRs with ReferenceProperties
<EPR

xsi:type="ns2:EndpointReferenceType"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ns2="http://schemas.xmlsoap.org/ws/2004/03/addressing">
<ns2:Address xsi:type="ns2:Address">

http://localhost:8080/wsrf/services/CounterService
</ns2:Address>
<ns2:ReferenceProperties xsi:type="ns2:ReferencePropertiesType">

<ns3:CounterKey
xmlns:ns3="http://counter.com">42</ns3:CounterKey>

</ns2:ReferenceProperties>
</EPR>

Note that the CounterKey field is meaningless to everyone apart from the
service.

Resource Homes

Resource Homes map from key in EPR to a
resource object
So far, CounterService has used
SingletonResorceHome.

Always returns the same single resource
So CounterService only provides access to one
resource
No key needed in EPR

Will now use ResourceHomeImpl
Allows creation of new resource objects
Maps from key in EPR to resource objects
Counter service will provide access to many resource
objects

Exercise 4

Exercise: create new counters. Destroy old
counters.

Two new clients:
create-counter

destroy-counter

Exercise 4 scenario
Created new counters
Destroyed existing counters

The rest of WSRF

WS-Resource Properties
WS-Resource Lifetime
WS-Servicegroups
WS-BaseFaults
WS-Renewable References
WS-Notification

WS-ServiceGroups

Form groups of services and/or resources

Represent those groups as Resources.

Registries etc

WS-BaseFaults

Standard datatype for transmitting
webservice faults

Originator

Timestamp

Etc…

WS-Renewable References

EPRs can become stale
Service might move to a different host

Renewable References provide a way to
take a stale reference and try to a fresh
one.

WS-Notification

A group of 3 standards

Deliver notifications of events

For example, change in value of a resource
property

Started as one WSRF standard, but split off
into three separate standards.

Fin

