
 GGF Summer School VDS Tutorial 1

Quick Guide

GriPhyN Virtual Data System.
Ewa Deelman, Gaurang Mehta, Karan Vahi (deelman,gmehta,vahi@isi.edu)

Jens Voeckler, Mike Wilde(wilde@mcs.anl.gov,voeckler@cs.uchicago.edu)

Version - 1.0

The quick guide helps you set up the GriPhyN virtual data system and run a small
example with minimum effort.

Table of Contents
• Part I: Getting set up
• Part II: Black Diamond
• Part III: Setting up Catalogs in VDS
• Part IV: Generating a workflow in VDL
• Part V: Planning the workflow for the Grid
• Part VI: Deferred Planning in Pegasus

 GGF Summer School VDS Tutorial 2

Part I: Getting set up
First, get set up to use the VDS

Download the latest stable release of VDS from
http://www.griphyn.org/workspace/VDS/snapshots.php

Untar the distribution.

$ gtar zxvf vds-<version>.tar.gz

This guide assumes you're using a Bourne Shell derived shell, typically /bin/sh or
/bin/bash. If you've changed to a csh derived shell, you'll need to slightly modify the
examples. Whenever you are asked to source setup.sh, there will also be a setup.csh for
csh users. For simplicity you may want to use /bin/sh or /bin/bash. Now check that the
setup worked:

Set VDS_HOME environment variable

$ unset VDS_HOME
$ declare -x VDS_HOME=/home/home1/test/vds/default

Set up the VDS user environment

$ unset CLASSPATH
$ source $VDS_HOME/setup-user-env.sh
$ declare –x PATH=$VDS_HOME/bin/:$PATH

Check Java version

$ java –version
Java(TM) 2 Runtime Environment, Standard Edition (build 1.4.2_04-b05)
Java HotSpot(TM) Client VM (build 1.4.2_04-b05, mixed mode)

Check if you GLOBUS_LOCATION is set

$ echo $GLOBUS_LOCATION

If its not set then ask you administrator for the information and set the environment
variable. Then set the globus environment

 GGF Summer School VDS Tutorial 3

$ source $GLOBUS_LOCATION/etc/globus-user-env.sh

Now generate a proxy certificate from you X509 credentials.

$ grid-proxy-init -old

Manually test if you can authenticate to the grid resource that you are trying to submit
your jobs to.

$ globusrun –a –r <hostname>/jobmanager-fork

If you get an authentication error check the /etc/grid-security/grid-map file on the
machine you are trying to authenticate to and see if your x509 cert DN is mapped to you
user. If not ask your administrator to add you to the mapfile.

Make sure you can submit jobs into condor. Try checking the status of the condor queue

$ condor_q

If the above tests work all is fine, otherwise please contact your friendly neighborhood
administrator.

Create the following directories in your home directory

$ mkdir $HOME/workdir
$ mkdir $HOME/storage
$ mkdir $HOME/workdir-clus1
$mkdir $HOME/storage-clus1
$mkdir $HOME/config
$mkdir $HOME/tutorial

 GGF Summer School VDS Tutorial 4

Part II: Black Diamond

Shown above is the workflow of what we call the “diamond” DAG. The “document”
symbols represent logical files (f.a, f.b.1, etc), and the bubbles represent jobs. The
derivation name is printed bold while the transformation name is printed below. The
workflow illustrates the fanning in and fanning out of data, for example, for the parallel
execution and reuse of transformations for similar computations. The workflow uses one
input file (f.a), which must be registered with the replica manager. Note that “replica
manager” here is an abstract term for the mechanism that maps between logical and
physical filenames.

f.a

f.b1

f.b2

f.d

f.c1

f.c2

top
preprocess

right
findrange

left
findrange

bottom
analyze

 GGF Summer School VDS Tutorial 5

Part III: Setting up Catalogs in VDS

Properties:

The properties file is a configuration file used by the Virtual Data System to change its
configuration and pick different catalogs and their locations etc. The default properties
file is in $VDS_HOME/etc/properties. This properties file can be overridden by a file
named “.chimerarc” in your home directory. The “.chimerarc” file can be overridden by
specifying a

 -D<propertyname>=<propertyvalue> argument to most of the VDS tools. In this section
we will create a .chimerarc file in the home directory and add entries to if for the various
catalogs.

The following catalogs are required for the Virtual Data System.

 VDC – Virtual Data Catalog:

This catalog holds information about transformation templates and derviations and is
used to generate the abstract workflow (DAX). By default, it is assumed that the VDC
resides in a file with the prefix $VDS_HOME/var/vdc.db inside your VDS distribution.
However, it is best to set up some Java properties to point the VDC file to a location that
you own alone in the properties file

The VDS property vds.db.vdc.schema.file.store specifies the location of the file. You
can provide properties temporarily on the command line of the various VDS tools, as
shown in this section, or permanently in property files. Add the following entries in the
$HOME/.chimerarc file.

$HOME/.chimerarc
vds.db.vdc.schema.file.store $HOME/config/vdc.db

When using the file-based VDC illustrated here, the VDS commands read and if
updating, re-write the entire file completely with each VDS command. Thus it is rather
slow, and should not be used for more than ~1000 definitions. A rDBMS-based VDC is
available and explained in the Main User Guide, but this simple file-based database is
useful for quick experiments or when a real database is not available or convenient.

POOL CONFIG:

VDS allows you to execute workflows on the grid. We have to describe the clusters that
we intend to run the workflow upon and a few more things to knit together your
workflow to make it run in the grid. Among those are the contact for batch (compute)

 GGF Summer School VDS Tutorial 6

jobs, the contact for transfer (fork) jobs, the gridftp server of the site, the working
directory and more. The user guide in $VDS_HOME/doc provides details.

The format for the file is as follows

pool site_name {
lrc “rls://someurl”
workdir “path/to/a/tmp/shared/file/sytem/”
gridftp “gsiftp://hostname/mountpoint” “GLOBUS VERSION”
universe transfer “hostname/jobmanager-<scheduler>” “GLOBUS VERSION”
universe vanilla “hostname/jobmanager-<scheduler>” “GLOBUS VERSION”
#optional
gridlaunch “/path/to/gridlaunch/executable”
#optional
profile namespace “key” “value”
}

The gridlaunch and profile entries are optional. All the rest are required for each pool.
Also the transfer and vanilla universe are mandatory. You can add multiple transfer and
vanilla universe if you have more then one head node on the cluster. The entries in the
(PC) have the following meaning:

1. pool site - A pool nickname.
2. lrc – URL for a local replica catalog (LRC) to register your files in.
3. workdir – A remote working directory (Should be on a shared file system)
4. gridftp – A url prefix for a remote storage location.
5. universe – Different universes are supported which map to different batch

jobmanagers. “vanilla” for compute jobs and “transfer” for transfer jobs are
mandatory. Generally a transfer universe should map to the fork jobmanager
unless you know what you are doing.

6. gridlaunch – Path to the remote kickstart tool (provenance tracking)
7. Profiles – One or many profiles can be attached to a pool. One example is the

environments to be set on a remote pool.

For more details please see the full User Guide.

Create a file called pool.config.txt and edit the contents. Remember to replace ‘$HOME’
in the example the actual path to your home directory throughout the examples.

$ emacs $HOME/config/pool.config.txt

Let’s say you have one cluster available to run your jobs called clus1. You need to add 2
sections in the pool.config.txt file, one for the cluster and one for the local machine. The
local entry is mandatory to determine a local working directory to run “scheduler
universe”.

 GGF Summer School VDS Tutorial 7

pool local {
lrc “rlsn://smarty.isi.edu”
workdir “$HOME/workdir”
gridftp “gsiftp://localhost/$HOME/storage” “2.4”
universe transfer “localhost/jobmanager-fork” “2.4”
universe vanilla “localhost/jobmanager-fork” “2.4”
gridlaunch “/home/home1/test/vds/default/bin/kickstart”
profile env “VDS_HOME” “/home/home1/test/vds/default”
profile env “GLOBUS_LOCATION” “/vdt/globus”
profile env “LD_LIBRARY_PATH” “/vdt/globus/lib”
profile env “JAVA_HOME” /opt/java/j2sdk1.4.2_05
}
pool clus1 {
lrc “rlsn://smarty.isi.edu”
workdir “$HOME/workdir-clus1”
gridftp “gsiftp://server1.gs.unina.it/jobmanager-fork” “2.4.3”
universe transfer “server1.gs.unina.it/jobmanager-fork” “2.4.3”
universe transfer “server2.gs.unina.it/jobmanager-fork” “2.4.3”
universe transfer “server3.gs.unina.it/jobmanager-fork” “2.4.3”
universe vanilla “server1.gs.unina.it/jobmanager-fork” “2.4.3”
universe vanilla “server2.gs.unina.it/jobmanager-fork” “2.4.3”
universe vanilla “server3.gs.unina.it/jobmanager-fork” “2.4.3”
gridlaunch “/home/home1/test/vds/default/bin/kickstart”
profile env “GLOBUS_LOCATION” “/vdt/globus”
profile env “LD_LIBRARY_PATH” “/vdt/globus/lib”
}

This file needs to be converted to XML so that Pegasus can utilize it. The tool to do this
is called genpoolconfig

$ genpoolconfig --poolconfig $HOME/config/pool.config.txt --output
$HOME/config/pool.config.xml

If the client didn’t throw any error then an xml file should be generated. Check the file to
see if everything is ok.

Now to tell Pegasus to pick up this pool config file we need to add some properties in the
$HOME/.chimerarc file we created earlier.

Edit the $HOME/.chimerarc file and add

Replace $HOME with the full path to your home directory

$HOME/.chimerarc
vds.db.vdc.schema.file.store $HOME/config/vdc.db
vds.pool.mode xml
vds.pool.file $HOME/config/pool.config.xml

 GGF Summer School VDS Tutorial 8

The Pool config XML file can also be generated dynamically by querying a site’s MDS
installation configured with Pegasus Information providers. For more details please read
the VDS User Guide.

TRANSFORMATION CATALOG:

The transformation catalog maps logical transformations to physical executables on the
system. We need to map our declared transformations (preprocess, findranage, and
analyze) to a simple “mock application” name “keg” (“canonical example for the grid”)
which reads input files designated by arguments, writes them back onto output files, and
produces on stdout a summary of where and when it was run. Keg has proved to be a
useful tool in the VDS development process.

Run keg on the command line to see how it works.
$ keg –o /dev/fd/1
Timestamp Today: 20040624T054607-05:00 (1088073967.418;0.022)
Applicationname: keg @ 10.10.0.11 (VPN)
Current Workdir: /home/unique-name
Systemenvironm.: i686-Linux 2.4.18-3
Processor Info.: 1 x Pentium III (Coppermine) @ 797.425
Output Filename: /dev/fd/1

Now we need to map all 3 transformations onto the “keg” executable. We place these
mappings in our textual transformation catalog.

We will run the executable on the local workstation and on cluster “clus1”. We also need
to add entries for the replica registration tool and the transfer tool used by Pegasus.

Create a file called $HOME/config/tc.data and edit the contents to be as follows

#POOL LFN PFN ENV
#these are the workflow executables
local tut::preprocess /home/home1/test/vds/default/bin/keg
local tut::findrange /home/home1/test/vds/default/bin/keg
local tut::analyze /home/home1/test/vds/default/bin/keg

#this executable helps create random directories

local makedir /home/home1/test/vds/default/bin/makedir

this is a wrapper around globus-url-copy tool
local transfer /home/home1/test/vds/default/bin/transfer

#this is a replica registration tool required on the local pool by Pegasus
local RLS_Client /home/home1/test/vds/default/bin/rls-client
CLASSPATH=/home/home1/test/vds/default/lib/gvds.jar:/home/home1/test/vds/defaul
t/lib/rls.jar: /home/home1/test/vds/default/lib/java-getopt-1.0.9.jar

#add entries for the cluster
clus1 tut::preprocess home/home1/test/vds/default/bin/keg

 GGF Summer School VDS Tutorial 9

clus1 tut::findrange home/home1/test/vds/default/bin/keg

clus1 tut::analyze home/home1/test/vds/default/bin/keg

clus1 makedir home/home1/test/vds/default/bin/makedir
clus1 transfer home/home1/test/vds/default/bin/transfer

The format of the file is:

1. Pool – The nick name for the cluster
2. LFN – The logical name for the transformation
3. PFN – The physical location of the transformation
4. ENV – Any environment variables to be associated with the transformation

We need to specify where to find the tc.data file. This can be done by setting a property
in the previously created $HOME/.chimerarc file.

Edit the $HOME/.chimerarc and add the following entries.

Replace $HOME with the full path to your home directory.

$HOME/.chimerarc
vds.db.vdc.schema.file.store $HOME/config/vdc.db
vds.pool.mode xml
vds.pool.file $HOME/config/pool.config.xml
vds.tc.mode single
vds.tc.file /$HOME/config/tc.data

There is a rDBMS based Transformation Catalog starting with VDS-1.3.0. For more
details check the Full user Guide.

Replica Mechanism:

The black diamond example takes one input file, which we will have to tell the replica
manager. Replace unique-name with your own user id.

$ date > $HOME/unique-name.f.a

This file “unique-name.f.a” needs to reside on a grid site to be available for our grid
computing. Upload the file to a gridftp server location and register that location in a
Replica Catalog. Currently the only supported Catalog is the RLS (Replica Location
Service).

To set up the RLS either contact you friendly neighborhood administrator or check out
www.globus.org/rls

 GGF Summer School VDS Tutorial 10

The backslash-before-linefeed is a shell construct to split an input line over multiple
lines. You can type it into one line, leaving out the backslash, but not the white space
between.

$ globus-url-copy –vb file://$HOME/unique-name.f.a \

 gsiftp://localhost/$HOME/storage/unique-name.f.a

Note: In actual life, many users have set up their submit machine with an active gridftp
server. Thus, they can refer to the file on their local machine via a gridftp URL instead of
having to upload it into an arbitrary grid site, and refer to it there.

In the next step, we need to tell our replica mechanism where to find this file.

While globus-rls-cli suffices to add the entry, there exists a wrapper around RLS. The
wrapper adds RLS attributes to the file. However, the attributes, while helpful in decision
making, are optional. Nevertheless, we recommend the usage of rls-client to insert LFNs
into RLS for Pegasus.

$ rls-client --lrc=rlsn://smarty.isi.edu --pool=clus1 --delimiter=@ --
verbose \
 --mappings=unique-
name.f.a,gsiftp://localhost/~/storage/uniquename.f.a
Registered: unique-name.f.a gsiftp://localhost/~/unique-name.f.a clus1
$ echo $?
0

You may first want to check, if the file made it into the replica catalog. The RLS is a
hierarchy of local replica catalogs (LRC) and replica location index servers (RLI).To
check, you can use rls-query-client from the VDS tools. However, it is also permitted to
use the lower-level rls tool you learned about:

$ globus-rls-cli query lrc lfn unique-name.f.a rlsn://smarty.isi.edu

The file should immediately visible in the LRC. The update of the RLI will take ~30
seconds. You can check with the RLI later on before you try to run the concrete planner
to see if the file has appeared:

Pegasus needs to query RLS when it converts the abstract workflow to a concrete one.
For this we need to add a couple of more properties in the $HOME/.chimerarc file.

Replace $HOME with the full path to your home directory

$HOME/.chimerarc
vds.db.vdc.schema.file.store $HOME/config/vdc.db

 GGF Summer School VDS Tutorial 11

vds.pool.mode xml
vds.pool.file $HOME/config/pool.config.xml
vds.tc.mode single
vds.tc.file $HOME/config/tc.data
vds.rls.url rlsn://smarty.isi.edu
vds.replica.mode rls
vds.exitcode.mode all
vds.transfer.mode multiple

USING TEMPLATE TO GENERATE CONFIGURATION FILES

 If you are facing problems in writing out any of the above files for you. You can
use the templates to do the needful.

$ cp /home/home1/test/vds-tutorial/templates/chimerarc.template
$HOME/.chimerarc
$ cp /home/home1/test/vds-tutorial/templates/pool.config.template
$HOME/config/pool.config.txt
$ cp /home/home1/test/vds-tutorial/templates/tc.data.template
$HOME/config/tc.data

REPLACE “$HOME” WITH FULL PATH TO YOUR HOME DIRECTORY IN

 $HOME/.chimerarc

 $HOME/config/pool.config.txt

$ genpoolconfig --poolconfig $HOME/config/pool.config.txt --output
$HOME/config/pool.config.xml

 GGF Summer School VDS Tutorial 12

Part IV: Generating a Workflow in VDL
In this section we will try to write the diamond workflow in VDL. Create a file
$HOME/tutorial/diamond.vdl and add the following 3 transformation and 4 derviations in
the file.

The first transformation “preprocess” takes one input file, and turns it into two output
files. To illustrate advanced VDL features, we will use the list to describe output files.
Lists can have any number of elements, from zero to whatever your computer is capable
of processing (note: there are usually Condor-G and command-line limits).

TR tut::preprocess(output b[], input a) {

 argument = "-a top";

 argument = " –i "${input:a};

 argument = " –o " ${output:b};
}

The next transformation “findrange” is used by two derivations “left” and “right”. The
transformation itself reads from two files and produces one file. The transformation
below shows the advanced VDL-feature of default arguments. Any default argument may
be overwritten by a derivation.

TR tut::findrange(output b, input a1, input a2,
 none name="findrange", none p="0.0") {

argument = "-a "${name};

argument = " –i " ${a1} " " ${a2};

argument = " –o " ${b};

argument = " –p " ${p};
}

Alternatively, we could also have used the list feature for input instead of specifying
input a1 and a2

 GGF Summer School VDS Tutorial 13

The final transformation “analyze” reads input files to produce one result.

TR tut::analyze(output b, input a[]) {

 argument = "-a bottom";

 argument = " –i " ${a};

 argument = " –o " ${b};
}

Together, these three transformations make up the back-bone of the black diamond. In
the next step, we need to invoke the transformations in a manner that products of a
previous step become input for the next step.

DV tut::top->tut::preprocess(
 b=[@{out:"unique-name.f.b1"}, @{out:"unique-name.f.b2"}],
 a=@{in:"unique-name.f.a"});
DV tut::left->tut::findrange(
 b=@{out:"unique-name.f.c1"},
 a2=@{in:"unique-name.f.b2"},
 a1=@{in:"unique-name.f.b1"},
 name="left", p="0.5");
DV tut::right->tut::findrange(
 b=@{out:"unique-name.f.c2"},
 a2=@{in:"unique-name.f.b2"},
 a1=@{in:"unique-name.f.b1"},
 name="right");
DV tut::bottom->tut::analyze(
 b=@{out:"unique-name.f.d"},
 a=[@{in:"unique-name.f.c1"}, @{in:"unique-name.f.c2"}]);

Together, these seven definitions make up the “diamond” workflow. You will need to
replace the “unique-name” again with your own username to avoid clashes in the replica
manager later.

USING TEMPLATE TO GENERATE VDL FILES

 If you are facing problems in writing out any of the above files for you. You can
use the templates to do the needful.

In the following command replace $USER and $HOME with actual values of these
environment variables

$ cp /home/home1/test/vds-tutorial/templates/diamond.vdl.template
$HOME/tutorial/diamond.vdl

$ perl –pi –e ‘s/unique-name/$USER/g’ $HOME/tutorial/diamond.vdl

 GGF Summer School VDS Tutorial 14

Now, convert the textual VDL above into its XML equivalent:

$ cd $HOME/tutorial
$ vdlt2vdlx diamond.vdl diamond.xml

If your VDL was syntactically correct, this command is silent. Otherwise, you will see
syntax error messages to indicate approximately where in the input file the error
occurred.

The next step is to insert the VDL definitions into your VDC – your virtual data catalog.

You have the choice between insertvdc and updatevdc. You should prefer insertvdc
whenever possible, as it is faster. However, you can only insert definitions (TR or DV)
that did not previously exist.

$ insertvdc diamond.xml
2004.06.24 05:38:49.460 CDT: [app] parsing "diamond.xml"
2004.06.24 05:38:51.578 CDT: [app] Trying to add tut::preprocess
2004.06.24 05:38:51.610 CDT: [app] Trying to add tut::findrange
2004.06.24 05:38:51.647 CDT: [app] Trying to add tut::analyze
2004.06.24 05:38:51.674 CDT: [app] Trying to add tut::top
2004.06.24 05:38:51.699 CDT: [app] Trying to add tut::left
2004.06.24 05:38:51.728 CDT: [app] Trying to add tut::right
2004.06.24 05:38:51.750 CDT: [app] Trying to add tut::bottom
2004.06.24 05:38:51.765 CDT: [app] modified 7 definitions
2004.06.24 05:38:51.766 CDT: [app] rejected 0 definitions

You can now query the database for anything in the “tut” namespace, to see that
everything made it. By default, it will just display the fully-qualified definition name.

$ searchvdc -n tut
2004.06.24 05:39:20.621 CDT: [app] searching the database
tut::preprocess
tut::findrange
tut::analyze
tut::top->tut::preprocess
tut::left->tut::findrange
tut::right->tut::findrange
tut::bottom->tut::analyze

In order to obtain a workflow, the dependencies have to be converted into an “abstract
DAG in XML” (DAX file). The DAX contains logical descriptions of jobs to run and
files to transfer, but no concrete information like the application name or the physical
filename.

 GGF Summer School VDS Tutorial 15

The DAX generator is called gendax. You can ask gendax to produce a DAX file either
based on the logical filename that is produced, or on a certain derivation. Gendax is also
capable of processing lists of each, producing disconnected graphs if necessary. Such a
bulk processing mode is a speed-advantage.

$ gendax –l diamond –o diamond.dax –f unique-name.f.d
2004.06.24 05:52:40.559 CDT: [app] saving output to diamond.dax

 GGF Summer School VDS Tutorial 16

V: Planning for Execution in Grids (Pegasus)
Now we shall take the generated abstract diamond workflow and generate a plan to run it
on the grid.

We should now check if the file that we registered into the RLS is available in the RLI.

$ globus-rls-cli query rli lfn unique-name.f.a rlsn://smarty.isi.edu

If the command above returns with a result then we can go ahead.

We are now poised to run on the grid. We will start right away with the DAX file for the
black diamond.

Pegasus is inside the highly flexible gencdag program. We need to tell it which DAX file
to parse (--dax). Each workflow will be expanded into several Condor, DAGMan and
auxiliary files. Thus, each workflow should go into a directory of its own (--dir). Pegasus
will want to know in which subset of your sites you want to run (--pools). You can tell
Pegasus to transfer all data products to one grid site (--output). And finally, for tracking
errors, it is nice to see what Pegasus does, so we tell it to be verbose (-v).

$ cd $HOME/tutorial
$ gencdag --dax diamond.dax --dir diamond.dir --pools clus1 --output
clus1 –v -a

After the workflow was produced, we can change into the directory, and run the
workflow through DAGMan.

$ cd diamond.dir
$ condor_submit_dag diamond-0.dag

Now to see the progress of your dag you can try one or all of the following approaches

1. tail –f diamond-0.dag.dagman.
2. watch condor_q

 Most likely, you will run into a grid or software failure, and your workflow will stop
without being done. Remember that grid computing is still in its infancy. There are
various methods to detect the error.

• If you look into the DAGMan out file above, it should tell you clearly which
command it attempted to run, and why it thinks it failed.

 GGF Summer School VDS Tutorial 17

• There is also the workflow log file diamond-0.log which stores the simpler
progress of jobs states.

The final data product should show up on “clus1”. Find out where it resides, and retrieve
it with globus-url-copy. Look into the file. Here the first step (finding where it resides):

$ globus-rls-cli query wildcard lrc lfn "unique-name.*" rlsn://
smarty.isi.edu

 GGF Summer School VDS Tutorial 18

VI: Deferred Planning in Pegasus
 So far in Pegasus, you have seen full ahead planning in which the decision of
where to run the job is decided at the time of submission of dag. However, it is also
possible to delay this decision of site mapping to as late as the time when a job is ready to
run. Pegasus allows you to defer the planning till a particular job is ready to run or a
particular set (partition) of jobs is ready to run. At the heart of this, is the concept of
partitioning the dax into partitions where each partition can be as big as the whole dax or
as small as one job (late planning). In between you have partitions corresponding to the
levels in the dax (all the jobs in one BFS level, are construed as one partition). Thus, how
late you want to delay the job mapping is decided by the granularity of the partitions.

 Deferred planning is done in two steps. In the first step, you have to run the
partitioner to chop up the dax into smaller daxes (each partition corresponds to one of the
smaller daxes). In the second step you run gencdag to create a megadag, and depending
on the mode, dagman, noop or dagman lite jobs are created. When this megadag is
submitted, Pegasus is run as a prescript or a separate job whenever a partition is ready to
run , to generate the appropriate submit files corresponding to the partition.

Partitioner:

 Currently partitioner supports two modes for chopping up the dax. In the BFS
mode, partitions are created level wise while in the One2One mode, partitions are created
per job in dax.

 The tool to run for partitioning the dax is partitiondax.

Usage: partitiondax -d <dax file> [-D <dir for partitioned daxes>]
-t <BFS|One2One (type of partitioning to be used)> [-v] [-V] [-h]

For running, we have 2 directories. In the first directory the partitioned daxes and the
pdax file are created. In the second directory, the submit files are generated when
gencdag is run to create the megadag. For purposes, of this class let us name the first
directory as pdags and the second directory as dags.

partitiondax –d blackdiamond.dax –D ./pdags –t One2One –v

On running the above command, you should see a 5 files in the pdags directory. The
blackdiamond.pdax file contains the structure of the partition graph and identifies the
jobs making up the partition. There would be 4 other .dax files that contain the dax
corresponding to each partition.

 GGF Summer School VDS Tutorial 19

MEGADAG Generation:

 The next step is generating the megadag that is used to submit the dag which
invokes Pegasus at various intervals, when a partition is about to run. Since in our case,
each partition (One2One mode while running partitiondax) contains only one job,
Pegasus is invoked whenever a job is ready to run.

gencdag --pdax ./pdags/blackdiamond.pdax --pools <exec-pool> --o
<output-pool> --megadag daglite --verbose --dir ./dags/

Notice, that you are using gencdag but instead of dax option , you specify the pdax
option. There is an extra option (--megadag) specified, that specifies the megadag mode
to be used.

If all goes well, in the dags directory you should see 4 submit files and one .dag file. The
submit files will be starting with the prefix daglite_.

Before submitting the megadag, there are a few steps that *must* be done. These are
necessary as Pegasus is run as a prescript and takes in VDS_HOME,
LD_LIBRARY_PATH and CLASSPATH from shell.

cd ./dags
setenv $DAGDIR `pwd`
cd <directory where you untarred the vds binary bundle)
setenv VDS_HOME `pwd`
unsetenv CLASSPATH
source setup-user-env.csh
setenv LD_LIBRARY_PATH $GLOBUS_LOCATION/lib

Now we can submit the megadag we generated.

cd $DAGDIR
condor_submit_dag black-diamond_0.dag

 You can track the progress of the dag by doing condor_q <your username>.

As, the megadag is generated the condor submit files for each partition would be
generated as the partition comes up for execution.

 GGF Summer School VDS Tutorial 20

Terminology
A few terms that we will use here include:

Abstract workflow – In the VDS: a workflow in which transformations and files are
represented as logical names, and in which the location at which to run each
transformation is not yet determined.

Chimera – A project name for the virtual data language toolset.

Concrete workflow – In the VDS: a workflow in which files are represented by physical
filenames, and in which sites or hosts have been selected for running each task.

DAG – Directed Acyclic Graph – a graph in which all the arcs (connections) are
unidirectional, and which has no loops (cycles). In other words, control can only flow
through the graph in one direction, from its start towards its end. Often, in the VDS, when
we say “DAG” we mean a file in Condor “DAGman” input format.

DAX – DAG in Xml format – the DAG format produced by the “gendax” tool as it
traverses a Virtual Data Catalog to produce a derivation.

Deferred Planning – Planning mode - In this mode, instead of mapping the job at
submit time, the decision of mapping a job to a site is deferred till a later point, when the
job is about to be run or near to run.

DV – Derivation – a call to a transformation, with actual arguments specified (constants
and logical files)

Full Ahead Planning – Planning mode – In this mode, all the jobs are mapped before
submitting the workflow for execution to the grid.

Graph – (informally) in computer science and discrete mathematics, a data structure
consisting of linked nodes.

LFN – Logical File Name – the name of a set of replicas of a given file, each of which
may have a unique physical file name on system on which it resides.

MEGADAG – the dag that is generated during deferred planning, which invokes
Pegasus at various points during it’s execution.

PFN – Physical File Name – the physical file name of the LFN.

Partitioner – a tool, that chops up the dax into smaller daxes for deferred planning.

 GGF Summer School VDS Tutorial 21

Pegasus – a project name for the concrete planner, which maps the abstract workflow
into a concrete workflow to run on the grid.

Planner – In the VDS, a tool that converts a workflow graph to a form “more ready” for
execution. It makes “plans” for where, how, and when the actions of the workflow should
take place.

Replica catalog - a catalog that maps logical file names on to physical file names

Replica Location Service – a globus service that is used to maintain the lfn to pfn
mappings.

Shell planner – a planner (“shplan”) that converts a workflow in the form of a VDL
“DAX” to a simple, sequential shell script, for execution. It honors all the dependencies
in the original VDL.

TR – Transformation – an application program whose input and out files and parameters
are described in VDL

Transformation catalog – a catalog that maps transformation names onto the physical
pathname of the transformation at a given gird site or local test machine.

VDC – Virtual Data Catalog – a database that holds VDL definitions. The VDC can be a
plain file of XML or a relational database. PostgreSQL and MySQL are supported.

VDL – Virtual Data Language – a language that declares the inputs and outputs of
executable programs (“Transformations”) and how specific calls to them are chained
together into “workflow graphs”

VDLt – a textual version of VDL, loosely inspired by C

VDLx – an XML version of VDL

VDS – Virtual Data System – the set of tools used to process VDL statements into a form
in which they can be executed on the Grid, or tested locally.

Workflow – a graph consisting of tasks, often represented as a DAG.

