
Web Service Grids
Grid Summer School

July 22 2004

Geoffrey Fox
Community Grids Lab

Indiana University
gcf@indiana.edu

Acknowledgements
• The point of view and discussion of service

architectures described here largely comes from
unpublished paper by Malcolm Atkinson, David
DeRoure, Alistair Dunlop, Geoffrey Fox, Peter
Henderson, Tony Hey, Norman Paton, Steven
Newhouse, Savas Parastatidis, Anne Trefethen and Paul
Watson

• http://grids.ucs.indiana.edu/ptliupages/publications/We
bServiceGrids.pdf

• The particular presentation and any mistakes are
responsibility of Fox

Philosophy of Web Service Grids
• Much of distributed Computing was built by natural

extensions of computing models developed for sequential
machines

• This leads to the distributed object (DO) model represented
by Java and CORBA
– RPC (Remote Procedure Call) or RMI (Remote Method

Invocation) for Java
• Key people think this is not a good idea as it scales badly

and ties distributed entities together too tightly
– Distributed Objects Replaced by Services

• Note CORBA was too complicated in both organization and
proposed infrastructure
– and Java was considered as “tightly coupled to Sun”
– So there were other reasons to discard

• Thus replace distributed objects by services connected by
“one-way” messages and not by request-response messages

Service Oriented Architectures I
• A service is the logical

(electronic) manifestation
of some physical or logical
resources (like databases,
programs, devices,
humans, etc.) and/or some
application logic that is
exposed to the network;

• Service interaction is
facilitated by message
exchanges.

Microsoft on Services
• Microsoft: Service orientation is a means for

building distributed systems.
– At its most abstract, service orientation views

everything from the mainframe application to the
printer to the shipping dock clerk to the overnight
delivery company as a service provider.

– Service providers expose capabilities through
interfaces.

– Service-oriented architecture maps these capabilities
and interfaces so they can be orchestrated into
processes.

– Orchestration = Choreography = Workflow
– The service model is "fractal": the newly formed

process is a service itself, exposing a new, aggregated
capability.

Service Oriented Architectures II
• Service boundaries are explicit: The boundaries of a service

are well defined when they are incorporated into a distributed
application. Other services do not see the internal workings,
implementation details, or resource representations of a service.

• Services are autonomous: Service implementations are
developed and evolve independently from one another.
– NOT true of typical Java-based “systems”/”frameworks”

even though recommended by software engineering
principles

– Message-based interactions encourages better design than
method-based

– Inheritance and even Java interfaces encourage spaghetti
classes

• Services can be aggregated: Services defining their interfaces
and policy can be linked together into a larger composed Web
service whose detailed composition need not be exposed to other
services invoking the aggregate service.

Service Oriented Architectures III
• Services share schema and contract, not classes: In service-

oriented architectures, no single set of abstractions (classes) spans
an entire application. Services share schemas (contracts) that define
the structure of the information that they exchange, not information
about their underlying type systems.
– The loose-coupling assertion

• Policies determine service compatibility: Services interact with
one another only after it has been determined – based on policy
assertions – that they can meaningfully exchange information.

• Designing a Service-oriented architecture is the art of modeling
an (virtual) organization's operational processes, as a well-factored
portfolio of network-addressable enterprise components

• Design Services to Last; Design Systems to Change
• Separate the interface and the implementation
• Distributed Objects (e.g. Java) with a WSDL Interface are not

necessarily services as defined here
– They have a service interface

Web services
• Web Services build

loosely-coupled,
distributed applications,
based on the SOA
principles.

• Web Services interact
by exchanging
messages in SOAP
format

• The contracts for the
message exchanges that
implement those
interactions are
described via WSDL
interfaces.

Importance of SOAP
• SOAP defines a very obvious message structure

with a header and a body
• The header contains information used by the

“Internet operating system”
– Destination, Source, Routing, Context, Sequence

Number …
• The message body is only used by the application

and will never be looked at by “operating system”
except to encrypt, compress etc.

• Much discussion in field revolves around what is in
header!
– e.g. WSRF adds a lot to header

Consequences of Rule of the Millisecond
• Useful to remember critical time scales

– 1) 0.000001 ms – CPU does a calculation
– 2) 0.001 to 0.01 ms – MPI latency
– 3) 1 to 10 ms – wake-up a thread or process
– 4) 10 to 1000 ms – Internet delay

• 4) implies geographically distributed metacomputing can’t compete
with parallel systems

• 3) << 4) implies RPC not a critical programming abstraction as it ties
distributed entities together and gains a time that is typically only 1%
of inevitable network delay
– However many service interactions are at their heart RPC but

implemented differently at times e.g. asynchronously
• 2) says MPI is not relevant for a distributed environment as low

latency cannot be exploited
• Even more serious than using RMI/RPC, current Object paradigms are

also lead to mixed up services with unclear boundaries and autonomy
• Web Services are only interesting model for services today

What is a Simple Service?
• Take any system – it has multiple functionalities

– We can implement each functionality as an independent distributed
service

– Or we can bundle multiple functionalities in a single service
• Whether functionality is an independent service or one of many

method calls into a “glob of software”, we can always make them as
Web services by converting interface to WSDL

• Simple services are gotten by taking functionalities and making as
small as possible subject to “rule of millisecond”
– Distributed services incur messaging overhead of one (local) to

100’s (far apart) of milliseconds to use message rather than method
call

– Use scripting or compiled integration of functionalities ONLY
when require <1 millisecond interaction latency

• Apache web site has many projects that are multiple functionalities
presented as (Java) globs and NOT (Java) Simple Services
– Makes it hard to integrate sharing common security, user profile,

file access .. services

Linking Modules

From method based to RPC to message based to
event-based

Module
A

Module
B

Method Calls
.001 to 1 millisecond

Service
A

Service
B Messages

0.1 to 1000 millisecond latency

Coarse Grain Service ModelClosely coupled Java/Python …

Service B Service A

Publisher
Post Events

“Listener”
Subscribe
to Events

Message Queue in the Sky

What is a Grid I?
• You won’t find a clear description of what is Grid and how

does differ from a collection of Web Services
– I see no essential reason that Grid Services have different

requirements than Web Services
– There may be better service-building models than that presented by

Axis or .NET
– Notice “service-building model” is like programming language –

very personal!
– Geoffrey Fox, David Walker, e-Science Gap Analysis, June 30

2003. Report UKeS-2003-01,
http://www.nesc.ac.uk/technical_papers/UKeS-2003-01/index.html.

• Grids were once defined as “Internet Scale Distributed
Computing” but this isn’t good as Grids depend as much if
not more on data as well as simulations

What is a Grid II?
• So Grids can be termed “Internet Scale Distributed Simple

Services” and represent a way of collecting services
together in same way that program (package) collects
methods and objects together.

• In this view, Grids are naturally and critically tied to Web
Services and so must be built on top of Web service
standards

• The high performance computing and e-Science origin of
Grids does give some special challenges
– Discussed later and high bandwidth messaging is one of most

serious challenges
• Grids are built with Web Services and so a Grid Service is a

Web Service and differences between Grid and Web
services are not important for many Grid applications

• We will explain the WS-I+ Web Service approach to Grids

Build the Internet on the Internet
• The messaging and other Web Service standards are essentially

building a new Internet protocol using a software overlay network at
application layer of OSI stack
– We can’t change current Internet easily and its too inflexible!

• SOAP header plus SOAP encoded negotiation controls the “new
Internet protocols”
– Reliability
– Routing
– Discovery of virtualized addresses mimicking DNS
– Addressing including multicast
– Response patterns (collective communication in MPI)
– Security
– Streaming

• Will enable better performance and better reliability with Web
Service messaging
– Opposite to normal complaint that SOAP Slow!!
– Likely to use UDP based fast simple transports

• Important for P2P Networks as these are typically based on Software
Overlay Networks and provide some of these messaging features

Web Services
• Java is very powerful partly due to its many “frameworks” that

generalize libraries e.g.
– Java Media Framework
– Java Database Connectivity JDBC

• Web Services have a correspondingly collections of specifications
that represent critical features of the distributed operating systems
for “Grids of Simple Services”
– Some 60 active WS-* specifications for areas
– a. Core Infrastructure Specifications
– b. Service Discovery
– c. Security
– d. Messaging
– e. Notification
– f. Workflow and Coordination
– g. Characteristics
– h. Metadata and State

Core Web Service Architecture
• XSD XML Schema (W3C Recommendation) V1.0

February 1998, V1.1 February 2004
http://www.w3.org/XML/Schema

• WSDL 1.1 Web Services Description Language Version
1.1, (W3C note) March 2001 http://www.w3.org/TR/wsdl)
endorsed in WS-I Basic Profile 1.0 April 2004
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-
16.html

• WSDL 2.0 Web Services Description Language Version
2.0, (W3C under development) March 2004
http://www.w3.org/2002/ws/desc/

• SOAP 1.1 (W3C Note) V1.1 Note May 2000, V1.2
Recommendation June 2003 http://www.w3.org/TR/soap/,
V1.1 endorsed in WS-I Basic Profile 1.0

• SOAP 1.2 (W3C Recommendation) June 24 2003
http://www.w3.org/TR/soap/

Web Service Registry/Discovery I
• UDDI (Broadly Supported OASIS Standard) V3 August

2003 http://www.uddi.org/
– UDDI is a well established OASIS service discovery

standard
• WS-Discovery Web services Dynamic Discovery

(Microsoft, BEA, Intel …) February 2004
http://ftpna2.bea.com/pub/downloads/ws-discovery.pdf
– Addresses dynamic discovery but reliance on hardware

multi-cast a limitation
• WS-IL Web Services Inspection Language, (IBM,

Microsoft) November 2001 http://www-
106.ibm.com/developerworks/webservices/library/ws-
wsilspec.html

Web Service Registry/Discovery II
• UDDI known as suitable for relatively static applications

with a peculiat construct tModel for storing information
• UDDI has limitations as to what is stored, how dynamically

can be changed and nature of queries
• Maybe problems due to implementations and not standard
• It is naturally supported by a database of service locations

and a description of their use using tModel flexibility
– So should be able to extend queries, semantic richness

• Discovery will be called “UDDI” even if very different as
UDDI blessed by WS-I

• Combining ideas from UDDI, WS-Discovery and P2P
Networks seems promising

Web Service Security I
• SAML Security Assertion Markup Language (OASIS) V1.1

May 2004 http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=security

• XACML eXtensible Access Control Markup Language
(OASIS) V1.0 February 2003 http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=xacml

• WS-Security 2004 Web Services Security: SOAP Message
Security (OASIS) Standard March 2004 http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-soap-message-
security-1.0.pdf

• with WS-I Basic Security Profile May 12 2004
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0-
2004-05-12.html

Web Service Security II
• WS-SecurityPolicy Web Services Security Policy (IBM, Microsoft,

RSA, Verisign) Draft December 2002 http://www-
106.ibm.com/developerworks/library/ws-secpol/ (WS-Security+WS-
Policy)

• WS-Trust Web Services Trust Language (BEA, IBM, Microsoft,
RSA, Verisign …) May 2004 http://www-
106.ibm.com/developerworks/webservices/library/specification/ws-
trust/

• WS-SecureConversation Web Services Secure Conversation
Language (BEA, IBM, Microsoft, RSA, Verisign …) May 2004

• http://www-106.ibm.com/developerworks/library/specification/ws-
secon/

• This “builds overlay network equivalent” of SSL/HTTPS
• WS-Federation Web Services Federation Language (BEA, IBM,

Microsoft, RSA, Verisign) July 2003
• http://www-106.ibm.com/developerworks/webservices/library/ws-fed/

Web Service Security III
• Security is “hardest” Web Service/Grid problem and it is not clear

even if there is a viable approach to some of some challenging
problems such simultaneous login to multiple “dangerous resources”
(supercomputers

• WS-Security presents the overall framework
• WS-SecurityPolicy defining how WS-Policy should be used to define

system policy.
• WS-Trust is used to get authentication credentials with a Security

Token Service and for example supports both PKI and Kerberos style
systems.

• Often one needs to create a secure stream consisting of multiple
exchanged messages; here WS-SecureConversation allows one to
negotiate the stream security with for example a common symmetric
secret key for efficient coding.

• Federation is a critical part of security solutions to both link multiple
administrative domains and to efficiently support multiple resources.
WS-Federation supports this for both security and privacy
(anonymity) issues.

• SAML and the less well known access control markup XACML
provide the XML schema to support Web Service security.

WS-I Interoperability
• Critical underpinning of Grids and Web Services is

the gradually growing set of specifications in the
Web Service Interoperability Profiles

• Web Services Interoperability (WS-I)
Interoperability Profile 1.0a." http://www.ws-i.org.
gives us XSD, WSDL1.1, SOAP1.1, UDDI in
basic profile and parts of WS-Security in their first
security profile.

• We imagine the “60 Specifications” being checked
out and evolved in the cauldron of the real world
and occasionally best practice identifies a new
specification to be added to WS-I

Differences: WSDL and SOAP
• In WSDL 1.1, the major components were types,

messages, portTypes, bindings, ports and services
• In WSDL 2.0, we have types, interfaces, bindings,

endpoints and services
– portTypes are replaced by interfaces
– Ports are replaced by endpoints
– Interfaces support inheritance and
– messages are implemented with types “grouping element”
– Operator overloading is removed

• SOAP 1.2 is pretty similar to SOAP 1.1 to the naïve
reviewer

Web Service Messaging I
• WS-Addressing Web Services Addressing (BEA, IBM, Microsoft)

March 2004 http://www-
106.ibm.com/developerworks/library/specification/ws-add/

• WS-MessageDelivery Web Services Message Delivery (W3C
Submission by Oracle, Sun ..) April 2004
http://www.w3.org/Submission/2004/SUBM-ws-messagedelivery-
20040426/

• WS-Routing Web Services Routing Protocol (Microsoft)
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnglobspec/html/ws-routing.asp

• WS-RM Web Services Reliable Messaging (BEA, IBM, Microsoft,
Tibco) v0.992 March 2004 http://www-
106.ibm.com/developerworks/webservices/library/ws-rm/

• WS-Reliability Web Services Reliable Messaging (OASIS Web
Services Reliable Messaging TC) March 2004 http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsrm

• SOAP MOTM SOAP Message Transmission Optimization
Mechanism (W3C) June 2004 http://www.w3.org/TR/2004/WD-
soap12-mtom-20040608/

Web Service Messaging II
• WS-Addressing virtualizes addressing and is used in several other

specifications including WSRF. It allows “end-point references” to be
defined independently of the transport protocol

• WS-MessageDelivery is a richer specification than WS-Addressing
with the interesting concept of “abstract message delivery properties”
defined in a broad context including non-SOAP transport.

• WS-RM and WS-Reliability are almost identical and use message
sequencing and acknowledgements to ensure guaranteed delivery of
messages delivered in streams.
– Not obviously correct for PDA’s where ACK’s expensive
– Enable UDP transport with application level TCP-like

retransmission
• SOAP MOTM defines optimized encoding for SOAP messages and

partially addresses the critical need in e-Science for high performance
transport
– I think there are more powerful approaches to High Performance

transport

WS-Addressing
• This expands addressing over that supported in SOAP and WSDL
• Generalized address URI to an “Endpoint Reference” containing

– Address as any URI
– Properties --
– Selected portType in WSDL
– Service-port in WSDL
– Policy written in WS-Policy

• Message Information Header
– Destination: URI
– Source: Endpoint defining source of message
– Reply: Endpoint to send replies to
– Fault: Endpoint for faults
– Action: Undefined URI defining semantics of message
– MessageID: Label of message as a URI
– Relationship: Describes URI of related message and specifies nature of

relationship
– Reply: Specifies that this is a reply to a message of a given MessageID

WS-Addressing
• Note the address is a URI (Universal Resource

Identifier) that is typically a URL
• This address is then part of SOAP header and processed

by SOAP Handler
• Address could be “virtual” (e.g. a topic in a publish-

subscribe system) as long as SOAP handler understands
this and knows how to route it
– Bind transport system to WebSphereMQ, JMS or

NaradaBrokering

• The endpoint properties in SOAP header can be used as
in WSRF to enrich address and control processing

• This is yet another source of metadata

Mechanisms for Reliable Messaging I

• There are essentially sequence numbers on each message
• Unreliable transmission detected by non-arrival of a

message with a particular sequence number
• Remember this is “just some TCP reliability” built at

application level
• One can either use ACK’s – Receiver (service B) positively

acknowledges messages when received
– Service A fully responsible for reliability

• Or NAK’s – Service B is partially responsible and tracks
message numbers – sends a NAK if sequence number
missing

Service B Service A

M(n+1)M(n)

Mechanisms for Reliable Messaging II
• Each message has a retransmission time; messages are

retransmitted if ACK’s not received in time
– Uses some increasing time delay if retransmit fails

• Note need to be informed (eventually) that OK to throw
away messages at sender; pure NAK insufficient

• Note this is final end-point to beginning end-point: TCP
reliability is for each link and has different grain size and
less flexible reliability mechanisms

• There are several efficiency issues
– Divide messages into groups and sequence within groups
– Do not ACK each message but rather sequences of messages

• NAK based system attractive if high latency (some mobile
devices) on messaging from receiver back to sender

Custom Message Reliability

Narada
Broker

Filter 1

Filter 2

WS-RM

Wireless
Optimized
WS-RM

WS-Reliability

2 second PDA reply latency!

Different endpoints may
well need different
reliability schemes.
Another reason to use
application layer.
NaradaBrokering offers
universal support

Comparing some of the features in WS-Reliability and WS-ReliableMessaging I

AckRequested is used to request the receiving entity to
acknowledge the message received. This is not REQUIRED for
messages that are not retransmissions or the last message within a
group.

The AckRequested element
is REQUIRED in every
message for which
Guaranteed delivery or
Ordered delivery needs to
be ensured.

Requesting
acknowledge
ments

Allows acknowledgement of a range of messages.Allows acknowledgement
of a range of messages.

Acknowledge
ment Ranges

Message number is REQUIRED for every message.REQUIRED only for groups
with more than 1 message.

Message
numbering
information

A MessageNumberRollover fault is issued by the source if message
numbering exceeds Long.MAX_VALUE, and the sequence is
terminated.

Sender and receiver
terminate sequences if
message number with
Long.MAX_VALUE is
received.

Message
number
exhaustion

Starts at 1 for the first message in a group.Starts at 0 for the first
message in a group.

Message
numbering
initialization

Uses both positive and negative acknowledgments. Error corrections
can thus be initiated at both source and sink.

Relies only on positive
acknowledgements. Error
corrections are initiated by
the source.

Acknowledge
ment scheme
for reliable
delivery

SOAP, WS-Addressing and WS-PolicySOAPRelated
Specifications

WS-ReliableMessagingWS-Reliability

WS-ReliableMessagingWS-Reliability

Faults issued are based on problems with message formats,
message processing and message number rollovers.

Faults issued are based on
problems with message formats
and message processing.

Protocol
faults/error
reporting

Relies on WS-Security and assorted specificationsRelies on WS-Security and
assorted specifications

Security

At most once, at least once and exactly once. Order is not
necessarily tied to guaranteed delivery.

Exactly once ordered delivery,
reliable delivery. Order is always
tied to guaranteed delivery and
cannot be separately specified.

Delivery
assurances
supported

WS-Policy assertions are used to meet delivery assurances,
and also to set various protocol agreements.

Agreements can also be
established regarding various
protocol elements.

Quality of
Service

Triggered after the receipt of a set of positive and negative
acknowledgements. The RetransmissionInterval for a
group of messages, which can be adjusted using
exponential backoff algorithm also triggers it.

Triggered after the receipt of a set
of positive acknowledgements.

Retransmissions

A specific exchange, TerminateSequence, exists for
terminating a sequence. A source is required to issue this
after getting acknowledgments on ALL messages.

No separate exchange exists for
terminating a group of messages.

Exchanges
indicating group
termination

Based on the policy settings associated with
SequenceExpiration and InactivityTimeout

Based on the agreement items of
GroupExpiryTime
GroupMaxIdleDuration

Terminating
group of
message

Comparing some of the features in WS-Reliability and WS-ReliableMessaging I I

Mirror Mirror on the wall
Who is the fastest most reliable of them all?

Web Services!!!
• Application layer “Internet” allows one to optimize message

streams and the cost of “startup time”, Web Services can
deliver the fastest possible interconnections with or without
reliable messaging

• Typical results from Grossman (UIC) comparing Slow SOAP over
TCP with binary and UDP transport (latter gains a factor of 1000)

SOAP/XML WS-DMX/ASCII WS-DMX/Binary Record
Count MB µ σ/µ MB µ σ/µ MB µ σ/µ

10000 0.93 2.04 6.45% 0.5 1.47 0.61% 0.28 1.45 0.38%
50000 4.65 8.21 1.57% 2.4 1.79 0.50% 1.4 1.63 0.27%
150000 13.9 26.4 0.30% 7.2 2.09 0.62% 4.2 1.94 0.85%
375000 34.9 75.4 0.25% 18 3.08 0.29% 10.5 2.11 1.11%
1000000 93 278 0.11% 48 3.88 1.73% 28 3.32 0.25%
5000000 465 7020 2.23% 242 8.45 6.92% 140 5.60 8.12%

Pure SOAP SOAP over UDP Binary over UDP

7020 5.60

SOAP Tortoise and UDP Hare II
• Mechanism only works for streams – sets of related messages
• SOAP header in streams is constant except for sequence number

(Message ID), time-stamp ..
• So negotiate stream in Tortoise SOAP – ASCII XML over HTTP and

TCP –
– Deposit basic SOAP header through connection
– Agree on firewall penetration, reliability mechanism, binary representation and

fast transport protocol
– Typically transport UDP plus WS-RM

• Fast transport (On a different port) with messages just having
“FastMessagingContextToken”, Sequence Number, Time stamp if
needed
– RTP packets have essentially this
– Could add stream termination status

• Can monitor and control with original negotiation stream
• Can generate different streams optimized for different end-points

Web Service Notification I
• WS-Eventing Web Services Eventing (BEA, Microsoft,

TIBCO) January 2004
http://msdn.microsoft.com/library/default.asp?url=/libr
ary/en-us/dnglobspec/html/WS-Eventing.asp

• WS-Notification Framework for Web Services Notification
with WS-Topics, WS-BaseNotification, and WS-
BrokeredNotification (OASIS) OASIS Web Services
Notification TC Set up March 2004 http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsn and
http://www-
106.ibm.com/developerworks/library/specification/ws-
notification/

• JMS Java Message Service V1.1 March 2002
http://java.sun.com/products/jms/docs.html

Notification Architecture
• Point-to-Point

• Or Brokered

• Note that MOM (Message Oriented Middleware)
uses brokered messaging for ALL transmission and
not just “special” notification messages

Service B Service A

Broker PublishSubscribe

Queues Messages
Supports creation
and subscription of topics

Service B Service A
PublishSubscribe

Classic Publish-Subscribe

Publisher 1

Subscriber 1 Subscriber 3Subscriber 2 Subscriber 5Subscriber 4

Topic BTopic A Topic C

Publisher 2

Notification
Servicebroker

broker

broker
broker

Publisher 1

Subscriber 1 Subscriber 3Subscriber 2 Subscriber 5Subscriber 4

Topic BTopic A Topic C

Publisher 2

Notification
Servicebroker

broker

broker
broker

Event-based Programming

xEventListener2xEventListener2

Event
Source

Event
Source

register event x listeners

invoke call back method
with event x xEventListener nxEventListener n

xEventListener1xEventListener1

Figure 2.2 Java delegation event model

xEventListener2xEventListener2

Event
Source

Event
Source

register event x listeners

invoke call back method
with event x xEventListener nxEventListener n

xEventListener1xEventListener1

Figure 2.2 Java delegation event model

Subscribers
Publisher

OS (Java VM) plays
Role of broker

Web Service Notification II
• WS-Eventing is quite similar to WS-BaseNotification and

provides service to service notification
• WS-Notification is similar to CORBA event service and

adds brokers to mediate notification which has several
advantages
– Don’t need queues and lists of subscribers on each

service
– Solution scales to any number of publishers/subscribers

• JMS well known successful non Web Service brokered
notification system

• Topics defined in WS-Topics can also provide
contextualization

• Expect this area to clarify reasonably soon

Comparison of Notification Mechanisms I

Subscribe, Unsubscribe,
receive (with time
constraint), recover,
rollback

Subscribe,
Renew,
Unsubscribe and
Subscription End.

Subscribe, Pause and
Resume. (There is no
exchange to
unsubscribe).

Subscribe, Pause and
Resume. (There is no
exchange to unsubscribe).

Subscription
operations

Yes. This is available for
reliable subscribers
through the recover
option. Transient
subscribers do not have
this feature.

No.One can get last message
to a topic. A sink can
also retrieve message
issued between the
pausing and resumption
of a subscription.

One can get last message
to a topic. A sink can also
retrieve message issued
between the pausing and
resumption of a
subscription.

Support for
replay like
features

YesNo.No.Yes. The intermediary
called Notification Broker
and the exchanges that
need to be supported are
defined in the WS-
Brokered Notification
specification.

Support for
loosely
coupled
notifications.
(Producers
need not
know
consumers)

JavaSOAP, WS-
Addressing

SOAP, WS-Addressing,
WS-Resource Properties,
WS-Topics, and WS-
ResourceLifetime

SOAP, WS-Addressing,
WS-BaseNotification, WS-
Brokered Notification,
WS-Topics, WS-Resource
Properties and WS-
ResourceLifetime

Related
Specifications

JMSWS-EventingWS-BaseNotificationWS-Notification

Comparison of Notification Mechanisms II

No formal
recommendation regarding
topic management.

No formal
recommendatio
n regarding
topic
management.

Defined using WS-Topics.
The topic space will also
support exchanges as
defined by the WS-
ResourceProperties
specification.

Defined using WS-Topics.
The topic space will also
support exchanges as
defined by the WS-
ResourceProperties
specification.

Topic space
management

Implementation dependant.
The specification makes no
specific recommendation
regarding this issue.

No.Topic trees could
possibly be maintained
in producer too. This is
part of WS-Topics and
WS_BaseNotification
uses WS-Topics.

Yes. Supports * and //
wildcards for selection of
topic descendants in a
topic tree.

Hierarchical
topics and
Wildcards
support

Topics are generally “/”
separated strings.

Filter supported
is XPath.

Topic Expressions
supported: QName, “/”
separated Strings, and
XPath path expressions.

Topic Expressions
supported: QName, “/”
separated Strings, and
XPath path expressions.

Notification
filters and
topic
expressions
supported

For persistent subscriptions
a subscription is considered
active till such time that an
unsubscribe operation is
invoked. Transient
subscriptions are valid till
they sign off.

Contained
within the
Subscribe and
Renew
exchanges.

Defined using the WS-
Resource Lifetime
specification.

Defined using the WS-
Resource Lifetime
specification.

Subscription
lifetimes

YES. The format generally
specified is in SQL.

YESYESYESSupport for
filters on
occurrences

JMSWS-EventingWS-BaseNotificationWS-Notification

Comparison of Notification Mechanisms III

Supports PERSISTENT
and NON_PERSISTET
delivery modes.

No explicit support
for reliable
messaging. Possibly
will defer to WSRM
for this.

No explicit support
for reliable
messaging. Defers
to WSRM for this.

No explicit support for
reliable messaging.
Defers to WSRM for
this.

Support for
multiple
delivery
modes

WS-Security &
assorted
specifications.

WS-Security and
assorted
specifications.

WS-Security and
assorted specifications.

Suggested
Security

Has a well defined
Message interface. This is
then used to support
other flavors of messages
such as TextMessage,
BytesMessage,
ObjectMessage and
StreamMessage.

Does not define any
special Notification
message type.

Provides support
for both a Notify
message as well as
“raw” application
specific message,

Provides support for
both a Notify message
as well as “raw”
application specific
message,

Notification
messages

No.No.No.YES. This is supported
through the WS-
Brokered Notification
specification.

On demand
publishing

No.No.No.Yes. The
NotificationProducer
interface allows
inspection of available
topics.

Advertisem
ent of
supported
topics

JMSWS-EventingWS-BaseNotificationWS-Notification

CORBA Event Service
• The CORBA Event Service has more or less similar

principles.
– There is a concept of an EventChannel – similar to Broker in JMS

or WS-Notification
– There are also roles such as PushSupplier, ProxyPushConsumer,

PullConsumer, and ProxyPullSupplier to facilitate push/pull
operations for retrieval of events from the EventChannel.

• Either the push/pull model can be used at either end.
• The EventChannel which is a standard CORBA object is

both the supplier and consumer of events, and it keeps track
of suppliers and consumers through callback interfaces.

• Consumers can use either blocking/non-blocking operations
for retrieval of events.

Web Services Get Together I
Coordination and Workflow,

Transactions and Contextualization
• Workflow Coordination and Orchestration refer to the

general integration of multiple Web Services to form
another composite Service
– Sometime called “Programming the Grid”

• Contextualization refers to providing a linkage between
services clients and messages to provide a framework for
stateful interactions – noite workflow can use
contextualization but it is not required

• Transactions refer to important classes of workflow
corresponding to classic business processes

Web Services Get Together II
• WS-CAF Web Services Composite Application Framework

including WS-CTX, WS-CF and WS-TXM below (OASIS
Web Services Composite Application Framework TC)
http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=ws-caf

• WS-CTX Web Services Context (OASIS Web Services
Composite Application Framework TC) V1.0 July 2003
http://www.arjuna.com/library/specs/ws_caf_1-0/WS-CTX.pdf

• WS-CF Web Services Coordination Framework (OASIS Web
Services Composite Application Framework TC) V1.0 July 2003
http://www.arjuna.com/library/specs/ws_caf_1-0/WS-CF.pdf

• WS-TXM Web Services Transaction Management (OASIS Web
Services Composite Application Framework TC) V1.0 July 2003
http://www.arjuna.com/library/specs/ws_caf_1-0/WS-TXM.pdf

Web Services Get Together III
• WS-Coordination Web Services Coordination (BEA, IBM,

Microsoft) September 2003 http://www-
106.ibm.com/developerworks/library/ws-coor/
– Used with WS-AtomicTransaction and WS-BusinessActivity

• WS-AtomicTransaction Web Services Atomic Transaction
(BEA, IBM, Microsoft) September 2003 http://www-
106.ibm.com/developerworks/library/ws-atomtran/

• WS-BusinessActivity Web Services Business Activity
Framework (BEA, IBM, Microsoft) January 2004

• BTP Business Transaction Protocol (OASIS) May 2002
with V1.0.9.1 May 2004 http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=business-
transaction

Web Services Get Together IV
• BPEL Business Process Execution Language for Web

Services (OASIS) V1.1 May 2003 http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsbpel and
http://www-106.ibm.com/developerworks/library/ws-bpel/
– Winning from importance of supporters (IBM, Microsoft)

• WS-Choreography (W3C)
http://www.w3.org/2002/ws/chor/ V1.0 Working Draft
April 2004 http://www.w3.org/TR/2004/WD-ws-cdl-10-
20040427/

• WSCL Web Services Conversation Language (W3C Note)
Submission from HP March 2002
http://www.w3.org/TR/wscl10/ not active

• None of these discusses message streams between services
and so use for dataflow applications unclear

Web Services Get Together V
• WS-Context and WS-Coordination represent general

approaches to contextualization.
• Three different approaches to transactions covering typical

two-phase transactions as well as more complex business
processes

• Each of 3 approaches packages the four component
capabilities in different ways
– Context
– Coordination of work
– 2 phase transaction
– General transactions

• Not clear if workflow separate from transactions
• So an important but immature area
• The issue of “model for shared data is implicit and

potentially difficult as in metadata discussion

More details on WS-Context
• Context corresponds to shared data and is roughly equivalent to a mix

of Environment and Configuration variables in traditional
programming

• We imagine N Web Services linked in some way
– Maybe N=2 and linkage is message stream
– Maybe N=2 and one Web service is a “Configuration Manager” and another a

Web Service starting up
– Maybe N=1000 and the Web Services are each controlling a cluster node
– Maybe N=4 and we have Web services controlling CFD, Structures,

Electromagnetic and optimization services

• The Context can be passed directly by putting data in message or one
can indirectly specify a URI which references a Web service from
which one can get the context data

• Context data is metadata defining the joint application
• Simplest example of context data is a single token allowing stateful

interactions

WS-Context II
• The simplest WS-CAF concept is the shared data which is

associated with an activity defined as a set of Web
services
– One can specify list
– One can manage lifetime of context data

• The next level involves explicit coordination of the
services with one or more coordination web services
– Now we entering same regime as “workflow” but targeting

specific well used simple workflows such as transactions
• It is not clear to me why coordination is not built on top

of workflow languages such as BPEL
• Note XML is not terribly good at defining coordination

and workflow as “control” not easy to specify
• It seems to me that shared data is important and in fact

useful in workflow
– Note that shared data could be stored in a dynamic metadata

catalog with a scope defined by services in context

Web Service Characteristics
• WS-Policy Web Services Policy Framework (BEA,

IBM, Microsoft SAP) http://www-
106.ibm.com/developerworks/library/ws-polfram/
– Used in WS-SecurityPolicy but this is not part of WS-I
– Policy essential in negotiations that underlie many Web

Service operations and seems likely WS-Policy will
evolve to

• WS-Agreement Web Services Agreement
Specification (GGF under development)
http://www.gridforum.org/Meetings/GGF11/Docum
ents/draft-ggf-graap-agreement.pdf
– Use for specifying service level agreements

Web Service Metadata and State I
• The Semantic Grid and Semantic Web are important

frameworks for metadata but handicapped by lack of
“compelling” tools

• RDF Resource Description Framework (W3C) Set of
recommendations expanded from original February 1999
standard http://www.w3.org/RDF/ and the heart of the
Semantic Web and Grid http://www.semanticgrid.org

• DAML+OIL combining DAML (Darpa Agent Markup
Language) and OIL (Ontology Inference Layer) (W3C)
Note December 2001 http://www.w3.org/TR/daml+oil-
reference

• OWL Web Ontology Language (W3C) Recommendation
February 2004 http://www.w3.org/TR/2004/REC-owl-
features-20040210/

Web Service Metadata and State II
• WS-DistributedManagement Web Services Distributed Management

Framework with MUWS and MOWS below (OASIS) http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsdm

• Management includes issues like monitoring quality of service, enforcing
service level agreements, controlling tasks and managing life-cycles.

• WSDM-MUWS Web Services Distributed Management: Management
Using Web Services (OASIS) V0.5 Committee Draft April 2004
http://www.oasis-open.org/committees/download.php/6234/cd-wsdm-
muws-0.5.pdf

• WSDM-MOWS Web Services Distributed Management: Management
of Web Services (OASIS) V0.5 Committee Draft April 2004
http://www.oasis-open.org/committees/download.php/6255/cd-wsdm-
mows-0.5-20040402.pdf

• WS-MetadataExchange Web Services Metadata Exchange (BEA,IBM,
Microsoft, SAP) March 2004 http://www-
106.ibm.com/developerworks/library/specification/ws-mex/
– Describes how metadata can be exchanged between services rather

than by looking it up in registries like UDDI or higher level metadata
catalogs; the old OGSI standard used such service-resident metadata
extensively

Web Service Metadata and State III
• WS-RF Web Services Resource Framework including WS-

ResourceProperties, WS-ResourceLifetime, WS-
RenewableReferences, WS-ServiceGroup, and WS-BaseFaults
(OASIS) http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsrf with Oasis TC
set up April 2004 and V1.1 Framework March 2004 http://www-
106.ibm.com/developerworks/library/ws-resource/ws-
modelingresources.pdf
– Uses rich metadata to define stateful interactions – its use of SOAP header

creates interoperability problems
• ASAP Asynchronous Service Access Protocol (OASIS)
• http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=asap

with V1.0 working draft G June 2004 http://www.oasis-
open.org/committees/download.php/7151/wd-asap-spec-01g.pdf

• WS-GAF Web Service Grid Application Framework (Arjuna,
Newcastle University) http://www.neresc.ac.uk/ws-gaf/
– Uses WS-Context to provide “opaque” (don’t say much) stateful interactions

Metadata Catastrophe I
• We keep finding places where metadata can be transmitted

to and from services
• WS-Addressing and WS-RF specify metadata in SOAP

header of messages
• WS-Context similarly specifies both SOAP header and WS-

Context context services as location of (temporary)
metadata

• We have registries like UDDI of service data
• WS-MetadataExchange covers metadata stored in services

– Service metadata is very common and often not explicitly called
out e.g. WebDAV as in Apache Slide stores file metadata in
addition to versioning information

• In addition, we have major source of one or more
(federated) catalogs

• I think this confused situation will need to be addressed by
some new dynamic metadata model

Metadata Catastrophe II
• There are large long term metadata catalogs associated with

major applications/services
– These are likely to remain as now based on traditional major

database technology like Oracle MySQLK and DB2
• There are small but broadly available metadata catalogs

– Globus MDS and EDG RGMA roughly address these
– Semantic Grid enriched Service catalogs as in UDDI

• We need to implement UDDI in a distributed (federated)
fashion and work around its non-intuitive schema but this
seems straightforward

• All the problems occur for local and highly dynamic data
where key issues are:
– Consistency: If metadata stored in messages flowing around, how

do we ensure consistency if it ever changes
– Where is it: How do we decide where to look it up?

• My intuition is that best solution is highly dynamic
lightweight database – doesn’t really fit any proposal yet!

Metadata and Semantic Grid
• Can store in one catalog, multiple catalogs or in each service

– Not clear how a coherent approach will develop
• Specialized metadata services like UDDI and MDS (Globus)

– Nobody likes UDDI
– MDS uses old fashioned LDAP
– RGMA is MDS with a relational database backend

• Some basic XML database (Oracle, Xindice …)
• “By hand” as in current SERVOGrid Portal which is roughly same

as using service stored SDE’s (Service Data Elements) as in OGSI
• Semantic Web (Darpa) produced a lot of metadata tools aimed at

annotating and searching/reasoning about metadata enhanced
webpages
– Semantic Grid uses for enriching Web Services
– Implies interesting programming model with traditional analysis

(compiler) augmented by meta-data annotation

Database

SDE1
SDE2

Service

SDE1
SDE2

Service

SDE1
SDE2

Service

SDE1
SDE2

Service

SDE1
SDE2

Service

SDE1
SDE2

Service

SDE1
SDE2

Service

Individual Services

Web Service Ports

Grid or Domain Specific Metadata Catalogs

System or Federated Registry or Metadata Catalog

Database1 Database2 Database3

Four Metadata Architectures

Messages
M M M M M M M M M M M M

Stateful Interactions
• There are (at least) four approaches to specifying

state
– OGSI use factories to generate separate services for each

session in standard distributed object fashion
– Globus GT-4 and WSRF use metadata of a resource to

identify state associated with particular session
– WS-GAF uses WS-Context to provide abstract context

defining state. Has strength and weakness that reveals less
about nature of session

– WS-I+ “Pure Web Service” leaves state specification the
application – e.g. put a context in the SOAP body

• I think we should smile and write a great metadata
service hiding all these different models for state and
metadata

Explicit and Implicit Factories
• Stateful interactions are typified by amazon.com where messages carry

correlation information allowing multiple messages to be linked together
– Amazon preserves state in this fashion which is in fact preserved in its

database permanently
• Stateful services have state that can be queried outside a particular

interaction
• Also note difference between implicit and explicit factories

– Some claim that implicit factories scale as each service manages its
own instances and so do not need to worry about registering instances
and lifetime management

F
A
C
T
O
R
Y

1

2

3

4

F
A
C
T
O
R
Y

1

2

3

4

Explicit FactoryImplicit Factory

Hidden
instances

Explicit
instances

WS-I+ Grid Interoperability Profile
• WS-I identifies XSD, WSDL1.1, SOAP1.1, UDDI
• WS-I+ adds minimum additional capabilities to WS-I to

allow development of Grid Services
– BPEL for workflow
– WS-Addressing for virtualization and richness of messaging
– WS-ReliableMessaging/Reliability to provide basis for fault

tolerance
• And it expects progress in

– Security – need to understand better as Web Services are not
settled down and many large projects like Shibboleth

– Notification – hopefully IBM and Microsoft will agree
• while use of portlets will be encouraged (later)
• Open Middleware Infrastructure Institute

http://www.omii.ac.uk/

Web Service User Interfaces
• WSRP Web Services for Remote Portlets (OASIS)

OASIS Standard August 2003 http://www.oasis-
open.org/committees/download.php/3339/wsrp-
specification-1.0-cs-1.0-rev3.pdf

• JSR168: JSR-000168 Portlet Specification for Java
binding (Java Community Process) October 2003
http://www.jcp.org/aboutJava/communityprocess/fin
al/jsr168/
– GridSphere, Jetspeed and uportal are or will be JSR168

compliant and this gives portlet architecture with
aggregation portals

Web Services as a Portlet
• Each Web Service naturally has a

user interface specified as “just
another port”
– Customizable for universal access

• This gives each Web Service a
Portlet view specified by WSRP
(Web services for Remote Portals)
or JSR168

• So component model for resources
“automatically” gives a component
model for user interfaces
– When you build your

application, you define portlet
at same time

Application or
Content source

WSDL

Web Service

S
R

W

P

Application as a WS
General Application Ports
Interface with other Web
Services

User Face of
Web Service
WSRP Ports define
WS as a Portlet

Web Services have other
ports to interact with other
Web Services

Collage of Portals
Earthquakes – NASA
Fusion – DoE
Computing Info – DoD
Publications -- CGL

Issues in Portlets
Current standards provide for a negotiation
between clients and user facing Web service
ports
They do not address dynamic interfaces

That’s why Java applets used as they internally
support dynamic content
Used in audio- video conferencing portlet

They do not address communication between
different portlets
Rendering on clients is limited as constructs like
HTML tables are not high technology

Better rendering engine desired

Portlets imply Message based MVC
Model View Controller

a. MVC Model

Controller

View

Display

Model

Messages contain control information

Decomposition of SVG Browser

b. Three-stage pipeline

High Level UI

Raw UI
Display

Rendering as
messages

Events as
messages

Semantic

Events as
messages

Rendering as
messages

Input port Output port

Model View ControllerModel View Controller

a. MVC Model

Controller

View

DisplayDisplay

Model

Messages contain control information

Decomposition of SVG Browser

b. Three-stage pipeline

High Level UI

Raw UI
Display
Raw UI
Display

Rendering as
messages

Events as
messages

Semantic

Events as
messages

Rendering as
messages

Input port Output port

Services

Portal

Can build desktop applications in this fashion
• Remember rule of millisecond – user interfaces don’t notice a few

(30) milliseconds
• Don’t build complex clients
• Build Services!

Figure1 SVG browser derived from message-based MVC

View

GVTGVT

RendererRenderer

Rendering as messages Event as messages

Client User Interface

desktop cellular
phone

PDA

JavaScriptJavaScript

SVG DOMSVG DOM

PortFacing
Resource

Model
Computation core as service

Messages contain control information

Figure1 SVG browser derived from message-based MVC

View

GVTGVT

RendererRenderer

Rendering as messages Event as messages

Client User Interface

desktopdesktopdesktop cellular
phone
cellular
phone
cellular
phone

PDAPDAPDA

JavaScriptJavaScript

SVG DOMSVG DOM

PortFacing
Resource

Model
Computation core as service

Messages contain control information

Shared Input Port Collaboration with Web Services
BrokerBroker

Input port Output port

View

GVTGVT

RendererRenderer

Rendering as
messages Event as messages

User Port

JavaScriptJavaScript

SVG DOMSVG DOM

Application as Web Service

PortFacing
Resource

Model

Master client

desktop

Set up an event
class (topic)

Publish
an event

to collaborative
clients

Subscribe to
the topic

Facing

PDA cellular
phone

Input port Output port

View

GVTGVT

RendererRenderer

User Port

JavaScriptJavaScript

SVG DOMSVG DOM

Application as Web Service

Port
Resource

Rendering as
messages

Model

Participating client

Facing

Facing
Facing

BrokerBroker

Input port Output port

View

GVTGVT

RendererRenderer

Rendering as
messages Event as messages

User Port

JavaScriptJavaScript

SVG DOMSVG DOM

Application as Web Service

PortFacing
Resource

Model

User Port

JavaScriptJavaScript

SVG DOMSVG DOM

Application as Web Service

PortFacing
Resource

Model

Master client

desktopdesktopdesktop

Set up an event
class (topic)

Publish
an event

to collaborative
clients

Subscribe to
the topic

Facing

PDAPDA cellular
phone
cellular
phone

Input port Output port

View

GVTGVT

RendererRenderer

User Port

JavaScriptJavaScript

SVG DOMSVG DOM

Application as Web Service

Port
Resource

Rendering as
messages

Model

Participating client

Facing

Facing
Facing

Some more general Grid Service
Issues

Important Higher Level Services
• There will be uncountable services associated with

particular applications but there are some services of broad
applicability

• Accounting and higher level authentication and
authorization security/privacy services

• Data movement such as GridFTP and GridRPC
• Metadata, Logging (small data items)
• Data Information and Knowledge Repositories – OGSA

DAI with database (any type) or file access
– Includes capabilities like WebDAV or just “Grid NFS”

• Computing services
– Job Submittal, Status
– Scheduling as in Condor, PBS, Sun Grid Engine
– Links to MPI

Virtualization
• The Grid could and sometimes does virtualize various

concepts – should do more
• Location: URI (Universal Resource Identifier) virtualizes

URL (WSAddressing goes further)
• Replica management (caching) virtualizes file location

generalized by GriPhyn virtual data concept
• Protocol: message transport and WSDL bindings

virtualize transport protocol as a QoS request
• P2P or Publish-subscribe messaging virtualizes matching

of source and destination services
• Semantic Grid virtualizes Knowledge as a meta-data

query
• Brokering virtualizes resource allocation
• Virtualization implies all references can be indirect and

needs powerful mapping (look-up) services -- metadata

Special Challenges for Grids
• Representation of State

– Stateless services and stateful interactions
– Contextualization

• Factories – essential in object models but not directly
present in service models

• Cross Administrative Access
– Running a job is a dangerous service
– Running a particular job (e.g. the Gaussian Service) is not very

dangerous but currently this service model of simulation is not
very common

• Include high performance computers in Grid
• Should use streams (which can be very high volume)

and not write files
– Need schedulers etc. with stream abstraction

Issues and Types of Grid Services
• 1) Types of Grid

– R3
– Lightweight
– P2P
– Federation and Interoperability

• 2) Core Infrastructure and Hosting
Environment

– Service Management
– Component Model
– Service wrapper/Invocation
– Messaging

• 3) Security Services
– Certificate Authority
– Authentication
– Authorization
– Policy

• 4) Workflow Services and Programming
Model

– Enactment Engines (Runtime)
– Languages and Programming
– Compiler
– Composition/Development

• 5) Notification Services
• 6) Metadata and Information Services

– Basic including Registry
– Semantically rich Services and meta-data
– Information Aggregation (events)
– Provenance

• 7) Information Grid Services
– OGSA-DAI/DAIT
– Integration with compute resources
– P2P and database models

• 8) Compute/File Grid Services
– Job Submission
– Job Planning Scheduling Management
– Access to Remote Files, Storage and

Computers
– Replica (cache) Management
– Virtual Data
– Parallel Computing

• 9) Other services including
– Grid Shell
– Accounting
– Fabric Management
– Visualization Data-mining and

Computational Steering
– Collaboration

• 10) Portals and Problem Solving
Environments

• 11) Network Services
– Performance
– Reservation
– Operations

Data

Technology Components of (Services in)
a Computing Grid

1: Job Management Service
(Grid Service Interface to user or program client)

2: Schedule and control Execution

1: Plan Execution 4: Job Submittal

Remote Grid ServiceRemote Grid Service

6: File and
Storage
Access

3: Access to Remote Computers

Data
7: Cache

Data
Replicas

5: Data Transfer

10: Job
Status

8: Virtual
Data

9: Grid MPI

Taxonomy of Grid Operational Style

Fault tolerant and self-healing Grid
Robust Reliable Resilient RRR

RRR or Autonomic
Grid

Grid supporting collaborative tools like the Access
Grid, whiteboard and shared applications.

Collaboration Grid

Grid designed for rapid deployment and minimum
life-cycle support costs

Lightweight Grid

Grid built with peer-to-peer mechanismsPeer-to-peer Grid

Integration of Grid and Semantic Web meta-data
and ontology technologies

Semantic Grid

Description of Grid Operational or
Architectural Style

Name of Grid Style

Grids of Grids of Simple Services
• Link via methods messages streams
• Services and Grids are linked by messages
• Internally to service, functionalities are linked by methods
• A simple service is the smallest Grid
• We are familiar with method-linked hierarchy

Lines of Code Methods Objects Programs Packages

Overlay
and Compose
Grids of Grids

Methods Services Functional Grids

CPUs Clusters Compute
Resource Grids

MPPs

Databases Federated
Databases

Sensor Sensor Nets

Data
Resource Grids

Education Grid

Inservice Teachers
Preservice Teachers
School of Education
Teacher Educator

Grids

Informal
Education
(Museum)

Grid

Student/Parent …
Community Grid

Science Grids

Typical Science Grid
Service such as Research
Database or simulation

Transformed by Grid Filter
to form suitable for education

Learning Management
or LMS Grid

Publisher
Grid

Campus or
Enterprise

Administrative
Grid

Education as a Grid of Grids

Digital
Library

Grid

Community Grids

Database Database

Analysis and
Visualization
Portal

Repositories
Federated Databases

Data
Filter

Services

Field Trip DataStreaming
Data

Sensors

?
Discovery
Services

SERVOGrid

Research
Simulations

Research Education

Customization
Services

From
Research

to Education

Education
Grid
Computer
FarmGeoscience Research and Education Grids

GIS
Grid

Sensor Grid
Database Grid

Compute Grid

Critical Infrastructure (CI) Grids built as Grids of Grids

Gas Services
and Filters

Physical Network

Registry Metadata

Flood Services
and Filters

Flood CIGrid Gas CIGrid… Electricity
CIGrid …

Data Access/Storage

Security WorkflowNotification Messaging

Portals Visualization GridCollaboration Grid

Sensor Grid Compute GridGIS Grid

Core Grid Services

